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Abstract

We study the tail behavior of the distribution of the sum of asymptotically independent
risks whose marginal distributions belong to the maximal domain of attraction of the
Gumbel distribution. We impose conditions on the distribution of the risks (X, Y ) such
that P(X+Y > x) ∼ (constant) P(X > x). With the further assumption of nonnegativity
of the risks, the result is extended to more than two risks. We note a sufficient condition
for a distribution to belong to both the maximal domain of attraction of the Gumbel
distribution and the subexponential class. We provide examples of distributions which
satisfy our assumptions. The examples include cases where the marginal distributions
of X and Y are subexponential and also cases where they are not. In addition, the
asymptotic behavior of linear combinations of such risks with positive coefficients is
explored, leading to an approximate solution of an optimization problem which is applied
to portfolio design.
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1. Introduction

Estimating the probability that a sum of risks, X+Y , exceeds a large threshold is important
in finance and insurance, and, hence, much applied probability research has been dedicated
to this goal. Recent results can be found in Albrecher et al. (2006), Klüppelberg and Resnick
(2008), Wang and Tang (2006), Asmussen and Rojas-Nandayapa (2008), Alink et al. (2004),
Embrechts and Puccetti (2006), and Ko and Tang (2008). Approximating this probability helps
us evaluate risk measures for investment portfolios as well as estimating credit risk.

The problem is reasonably well understood when risks have regularly varying marginal
distributions, but another important large class of risk distributions is the maximal domain of
attraction of the Gumbel distribution, denoted by MDA(�), where

�(x) = exp(−e−x), x ∈ R,

and MDA(�) is the class of distributions F for which there exist an > 0 and bn ∈ R such that

lim
n→∞ n(1− F(anx + bn)) = lim

n→∞ nF̄ (anx + bn) = e−x, x ∈ R (1.1)
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798 A. MITRA AND S. I. RESNICK

(see Resnick (1987, p. 38)). It is also well known that the risks having distribution in MDA(�)

are rapidly varying, i.e. −∞-varying (see Resnick (1987, p. 53)). Within the class of risks
(X, Y ) with marginal distributions F, G ∈ MDA(�), results on aggregation of risks are known
when X and Y are independent. However, actual risks are often not independent and a somewhat
weaker concept called asymptotic independence allows risks to be modeled as dependent and is
more practical in many modeling situations. Risks X and Y in a maximal domain of attraction
are asymptotically independent if, for all x = (x1, x2),

lim
n→∞Hn(a(1)

n x1 + b(1)
n , a(2)

n x2 + b(2)
n ) = G1(x1)G2(x2), (1.2)

where H is the joint distribution of X and Y , and both G1 and G2 are nondegenerate extreme
value distributions (see de Haan and Ferreira (2006, p. 229)). There are also results on
aggregation of risks in the absence of asymptotic independence where the analogue of (1.2)
holds but with a limit distribution which is not a product; see Klüppelberg and Resnick (2008).

In this paper we consider the case where the risks X and Y are asymptotically independent
with marginal distributions F, G ∈ MDA(�). We also allow one marginal tail to be lighter
and the distribution with the lighter tail does not necessarily belong to the maximal domain of
attraction of the Gumbel distribution.

Within the class of vectors (X, Y ) satisfying asymptotic independence and marginal distri-
butions F, G ∈ MDA(�), two prominent but very distinct behaviors have been observed.

• First, suppose that X and Y are two independent and identically distributed (i.i.d.) risks
with common distribution F , which is subexponential and belongs to MDA(�). Then
X and Y are certainly asymptotically independent and

lim
x→∞

P(X + Y > x)

P(X > x)
= 2. (1.3)

So one possible behavior is that the sum has a distribution which is tail equivalent to the
distribution of a summand.

• Very different tail behavior is exhibited in Theorem 2.10 of Albrecher et al. (2006),
in which a joint distribution of (X, Y ) was given making X and Y asymptotically
independent with identical marginal distribution F ∈ MDA(�), but

lim
x→∞

P(X + Y > x)

P(X > x)
= ∞.

In Section 2 we give a set of conditions on the joint distribution of (X, Y ), guaranteeing
behavior of the first sort, namely,

lim
x→∞

P(X + Y > x)

P(X > x)
= 1+ c, (1.4)

where c = limx→∞ P(Y > x)/P(X > x), the limit being assumed to exist. If c ∈ (0,∞),
our conditions imply that X and Y are asymptotically independent, and that each belongs to
the maximal domain of attraction of the Gumbel distribution. When X and Y are identically
distributed, (1.3) holds. Under the further assumption of nonnegativity of risks, the result is
extended for the case of more than two risks. In Section 3 we provide examples of distributions
which satisfy our conditions. The examples include cases where the marginal distributions of
X and Y are subexponential and also cases where they are not. We also show one example
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which does not satisfy our conditions, but exhibits the tail equivalence between the distribution
of the sum and that of the summand. Thus, our conditions are only sufficient. In Section 4
we summarize the asymptotic behavior of finite linear combinations of risks with nonnegative
coefficients. In Section 5 we suggest approximate solutions for an optimization problem which
is related to portfolio design. The paper closes with concluding remarks and a brief summary
of numerical experiments which give a feel for whether asymptotic equivalence is a suitable
numerical approximation for exceedance probabilities of aggregated risks.

2. Asymptotic tail probability for aggregated risk

2.1. Asymptotic tail probability for the sum of two random variables

We give conditions guaranteeing (1.4). The constant c satisfies

c = lim
x→∞

P(Y > x)

P(X > x)
∈ [0,∞).

When c ∈ (0,∞), X and Y are called tail equivalent (see Resnick (1971b)), and then our
conditions guarantee that both the marginal distributions F, G ∈ MDA(�) and X and Y are
asymptotically independent. When c = 0, our result extends to the case where G, the marginal
distribution of Y , does not belong to the maximal domain of attraction of the Gumbel distribution
and where X and Y need not be asymptotically independent.

2.1.1. Assumptions. Suppose that (X, Y ) is a pair of random variables satisfying the following
set of assumptions.

Assumption 2.1. The random variable X has a distribution F whose right endpoint x0 is
infinite, that is,

x0 = sup{x : F(x) < 1} = ∞. (2.1)

Furthermore, F ∈ MDA(�) so that (1.1) is satisfied with centering constants bn ∈ R and
scaling constants an > 0. Equivalently (see de Haan (1970, pp. 88, 91) and Resnick (1987,
pp. 28, 40–43)), there exists a self-neglecting auxiliary function f (·) whose derivative converges
to 0, such that

lim
t→∞

F̄ (t + xf (t))

F̄ (t)
= e−x. (2.2)

Assumption 2.2. The random variables X and Y have distribution functions F and G such
that

lim
x→∞

Ḡ(x)

F̄ (x)
= c ∈ [0,∞).

Assumption 2.3. The conditional distribution of Y , given X > x, satisfies, for all t > 0,

lim
x→∞P(|Y | > tf (x) | X > x) = 0,

where f (x) is the auxiliary function corresponding to the distribution of X given in (2.2).

Assumption 2.4. Symmetrically, assume that, for all t > 0,

lim
x→∞P(|X| > tf (x) | Y > x) = 0.

Assumption 2.5. For some L > 0, suppose that

lim
x→∞

P(Y > Lf (x), X > Lf (x))

P(X > x)
= 0.
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2.1.2. The main result. Assumptions 2.1–2.5 allow us to conclude that aggregated risks are
essentially tail equivalent to individual risks.

Theorem 2.1. Under Assumptions 2.1–2.5, we have

P(X + Y > x) ∼ (1+ c) P(X > x), x →∞.

2.1.3. Comments on the assumptions. Before giving a proof of Theorem 2.1, we discuss impli-
cations of the assumptions.

1. When F ∈ MDA(�), we may choose an and bn appearing in (1.1) as bn = bF (n) and
an = f (bn). See Resnick (1987, p. 40) or de Haan and Ferreira (2006, p. 10).

2. If c ∈ (0,∞) then our assumptions guarantee that both marginal distributions F and G

belong to MDA(�) and also that (X, Y ) are asymptotically independent. FromAssumption 2.1,
F ∈ MDA(�), and since F and G are tail equivalent, from Resnick (1971b) we obtain G ∈
MDA(�). For asymptotic independence, define

bF (t) = inf

{
s : 1

1− F
(s) ≥ t

}
=

(
1

1− F

)←
(t);

define bG(t) similarly. From de Haan and Ferreira (2006, p. 229), if F, G ∈ MDA(�) and

lim
t→∞

P(X > bF (t), Y > bG(t))

P(X > bF (t))
= 0, (2.3)

then X and Y are asymptotically independent according to (1.2). When c ∈ (0,∞), Assump-
tion 2.3 implies (2.3). To verify this, note first that Assumption 2.3 implies that

lim
x→∞

P(X > x, Y > x)

P(X > x)
≤ lim

x→∞
P(X > f (x), Y > x)

P(X > x)
= 0, (2.4)

since f (x)/x → 0 as x → ∞ (see Resnick (1987, p. 40)). If c > 1 then, for sufficiently
large t , bF (t) ≤ bG(t) and, therefore, using (2.4),

lim
t→∞

P(X > bF (t), Y > bG(t))

P(X > bF (t))
≤ lim

t→∞
P(X > bF (t), Y > bF (t))

P(X > bF (t))

= lim
t→∞

P(X > t, Y > t)

P(X > t)

= 0,

as required. A similar verification can be constructed for the case 0 < c < 1. For c = 1,

bF (t) ∼ bG(t). Hence,
f (bF (t))

bG(t)
∼ f (bF (t))

bF (t)
→ 0.

So,

lim
t→∞

P(X > bF (t), Y > bG(t))

P(X > bF (t))
≤ lim

t→∞
P(X > bF (t), Y > f (bF (t)))

P(X > bF (t))

= 0 (by Assumption 2.3 and (2.1)).

https://doi.org/10.1239/aap/1253281064 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281064


Aggregation of risks 801

3. The auxiliary function f (·) can be replaced by any asymptotically equivalent function f̃ (·);
that is, if limx→∞ f̃ (x)/f (x) = 1, and if Assumptions 2.3–2.5 hold with f (·), they also hold
with f̃ (·) replacing f (·) and vice versa. Since the mean excess function

e(x) = E(X − x | X > x)

is asymptotically equivalent to any auxiliary function f (x) (see Embrechets et al. (1997, p. 143)
and Resnick (1987, p. 48)), e(x) can also be taken as an auxiliary function.

4. If c = limx→∞ Ḡ(x)/F̄ (x) = 0, we do not need Assumption 2.4 to conclude our result.

5. An easier proof of the result can be given if Assumption 2.5 holds for all L > 0. But here
we provide an example to show the importance of the weak version of Assumption 2.5.

Example 2.1. Let

X = − log(U), Y = − log(1− U), U ∼ uniform(0, 1).

It is obvious that in this case both X and Y have distribution exponential(1). So, in this case,
the auxiliary function is f (x) = 1. Choose L such that e−L = 3

4 and

P(X > Lf (x), Y > Lf (x))

P(X > x)
= P(U < e−L, 1− U < e−L)

P(X > x)

= P(1/4 < U < 3/4)

P(X > x)

= 1

2 P(X > x)

→∞.

Therefore, this particular choice of L does not satisfy Assumption 2.5. The distribution of
(X, Y ) is a special case of Example 3.4, below, which discusses certain values of L that do
satisfy Assumption 2.5.

6. If, however, both X and Y are nonnegative risks, and Assumption 2.5 is strengthened to hold
for all L > 0, then Assumptions 2.3 and 2.4 will be automatically satisfied. The proof of this
follows from limx→∞ f (x)/x = 0.

7. Similar limit results are found in Lemma 2.7 ofAlbrecher et al. (2006) and Theorem 2.1 of Ko
and Tang (2008). They assumed that one of the marginal distributions of the two asymptotically
independent variables X and Y , say the distribution of X, is subexponential (i.e. X ∈ S, where
S is the set of all subexponential distributions), and worked on finding conditions for the tail
equivalence of the marginal distribution of X and the sum X+Y . Our assumptions are different.
We assume that one of the marginal distributions of the two asymptotically independent variables
X andY , say the distribution ofX, belongs to the domain of attraction of the Gumbel distribution,
i.e. X ∈ MDA(�). We do not assume that the marginal distribution of X is subexponential.

In examples where the marginal distributions of the two asymptotically i.i.d. random vari-
ables X and Y belong to the class MDA(�)∩S, an issue is the relative strength of our conditions
versus those of Theorem 2.1 of Ko and Tang (2008). We cannot show that either set of conditions
implies the other. Below we present an example which satisfies our set of conditions, but does
not satisfy the set of conditions given in Theorem 2.1 of Ko and Tang (2008). Thus, our set of
conditions is not stronger.
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Example 2.2. Suppose that X = exp(X1) and Y = exp(X2), where (X1, X2) is bivariate
normal with correlation ρ ∈ (0, 1). For simplicity, assume that each Xi has mean 0 and
variance 1. It is well known that the lognormal distribution belongs to the class MDA(�)∩ S.
In Example 3.5, below, we show that (X, Y ) satisfies our set of conditions. Here we show that
this example does not satisfy Assumption 2.1 of Ko and Tang (2008), i.e. for all x∗ > 0,

lim sup
x→∞

sup
x∗≤t≤x

P(Y > x − t | X = t)

P(Y > x − t)
= ∞. (2.5)

From the exchangeability of X and Y , it is obvious that (2.5) holds even if the role of X and Y

is interchanged. Note that

sup
x∗≤t≤x

P(Y > x − t | X = t)

P (Y > x − t)
= sup

x∗≤t≤x

�̄((log(x − t)− ρ log t)/
√

1− ρ2)

�̄(log(x − t))

≥ �̄((log(x/2)− ρ log(x/2))/
√

1− ρ2)

�̄(log(x/2))

= �̄((1− ρ) log(x/2)/
√

1− ρ2)

�̄(log(x/2))

→∞. (2.6)

The inequality above follows from choosing x large enough so that x/2 > x∗ and setting
t = x/2. The last convergence follows from the fact that the normal distribution belongs to the
class MDA(�) and, hence, �̄ is−∞-varying (see Resnick (1987, p. 53)). Note that 0 < ρ < 1
entails (1− ρ)/

√
1− ρ2 < 1. Hence, from (2.6), it is obvious that (2.5) holds.

2.1.4. Proof of Theorem 2.1. We prove Theorem 2.1 using a proposition and a lemma, which
we prove first. Note that we do not need the assumption that the marginal distributions are
subexponential, which is a necessary condition in the case where X and Y are independent.

Proposition 2.1. Under Assumptions 2.1 and 2.3, we have

lim
n→∞P(Y ≤ anz | X > anx + bn) = 1{z>0}, z 
= 0, x ∈ R,

and from Assumptions 2.1 and 2.4, we have

lim
n→∞P(X ≤ anz | Y > anx + bn) = 1{z>0}, z 
= 0, x ∈ R.

Proof. The self-neglecting property of the auxiliary function f , i.e.

lim
t→∞

f (t + xf (t))

f (t)
= 1, x ∈ R,

implies that

lim
t→∞P(|Y | > zf (t) | X > t) = lim

t→∞P(|Y | > zf (t) | X > t + xf (t)). (2.7)

Hence, by noting that an = f (bn) and limn→∞ bn = ∞, the result follows from (2.7). The
second part is proved similarly.
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Lemma 2.1. (i) Assumptions 2.1–2.3 imply that the sequence of measures

n P(a−1
n (X − bn, Y ) ∈ (dx, dy))

converges vaguely on ([−M,∞]×[−∞,∞]) as n→∞ to the limit measure m1,∞(dx, dy) =
e−x dxε0(dy), for some M > L (from Assumption 2.5) such that −M is a continuity point of
(X − bn)/an for all n.

(ii) Assumptions 2.1, 2.2, and 2.4 imply that the sequence of measures

n P(a−1
n (Y − bn, X) ∈ (dx, dy))

converges vaguely on ([−M,∞]×[−∞,∞]) as n→∞ to the limit measure m2,∞(dx, dy) =
ce−x dxε0(dy) for some M > L (from Assumption 2.5) such that −M is a continuity point of
(Y − bn)/an for all n.

Remark 2.1. Since all the discontinuity points of (X − bn)/an for all n are countable, the
choice of such an M > L is not a problem. Moreover, the M in Lemma 2.1(i) and (ii) may be
chosen to be the same.

Proof of Lemma 2.1. We consider convergence of the measures evaluated on certain rela-
tively compact regions which guarantee vague convergence.

Region 1: (x,∞] × [−∞, y], x > −M , and y 
= 0. As n→∞,

n P

(
X − bn

an

> x,
Y

an

≤ y

)
= n P

(
X − bn

an

> x

)
P

(
Y

an

≤ y

∣∣∣∣ X − bn

an

> x

)
→ e−x 1{y>0}
= m1,∞((x,∞] × [−∞, y]),

by Proposition 2.1.
Region 2: [−M, x] × (y,∞], x > −M , and y 
= 0. Since −M is a continuity point of

(X − bn)/an for all n, as n→∞,

n P

(
−M ≤ X − bn

an

≤ x,
Y

an

> y

)

= n P

(
−M <

X − bn

an

≤ x,
Y

an

> y

)

= n P

(
X − bn

an

> −M,
Y

an

> y

)
− n P

(
X − bn

an

> x,
Y

an

> y

)

= n P

(
X − bn

an

> −M

)
P

(
Y

an

> y

∣∣∣∣ X − bn

an

> −M

)

− n P

(
X − bn

an

> x

)
P

(
Y

an

> y

∣∣∣∣ X − bn

an

> x

)
→ (eM − e−x) 1{y<0}
= m1,∞([−M, x] × (y,∞]),

by Assumption 2.1 and Proposition 2.1.
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Arguments for convergence on the following regions follow in a similar fashion using
Proposition 2.1:

Region 3: (x,∞] × (y,∞], x > −M , and y 
= 0,

Region 4: [−M, x] × [−∞, y], x > −M , and y 
= 0.

This concludes the proof of vague convergence on part (i).
The proof of part (ii) is similar, only note that if c = 0, we do not need Assumption 2.4. In

this case, note that the limit measure m2,∞(dx, dy) is a zero measure. Also, note that, using
Assumptions 2.1 and 2.2, we obtain

n P

(
Y − bn

an

≥ −M

)
→ ceM = 0,

which is enough to prove the convergence in this case.

This leads to a formal statement of the main result.

Theorem 2.2. Under Assumptions 2.1–2.5,

lim
x→∞

P(X + Y > x)

P(X > x)
= 1+ c.

Proof. Choose M to be as in Remark 2.1. We split P(X + Y > bn) as

P(X + Y > bn) = P(X + Y > bn, X > bn −Man)+ P(X + Y > bn, Y > bn −Man)

− P(X + Y > bn, X > bn −Man, Y > bn −Man)

+ P(X + Y > bn, X ≤ bn −Man, Y ≤ bn −Man). (2.8)

Using Assumption 2.1 and (2.4), we obtain

n P(X + Y > bn, X > bn −Man, Y > bn −Man)

≤ n P(X > bn −Man, Y > bn −Man)

= n P(X > bn −Man)
P(X > bn −Man, Y > bn −Man)

P(X > bn −Man)

→ eM · 0
= 0, (2.9)

since bn−Man→∞. Now, consider the convergence of the last term of (2.8) mutiplied by n:

P(X + Y > bn, X ≤ bn −Man, Y ≤ bn −Man) ≤ n P(X > Man, Y > Man)

∼ n P(X > Mf (bn), Y > Mf (bn))

P(X > bn)

≤ P(X > Lf (bn), Y > Lf (bn))

P(X > bn)

→ 0, (2.10)

by (2.1) and Assumption 2.5.
To deal with the first term of (2.8) mutiplied by n, we first define a function T : [−M,∞]×

[−∞,∞] �→ (∞,∞] by

T (x, y) =
{

x + y if y > −∞,

0 if y = −∞,
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and, hence,
n P(X + Y > bn, X > bn −Man)

= n P(a−1
n (X − bn, Y ) ∈ T←((0,∞]) ∩ [(−M,∞] × {0}]). (2.11)

Note that every set in the space [−M,∞]×[−∞,∞] is relatively compact, and, hence, so is
T←((0,∞])∩[(−M,∞]×{0}] = S (say). Also, since the limit measure m1,∞ is concentrated
on [−M,∞] × {0},

m1,∞(δS) = m1,∞(δS ∩ [[−M,∞] × {0}]) = m1,∞({0} × {0}) = 0. (2.12)

Hence, using Lemma 2.1, (2.11), and (2.12), we obtain

n P(X + Y > bn, X > bn −Man)→ m1,∞(S) = 1. (2.13)

Similarly,
n P(X + Y > bn, Y > bn −Man)→ m2,∞(S) = c. (2.14)

Hence, using (2.8), (2.9), (2.10), (2.13), and (2.14), we obtain

lim
x→∞

P(X + Y > x)

P(X > x)
= lim

n→∞ n P(X + Y > bn) = 1+ c,

and this completes the proof.

One immediate application of Theorem 2.2 is to the subexponential family of distributions
denoted by S. The class MDA(�) ∩ S has been studied in Embrechets et al. (1997, p. 149)
and several sufficient conditions for belonging to this class are given in Goldie and Resnick
(1988). Corollary 2.1, below, gives an additional sufficient condition and follows directly from
Theorem 2.2. Example 3.2, below, exhibits a distribution which satisfies the conditions of this
corollary.

Corollary 2.1. Suppose that F ∈ MDA(�) with auxiliary function f (x) as described in
Assumption 2.1. Suppose also that limx→∞ f (x) = ∞ and that, for some L > 0,

lim
x→∞

[F̄ (Lf (x))]2
F̄ (x)

= 0. (2.15)

Then, for X and Y i.i.d. with common distribution F , we have, as x →∞,

P(X + Y > x) ∼ 2 P(X > x),

and, therefore, if F concentrates on [0,∞), F ∈ S.

Following comment 3 in Section 2.1.3, it is enough to check that (2.15) holds for any f̃ (x)

satisfying f̃ (x) ∼ f (x). Note also that it is natural to add the assumption f (x)→ ∞, since
if F ∈ MDA(�) ∩ S then necessarily f (x)→∞ (see Goldie and Resnick (1988)).

2.2. Asymptotic tail probability for the sum of more than two nonnegative random
variables

Suppose that among the risks X1, X2, . . . , Xd there is no heavier tail than X1 in the sense
that it is not true that

lim
x→∞

F̄i(x)

F̄1(x)
= ∞, i = 2, . . . , d.
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Assume that X1 satisfies Assumption 2.1 and that X1, X2, . . . , Xd pairwise satisfy Assump-
tions 2.3 and 2.4 with the auxiliary function f (·) of X1. By this we mean for all pairs
1 ≤ i 
= j ≤ d , and, for t > 0,

lim
x→∞

P(Xj > tf (x), Xi > x)

P(Xi > x)
= 0,

which implies that

lim
x→∞

P(Xj > tf (x), Xi > x)

P(X1 > x)
= 0. (2.16)

Also, suppose that the risks X1, X2, . . . , Xd pairwise satisfy Assumption 2.5 with auxiliary
function f (·) of X1 so that, for 1 ≤ i < j ≤ d, there exists some Lij > 0 such that either

lim
x→∞

P(Xi > Lijf (x), Xj > Lijf (x))

P(Xi > x)
= 0

or

lim
x→∞

P(Xi > Lijf (x), Xj > Lijf (x))

P(Xj > x)
= 0.

In either case we have, for 1 ≤ i < j ≤ d and some Lij > 0,

lim
x→∞

P(Xi > Lijf (x), Xj > Lijf (x))

P(X1 > x)
= 0. (2.17)

Under the additional assumption of nonnegativity, Theorem 2.2 can be extended to more than
two risks.

Corollary 2.2. Assume that X1, X2, . . . , Xd are nonnegative random variables that pairwise
satisfy Assumptions 2.3–2.5 with auxiliary function f (·) of X1. Moreover, the distribution of
X1 satisfies Assumption 2.1. Suppose that

lim
x→∞

P(Xi > x)

P(X1 > x)
= ci ∈ [0,∞), i = 2, 3, . . . , d. (2.18)

Define Sj = X1 +X2 + · · · +Xj , 1 ≤ j ≤ d. We have, for x ∈ R,

lim
n→∞ n P(Sd > anx + bn) =

(
1+

d∑
i=2

ci

)
e−x,

and, hence,

lim
x→∞

P(Sd > x)

P(X1 > x)
= 1+

d∑
i=2

ci .

Remark 2.2. (i) Asymptotic independence of the random variables. Suppose that, for all i,
ci ∈ (0,∞). Then, for any 1 ≤ i 
= j ≤ d , the pair (Xi, Xj ) is asymptotically independent
by comment 2 in Section 2.1.3. Since the random variables are pairwise asymptotically
independent, they are also asymptotically independent (see Resnick (1987, p. 291)).

(ii) Nonnegativity of the random variables. The only additional assumption added to the list in
Section 2.1.1 is that the random variables are nonnegative.
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(iii) Relaxation. We have shown in (2.16) and (2.17) that pairwise satisfaction of Assump-
tions 2.3–2.5 implies that, for 1 ≤ i 
= j ≤ d and t > 0,

lim
x→∞

P(Xj > tf (x), Xi > x)

P(X1 > x)
= 0,

and, for 1 ≤ i < j ≤ d , there exists an Lij > 0 such that

lim
x→∞

P(Xj > Lijf (x), Xi > Lijf (x))

P(X1 > x)
= 0.

We will show that these conditions are actually enough to obtain the desired conclusion.

Proof of Corollary 2.2. We prove the result by induction under relaxation, Remark 2.2(iii).
The base case for the induction, d = 2, has already been proved in Theorem 2.2, so suppose
that the result is true for d = k ≥ 2. We have

lim
n→∞ n P(Sk > anx + bn) =

(
1+

k∑
i=2

ci

)
e−x

and

lim
x→∞

P(Sk > x)

P(X1 > x)
= 1+

k∑
i=2

ci .

Therefore, we have

lim
x→∞

P(Xk+1 > x)

P(Sk > x)
= ck+1

1+∑k
i=2 ci

∈ [0,∞). (2.19)

We will use Theorem 2.2 with X = Sk and Y = Xk+1. It remains to check thatAssumptions 2.1–
2.5 hold for this case. To show that Assumption 2.1 holds, note that Sk is tail equivalent to
X1 and use the fact that F ∈ MDA(�) is closed under tail equivalence. Assumption 2.2 has
already been shown to hold in (2.19).

Note that, from the induction hypothesis,

P(Sk > x) ∼ P

( k⋃
i=1

(Xi > x)

)
,

and, from the positivity of the risks,

[Sk > x] ⊇
k⋃

i=1

[Xi > x].

From these two facts, it easily follows that

lim
x→∞

P((Sk > x) ∩ (
⋃k

i=1(Xi > x))
c
)

P(Sk > x)
= 0. (2.20)

Since Sk and X1 are tail equivalent, by Resnick (1971b), the auxiliary function f̃ (·) of Sk

is asymptotically equal to the auxiliary function f (·) of X1. Therefore, given ε ∈ (0, 1), there
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exists a T such that, for all x > T, f̃ (x) > εf (x). We now check that Assumption 2.3 holds.
For t > 0 and x > T , using (2.20), as x →∞,

P(|Xk+1| > tf̃ (x) | Sk > x) ≤ P(Xk+1 > tεf (x) | Sk > x)

= P(Xk+1 > tεf (x), Sk > x)

P(Sk > x)

∼ P(Xk+1 > tεf (x), Sk > x,
⋃k

i=1{Xi > x})
P(Sk > x)

≤ P(Xk+1 > tεf (x),
⋃k

i=1{Xi > x})
P(Sk > x)

≤
∑k

i=1 P(Xk+1 > tεf (x), Xi > x)

(1+∑k
i=2 ci) P(X1 > x)

→ 0,

by (2.16).
If ck+1 = 0, following comment 4 in Section 2.1.3, there is no need to check that Assump-

tion 2.4 holds. So, suppose that ck+1 > 0. Then, for any t > 0, as x →∞,

P(|Sk| > tf̃ (x) | Xk+1 > x) ≤ P(Sk > tεf (x) | Xk+1 > x)

≤
k∑

i=1

P

(
Xi >

tεf (x)

k

∣∣∣∣ Xk+1 > x

)

=
k∑

i=1

P(Xi > tεf (x)/k, Xk+1 > x)

P(X1 > x)

P(X1 > x)

P(Xk+1 > x)

→ 0.

We know from the statement of Corollary 2.2 that the random variables pairwise satisfy
Assumption 2.5 with auxiliary function f (·) of X1. Thus, for 1 ≤ i < j ≤ d, (2.17) holds.
We check Assumption 2.5 with L = kLmax/ε, where Lmax = max1≤i≤k Li,k+1 (recall (2.17)).
Then, for sufficiently large x, using f̃ (·) as the auxiliary function of Sk ,

P(Xk+1 > Lf̃ (x), Sk > Lf̃ (x))

P(Sk > x)
≤ P(Xk+1 > Lεf (x), Sk > Lεf (x))

P(Sk > x)

≤ P(Xk+1 > kLmaxf (x),
⋃k

i=1{Xi > Lmaxf (x)})
P(Sk > x)

≤ P(Xk+1 > Li,k+1f (x),
⋃k

i=1{Xi > Li,k+1f (x)})
P(Sk > x)

≤
∑k

i=1 P(Xk+1 > Li,k+1f (x), Xi > Li,k+1f (x))

P(Sk > x)

∼
∑k

i=1 P(Xk+1 > Li,k+1f (x), Xi > Li,k+1f (x))

(1+∑k
i=2 ci) P(X1 > x)

→ 0,

by (2.17). This completes the induction proof.
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3. Examples

In this section we show a few of the many models that satisfy Assumptions 2.1–2.5. In all
the examples, both X and Y are nonnegative random variables. It is straightforward to extend
these examples to the d-dimensional case and to show that the assumptions of Corollary 2.2
are satisfied.

Our conditions are only sufficient, and we exhibit one example where our conditions do not
hold, but the tail equivalence in Theorem 2.2 does hold. Finding a necessary and sufficient
condition for the conclusion of Theorem 2.2 is still an open but subtle and difficult issue.

Example 3.1. Suppose that X1, X2, and X3 are i.i.d. with common distribution F , where,
for α > 1,

F̄ (x) =
{

exp(−(log x)α) if x > 1,

1 if x ≤ 1.

Define, X = X1 ∧ X2 and Y = X2 ∧ X3. It is easy to check that X and Y are identically
distributed with common distribution F1, where F̄1(x) = exp(−2(log x)α), x > 1. It can be
checked that F1 is a von Mises function, that is, it satisfies

F̄1F
′′
1

(F ′1)2 →−1,

a sufficient condition for F1 ∈ MDA(�), and

f (x) = F̄1(x)

F ′1(x)
= x

2α(log x)α−1 , x > 1,

serves as an auxiliary function (see Resnick (1987, p. 40)). As (2.1) is obvious, we know that
Assumption 2.1 is satisfied. Checking that Assumption 2.2 holds is straightforward, so consider
Assumption 2.3. Fix t > 0, recall that f (x)/x → 0, and note that, as x →∞,

P(X > x, Y > tf (x))

P(X > x)
= P(X1 > x, X2 > x ∨ tf (x), X3 > tf (x))

P(X1 > x, X2 > x)

∼ P(X1 > x, X2 > x, X3 > tf (x))

P(X1 > x, X2 > x)

= P(X3 > tf (x))

→ 0,

since f (x) → ∞. Assumption 2.4 is verified similarly. For Assumption 2.5, we have, for
L = 1,

P(X > f (x), Y > f (x))

P(X > x)
= P(X1 > f (x), X2 > f (x), X3 > f (x))

P(X1 > x, X2 > x)

= F̄ (f (x))
3

F̄ (x)
2

= exp(−[3(log f (x))α − 2(log x)α])
= exp

(
−2(log x)α

[
3

2

(
log f (x)

log x

)α

− 1

])

= exp

(
−2(log x)α

[
3

2

(
1− log(2α(log x)α−1)

log x

)α

− 1

])
. (3.1)
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Since the exponent in (3.1) converges to −∞ as x →∞, Assumption 2.5 is satisfied. Hence,
the pair (X, Y ) satisfies Assumptions 2.1–2.5.

Example 3.2. Suppose that X and Y are i.i.d. with common distribution F , where, for α > 1,

F̄ (x) =
{

exp(−(log x)α) if x > 1,

1 if x ≤ 1.

As in Example 3.1, we can check that the subexponentiality condition, (2.15), holds with L = 1
and that, by Corollary 2.1, F is subexponential. Hence,

P(X + Y > x) ∼ 2 P(X > x).

Example 3.3. Suppose that X ∼ lognormal(µ, σ 2) and that Y = e2µ/X, so that X
d= Y ,

where ‘
d=’ denotes equality in distribution. We check that Assumptions 2.1–2.5 hold for the

pair (X, Y ). The distribution lognormal(µ, σ 2) belongs to the maximal domain of attraction
of the Gumbel distribution and its mean excess function e(x) has the form (see Embrechets et
al. (1997, pp. 147, 161))

e(x) = σ 2x

log x − µ
(1+ o(1)).

As (2.1) is obvious, we know that Assumption 2.1 holds. Following comment 3 in Section 2.1.3
and considering the form of e(x), we take the auxiliary function to be

f (x) = σ 2x

log x − µ
.

Since X and Y are identically distributed, Assumption 2.2 holds with c = 1. To verify
Assumption 2.3, fix t > 0 and note that, as x →∞,

P(X > x, Y > tf (x))

P(X > x)
= P(X > x, e2µ/X > tf (x))

P(X > x)
→ 0,

since f (x)→∞. Assumption 2.4 is verified similarly. For Assumption 2.5, choosing L = 1,
we have, as x →∞,

P(X > f (x), Y > f (x))

P(X > x)
= P(X > f (x), e2µ/X > f (x))

P(X > x, Y > x)
→ 0.

Hence, by Theorem 2.2,
P(X + Y > x) ∼ 2 P(X > x).

Example 3.4. Example 3.3 is a special case of a more general phenomenon. Suppose that
F ∈ MDA(�) with auxiliary function f (x) having the property

lim inf
x→∞ f (x) = δ > 0. (3.2)

Assume that the support of F is a subset of [0,∞), that x0 = sup{x : F(x) < 1} = ∞, and that
x1 = inf{x : F(x) > 0} = 0. Distributions satisfying these conditions include the exponential,
gamma, and lognormal. Define X = F←(U) and Y = F←(1−U), where U ∼ uniform(0, 1).
We check that the pair (X, Y ) satisfies Assumptions 2.1–2.5.
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Checking that Assumption 2.2 holds is easy since X and Y are identically distributed. To
verify Assumption 2.3, fix t > 0 and define εt = F(tδ/2). Since x1 = 0, we have εt > 0.
Then, for large x making f (x) > δ/2, we have

P(X > x, Y > tf (x))

P(X > x)
= P(U > F(x), 1− U > F(tf (x)))

P(X > x)

≤ P(U > F(x), 1− U > εt )

P(X > x)

= P(U > F(x), U < 1− εt )

P(X > x)

→ 0,

since F(x)→ 1 and x0 = ∞. Assumption 2.4 is verified similarly. To verify Assumption 2.5,
choose L such that F(Lδ/2) > 1

2 and, for sufficiently large x,

P(X > Lf (x), Y > Lf (x))

P(X > x)
≤ P(X > Lδ/2, Y > Lδ/2)

P(X > x)

= P(U > F(Lδ/2), 1− U > F(Lδ/2))

P(X > x)

= 0.

Hence, the pair (X, Y ) satisfies Assumptions 2.1–2.5 and, by Theorem 2.2,

P(X + Y > x) ∼ 2 P(X > x).

In this example, if limx→∞ f (x) = ∞, we do not need the condition that x1 = 0.

Remark 3.1. Note that in Examples 3.3 and 3.4 a comonotonic dependence structure is used.

Example 3.5. Suppose that X = exp(X1) and Y = exp(X2), where (X1, X2) is bivariate
normal with correlation ρ ∈ [−1, 1). For simplicity, assume that each Xi has mean µ and
variance σ 2 > 0. This example is extensively considered in Asmussen and Rojas-Nandayapa
(2008). We have already considered the case in which ρ = −1 in Example 3.3, so here we
consider ρ ∈ (−1, 1).

Assumptions 2.1 and 2.2 are easily verified. Following the same reasoning as in Example 3.3,
we take the auxiliary function to be

f (x) = σ 2x

log x − µ
.

Observe that

log f (x)− µ

σ
= log(σ 2x/(log x − µ))− µ

σ

= log x − µ

σ
− 1

σ
log

(
log x − µ

σ 2

)

=
(

log x − µ

σ

)
(1+ o(1)). (3.3)
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For Assumption 2.3, we have, for t > 0, as x →∞,

P(X > x, Y > tf (x))

P(X > x)

= P(X1 > log x, X2 > log tf (x))

P(X1 > log x)

≤ P(X1 +X2 > log x + log(tf (x)))

P(X1 > log x)

= �̄

(
1√

2σ 2(1+ ρ)
(log x + log(tf (x))− 2µ)

)/
�̄

(
log x − µ

σ

)

= �̄

(
1√

2(1+ ρ)

(
log x − µ

σ
+ log f (x)− µ

σ
+ log t

σ

))/
�̄

(
log x − µ

σ

)

= �̄

(
2√

2(1+ ρ)

(
log x − µ

σ

)
(1+ o(1))

)/
�̄

(
log x − µ

σ

)
→ 0,

where we have used (3.3) and the fact that � ∈ MDA(�), and, therefore, �̄ is −∞-varying
(see Resnick (1987, p. 53)). Note that ρ < 1 entails 2/

√
2(1+ ρ) > 1.

For Assumption 2.5, choose L = 1. As x →∞, we have, using (3.3),

P(X > f (x), Y > f (x))

P(X > x)
= P(X1 > log f (x), X2 > log f (x))

P(X1 > log x)

≤ P(X1 +X2 > 2 log f (x))

P(X1 > log x)

= �̄

(
2(log f (x)− µ)√

2σ 2(1+ ρ)

)/
�̄

(
(log x − µ)

σ

)

= �̄

(
2√

2(1+ ρ)

(
log x − µ

σ

)
(1+ o(1))

)/
�̄

(
log x − µ

σ

)
→ 0.

Example 3.6. Let X1 and X2 be i.i.d. with common distribution H ∈ MDA(�), whose
auxiliary function f1(·) satisfies (3.2) and whose right endpoint is infinite. Also, suppose
that F ∈ MDA(�) with auxiliary function f2(·), concentrates on [0,∞), x0 = sup{x : F(x) <

1} = ∞, and that x1 = inf{x : F(x) > 0} = 0. The auxiliary function f2(·) satisfies (3.2).
Define

X = F←(U) ∧X1 and Y = F←(1− U) ∧X2,

where U is a uniformly distributed random variable on (0,1) which is independent of (X1, X2).
From Proposition 1.4 of Resnick (1987, p. 43), the distribution of X belongs to the maximal

domain of attraction of the Gumbel distribution with auxiliary function

f (x) = f1(x)f2(x)

f1(x)+ f2(x)
.

Hence,

lim sup
x→∞

1

f (x)
≤ lim sup

x→∞
1

f1(x)
+ lim sup

x→∞
1

f2(x)
<∞,
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and, thus,
lim inf
x→∞ f (x) > 0.

Also, note that

P(X > x) = P(U > F(x), X1 > x) = P(U > F(x)) P(X1 > x) = F̄ (x)H̄ (x)

and

P(Y > x) = P(1− U > F(x), X2 > x) = P(1− U > F(x)) P(X2 > x) = F̄ (x)H̄ (x).

Arguing as in Example 3.4, we can show that the pair (X, Y ) satisfies Assumptions 2.1–2.5.

Example 3.7. Here we present an example of a distribution for (X, Y ) that does not satisfy
Assumptions 2.1–2.5, but for which the asymptotic behavior is the same as in Theorem 2.2.
Suppose that X and Y are i.i.d. with common distribution F , where

F̄ (x) = exp(−xα), α ∈ (0, 1), x > 0.

This distribution has been extensively studied in Rootzén (1986) and satisfies F ∈ MDA(�)∩S.
Since it is subexponential,

P(X + Y > x) ∼ 2 P(X > x).

However, this distribution does not satisfy Assumption 2.5.
Since F is a von Mises function, we may take the auxiliary function to be

f (x) = F̄ (x)

F ′(x)
= x1−α

α
.

Assumption 2.5 is not satisfied for any L > 0, since, for any L > 0, as x →∞,

P(X > Lf (x), Y > Lf (x))

P(X > x)
= [F̄ (Lf (x))]2

F̄ (x)

= exp(−2[Lf (x)]α)

exp(−xα)

= exp(−2(L/α)αxα(1−α))

exp(−xα)

= exp

(
xα

(
1− 2

(
L

α

)α

x−α2
))

→∞.

This also shows that criterion (2.15) for F ∈ S is sufficient but not necessary.

4. Linear combinations of random variables with nonnegative coefficients

In this section we study linear combinations of the risks X and Y with nonnegative coeffi-
cients. We consider two cases: (i) the distributions of X and Y are tail equivalent, and (ii) the
distributions of X and Y lack tail equivalence. We explicitly give the asymptotic tail behavior
of the linear combinations of risks in the tail-equivalent case and also in one special case where
tail equivalence is absent. We note that we cannot expect similar behavior in the two cases.
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4.1. Tail-equivalent cases

4.1.1. Linear combination of two random variables with nonnegative coefficients.

Theorem 4.1. Assume that (U, V ) is a pair of random variables which satisfy Assumptions 2.1,
2.3, 2.4, and 2.5. Moreover, assume that Assumption 2.2 holds in the form

lim
x→∞

P(V > x)

P(U > x)
= c ∈ (0,∞). (4.1)

Define Ŝ2 = a1U + a2V and ai ≥ 0, i = 1, 2, and set m2 = a1 ∨ a2. Then, as x →∞,

P(Ŝ2 > x) ∼ P

(
U >

x

m2

)
(1{a1=m2} +c 1{a2=m2}).

We assume that U and V are tail equivalent, i.e. the constant c cannot be 0 and, hence, both the
marginal distributions belong to MDA(�), the maximal domain of attraction of the Gumbel dis-
tribution. If limx→∞ P(V > x)/P(U > x) = 0, the asymptotic behavior of P(a1U+a2V > x)

as x →∞ can be different, as illustrated in the following example.

Example 4.1. Assume that (U, V ) are i.i.d. random variables with common distribution F ,
which satisfy Assumptions 2.1, 2.3, 2.4, and 2.5. Define the two random vectors by (U1, V1) =
(U, 1

5V ) and (U2, V2) = (U, 1
2V ). Both (U1, V1) and (U2, V2) satisfy Assumptions 2.1, 2.3,

2.4, and 2.5. For both pairs, c = 0, i.e.

lim
x→∞

P(V1 > x)

P(U1 > x)
= 0 and lim

x→∞
P(V2 > x)

P(U2 > x)
= 0.

Since (U, V ) satisfies the assumptions of Theorem 4.1, we have, as x →∞,

P(3U1 + 10V1 > x) = P(3U + 2V > x) ∼ P(3U > x) = P(3U1 > x)

and

P(3U2 + 10V2 > x) = P(3U + 5V > x) ∼ P(5V > x) = P(10V2 > x).

This example illustrates that we cannot expect Theorem 4.1 to hold for the case in which c = 0.

Proof of Theorem 4.1. The case in which a1 = a2 is resolved by Theorem 2.2 since

P(a1(U + V ) > x) = P

(
U + V >

x

a1

)
∼ (1+ c) P

(
U >

x

a1

)
.

So the interesting cases are a1 > a2 and a1 < a2. In the following, we assume that a1 > a2;
the other case is treated similarly.

There is nothing to prove if a2 = 0, so assume that a1 > a2 > 0, which makes m2 = a1. It
suffices to verify Assumptions 2.1–2.5 for X = U and Y = a2V/a1. For this definition of X

and Y , we have

lim
x→∞

P(Y > x)

P(X > x)
= lim

x→∞
P(a2V/a1 > x)

P(U > x)
= lim

x→∞
P(V > a1x/a2)

P(U > x)
= 0. (4.2)
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The last equality is true from (4.1) and the fact that the tail of any distribution in MDA(�) is
−∞-varying (see Resnick (1987, p. 53)). From Theorem 2.2 and (4.2), we obtain, as x →∞,

P(a1U + a2V > x) = P

(
a1

(
U + a2V

a1

)
> x

)

= P

(
U + a2V

a1
>

x

a1

)

= P

(
X + Y >

x

a1

)

∼ P

(
U >

x

a1

)

= P

(
U >

x

m2

)
(1{a1=m2} +c 1{a2=m2}).

To complete the proof, Assumptions 2.1–2.5 must be verified for X = U and Y = a2V/a1.
Assumption 2.1 is assumed in the statement of the theorem and Assumption 2.2 was verified in
(4.2). To verify Assumption 2.3, note that U ∈ MDA(�) and suppose that f (·) is the auxiliary
function of the distribution of U . By hypothesis, for t > 0,

lim
x→∞P(|V | > tf (x) | U > x) = 0, (4.3)

and, therefore, using (4.3),

lim
x→∞P

(
a2|V |

a1
> tf (x)

∣∣∣∣ U > x

)
= lim

x→∞P

(
|V | > a1tf (x)

a2

∣∣∣∣ U > x

)
= 0.

Comment 4 in Section 2.1.3 implies that we do not need to verify Assumption 2.4, so we
now check that Assumption 2.5 holds. For this, we have, as x →∞,

P(a2V/a1 > Lf (x), U > Lf (x))

P(U > x)
= P(V > a1Lf (x)/a2, U > Lf (x))

P(U > x)

≤ P(V > Lf (x), U > Lf (x))

P(U > x)

→ 0.

This proves the case in which a1 > a2.

4.1.2. Linear combination of more than two random variables with nonnegative coefficients.

Corollary 4.1. Assume that X1, X2, . . . , Xd are nonnegative random variables which pair-
wise satisfy Assumptions 2.3–2.5. Furthermore, suppose that the distribution of X1 satisfies
Assumption 2.1 and that

lim
x→∞

P(Xi > x)

P(X1 > x)
= ci ∈ (0,∞), i = 1, 2, . . . , d. (4.4)

Set c1 = 1, and define, for d > 1, Ŝd = a1X1+a2X2+· · ·+adXd for ai ≥ 0, i = 1, 2, . . . , d.
Also, define

md =
d∨

i=1

ai and Nd =
∑

{1≤i≤d : ai=md }
ci .
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Then

P(Ŝd > x) ∼ Nd P

(
X1 >

x

md

)
, x →∞.

This result is consistent with the case where X1, X2, . . . , Xd are i.i.d. with common distri-
bution in MDA(�) ∩ S; see Davis and Resnick (1988).

The random variables X1, X2, . . . , Xd are tail equivalent and pairwise satisfy Assump-
tion 2.3. Therefore, comment 2 in Section 2.1.3 implies pairwise asymptotic independence
and, hence, by Resnick (1987, p. 291), X1, . . . , Xd are asymptotically independent.

In the special case that the random variables are identically distributed, Nd = |{1 ≤ i ≤ d :
ai = md}|, where | · | is the size of a set.

Remark 4.1. It is possible to prove Corollary 4.1 using Corollary 2.2. However, in the proof
it is usually difficult to verify Assumption 2.4. Note that a similar problem is carefully avoided
in the proof of Theorem 4.1 through the help of comment 4 in Section 2.1.3. Though a similar
comment could also be made for Corollary 2.2, it is notationally inconvenient. So, to avoid this
notational difficulty, Theorem 4.1 is used in the proof.

Proof of Corollary 4.1. Proceeding by induction, note that the base case for d = 2 is proved
in Theorem 4.1. As an induction hypothesis, suppose that the result is true for d = k; so, as
x →∞,

P(Ŝk > x) ∼ Nk P

(
X1 >

x

mk

)
∼ Nk

ck+1
P

(
Xk+1 >

x

mk

)
.

To prove the result for d = k + 1, note that

mk+1 = mk ∨ ak+1 (4.5)

and
Nk+1 = ck+1 1{ak+1=mk+1} +Nk 1{mk=mk+1},

so that
Nk+1

ck+1
= 1{ak+1=mk+1} +

Nk

ck+1
1{mk=mk+1} . (4.6)

By the induction hypothesis,

lim
x→∞

P(m−1
k Ŝk > x)

P(Xk+1 > x)
= lim

x→∞
P(m−1

k Ŝk > x)

P(X1 > x)

P(X1 > x)

P(Xk+1 > x)
= Nk

ck+1
. (4.7)

If we prove that the assumptions in Theorem 4.1 are valid with U = Xk+1 and V = m−1
k Ŝk ,

then, Theorem 4.1, (4.5), (4.6), and (4.7) imply that, as x →∞,

P(Ŝk+1 > x) = P(ak+1Xk+1 +mkŜk > x)

∼ Nk+1

ck+1
P

(
Xk+1 >

x

mk+1

)

∼ Nk+1 P

(
X1 >

x

mk+1

)
,

and by induction, our result holds for all d ≥ 2.
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Assumption 2.1 is assumed. For (4.1), consider that, on the one hand,

Nk =
∑

{1≤i≤k : ai=mk}
ci ≥

k∧
i=1

ci > 0,

and on the other hand,

Nk =
∑

{1≤i≤k : ai=mk}
ci ≤ k

k∨
i=1

ci <∞,

and, therefore, the limit in (4.7) satisfies Nk/ck+1 ∈ (0,∞).
Next, suppose that two random variables U and V are tail equivalent and that both belong

to MDA(�). If f (·) and f̃ (·) are the auxiliary functions of U and V , respectively, then
f (x) ∼ f̃ (x) as x → ∞; see Resnick (1971a), (1971b). Since, in the present case, all the
random variables are tail equivalent, comment 3 in Section 2.1.3 implies that we can work
with the auxiliary function of any one of them, say Xk+1. So, X1, X2, . . . , Xd pairwise satisfy
Assumptions 2.3–2.5 with auxiliary function f (·) of Xk+1. That is, for 1 ≤ i 
= j ≤ d and any
t > 0,

lim
x→∞P(Xj > tf (x) | Xi > x) = 0 (4.8)

and, for 1 ≤ i < j ≤ d and some Lij > 0,

P(Xi > Lijf (x), Xj > Lijf (x))

P(Xi > x)
= 0. (4.9)

To verify Assumption 2.3, observe that, for t > 0, as x →∞,

P(|m−1
k Ŝk| > tf (x) | Xk+1 > x)

≤ P(a1X1 + a2X2 + · · · + akXk > mktf (x) | Xk+1 > x)

≤
k∑

i=1

P

(
Xi >

a−1
i mktf (x)

k

∣∣∣∣ Xk+1 > x

)

≤
k∑

i=1

P

(
Xi >

tf (x)

k

∣∣∣∣ Xk+1 > x

)

→ 0,

by (4.8). For Assumption 2.4, note that

lim
x→∞

P(m−1
k Ŝk > x)

P(X1 > x)
= Nk, (4.10)

and, for 1 ≤ i ≤ k,

lim
x→∞

P((m−1
k Ŝk > x) ∩ (m−1

k aiXi > x))

P(X1 > x)
= lim

x→∞
P(m−1

k aiXi > x)

P(X1 > x)

= ci 1{ai=mk} . (4.11)
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The first equality uses the assumption that the Xis are nonnegative. The second equality is true
from (4.4) and the fact that the tail of any distribution in the maximal domain of attraction of
the Gumbel distribution is −∞-varying. Now, for 1 ≤ i < j ≤ k, using (2.4),

lim
x→∞

P((m−1
k Ŝk > x) ∩ (m−1

k aiXi > x) ∩ (m−1
k ajXj > x))

P(X1 > x)

≤ lim
x→∞

P((m−1
k aiXi > x) ∩ (m−1

k ajXj > x))

P(X1 > x)

≤ lim
x→∞

P((Xi > x) ∩ (Xj > x))

P(X1 > x)

= 0.

Therefore, using (4.11),

lim
x→∞

P((m−1
k Ŝk > x) ∩ (

⋃k
i=1(m

−1
k aiXi > x)))

P(X1 > x)

= lim
x→∞

∑k
i=1 P((m−1

k Ŝk > x) ∩ (m−1
k aiXi > x))

P(X1 > x)

= Nk. (4.12)

From (4.10) and (4.12), it follows that

lim
x→∞

P((m−1
k Ŝk > x) ∩ (

⋃k
i=1(m

−1
k aiXi > x))

c
)

P(X1 > x)
= 0,

and this, along with (4.4) and (4.7), gives

lim
x→∞

P((m−1
k Ŝk > x) ∩ (

⋃k
i=1(m

−1
k aiXi > x))

c
)

P(m−1
k Ŝk > x)

= 0. (4.13)

Now, we check Assumption 2.4. For t > 0, as x →∞,

P(|Xk+1| > tf (x) | m−1
k Ŝk > x)

= P(Xk+1 > tf (x), m−1
k Ŝk > x)

P(m−1
k Ŝk > x)

∼ P(Xk+1 > tf (x), m−1
k Ŝk > x,

⋃k
i=1{m−1

k aiXi > x})
P(m−1

k Ŝk > x)

≤ P(Xk+1| > tf (x),
⋃k

i=1{m−1
k aiXi > x})

P(Ŝk > mkx)

≤
∑k

i=1 P(Xk+1 > tf (x), m−1
k aiXi > x)

P(Ŝk > mkx)
,

where we have used (4.13). Using our induction hypothesis, we find that the quantity above is
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asymptotically equivalent to∑k
i=1 P(Xk+1 > tf (x), m−1

k aiXi > x)

Nk P(X1 > x)

≤
∑k

i=1 P(Xk+1 > tf (x), Xi > x)

Nk P(X1 > x)

=
∑k

i=1 P(Xk+1 > tf (x), Xi > x)

P(Xi > x)

P(Xi > x)

Nk P(X1 > x)

→ 0,

by (4.8).
For Assumption 2.5, let L = kLmax, where Lmax = max1≤i≤k Li,k+1 (recall (4.9)). Then,

using (4.7), (4.9), and (4.13), we have

P(Xk+1 > kLmaxf (x), m−1
k Ŝk > kLmaxf (x))

P(Xk+1 > x)

∼ P(Xk+1 > kLmaxf (x), m−1
k Ŝk > x,

⋃k
i=1{m−1

k aiXi > x})
P(Xk+1 > x)

≤ P(Xk+1 > kLmaxf (x),
⋃k

i=1{m−1
k aiXi > Lmaxf (x)})

P(Xk+1 > x)

≤
∑k

i=1 P(Xk+1 > Li,k+1f (x), m−1
k aiXi > Li,k+1f (x))

P(Xk+1 > x)

≤
∑k

i=1 P(Xk+1 > Li,k+1f (x), Xi > Li,k+1f (x))

P(Xk+1 > x)

→ 0.

4.2. One special case where the distributions are possibly not tail equivalent

Theorem 4.2. Assume that Y1, Y2, . . . , Yd are identically distributed nonnegative random vari-
ables. Also, assume that ai, βi ≥ 0, i = 1, 2, . . . , d. For d ≥ 1, define Ŝd = a1Y

β1
1 + a2Y

β2
2 +· · · + adY

βd

d and set

β =
d∨

i=1

βi, qd =
∨

{1≤i≤d : βi=β}
ai, Jd = |{1 ≤ i ≤ d : βi = β, ai = qd}|,

where | · | denotes the size of the set. Suppose that qdY
β
1 , qdY

β
2 , . . . , qdY

β
d pairwise satisfy

Assumptions 2.3–2.5 and that the distribution of qdY
β
1 satisfies Assumption 2.1, where the

auxiliary function f (x) satisfies the additional condition that f (x)→∞ as x →∞. Then,

P(Ŝd > x) ∼ Jd P

(
Y

β
1 >

x

qd

)
.

Remark 4.2. If β1 > β2 then Y
β1
1 and Y

β2
2 are not tail equivalent. Note that in this case the

asymptotic approximation of P(a1Y
β1
1 + a2Y

β2
2 > x) does not depend on a2.

Theorem 4.2 shows a different tail behavior from the tail-equivalent cases, but follows
the paradigm that only the heaviest tails matter. The theorem shows that Theorem 1 of
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Asmussen and Rojas-Nandayapa (2008) is a special case of a more general phenomenon. Let
(X1, X2, . . . , Xd) ∼ N(0, �), where 0 = (0, 0, . . . , 0) is the d-dimensional vector of zeros
and

� = (ρij ), ρii = 1 for all i and ρij < 1 for 1 ≤ i < j ≤ d.

Let (Y1, Y2, . . . , Yd) ∼ (exp(X1), exp(X2), . . . , exp(Xd)). Clearly,

aiY
βi

i ∼ lognormal(log ai, β
2
i ).

From Example 3.5, (qdY
β
1 , qdY

β
2 , . . . , qdY

β
d ) satisfies the assumptions of Theorem 4.2, where

qd and β have the same meaning as in Theorem 4.2. Also, (Z1, Z2, . . . , Zd) = (a1Y
β1
1 , a2Y

β2
2 ,

. . . , anY
βd

d ) satisfies the assumptions of Theorem 1 of Asmussen and Rojas-Nandayapa (2008).
The results of that theorem and Theorem 4.2 match.

Proof of Theorem 4.2. Without loss of generality, assume that β1 = β and a1 = qd . Also,
assume that ai > 0 for i = 1, 2, . . . , d. Define

Xi = aiY
βi

i , i = 1, 2, . . . , d.

To start, suppose that, for some i ∈ {2, . . . , d}, βi < β. Then, for large x, [aiY
βi

i > x] ⊆
[(qd/2)Y

β
i > x], and, hence, for large x,

P(aiY
βi

i > x) ≤ P

(
qd

2
Y

β
i > x

)
= P(qdY

β
1 > 2x).

Then,

ci = lim
x→∞

P(Xi > x)

P(X1 > x)
= lim

x→∞
P(aiY

βi

i > x)

P(qdY
β
1 > x)

≤ lim
x→∞

P(qdY
β
1 > 2x)

P(qdY
β
1 > x)

= 0. (4.14)

Next, suppose that, for some i ∈ {2, . . . , d}, βi = β and ai < qd . Then,

ci = lim
x→∞

P(Xi > x)

P(X1 > x)
= lim

x→∞
P(aiY

β
i > x)

P(qdY
β
1 > x)

= lim
x→∞

P(qdY
β
1 > qdx/ai)

P(qdY
β
1 > x)

= 0. (4.15)

In both (4.14) and (4.15), the last equalities are true from the fact that the tail of any distribution
in the maximal domain of attraction of the Gumbel distribution is −∞-varying.

Finally, suppose that, for some i ∈ {2, . . . , d}, βi = β and ai = qd . Then,

ci = lim
x→∞

P(Xi > x)

P(X1 > x)
= lim

x→∞
P(Y

β
i > x/qd)

P(Y
β
1 > x/qd)

= lim
x→∞

P(Y
β
1 > x/qd)

P(Y
β
1 > x/qd)

= 1. (4.16)

It suffices to check the assumptions in Corollary 2.2 with this set of X1, X2, . . . , Xd , since
then Corollary 2.2 and (4.14), (4.15), and (4.16) would imply that, as x →∞,

P(Ŝd > x) ∼
(

1+
d∑

i=2

ci

)
P(X1 > x) ∼ Jd P(X1 > x) = Jd P

(
Y

β
1 >

x

qd

)
.

Assumption 2.1 is assumed in the statement of the theorem and (2.18) is already shown in
(4.14), (4.15), and (4.16). For Assumptions 2.3 and 2.4, proceed as follows. By hypothesis we
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know that X1 belongs to the maximal domain of attraction of the Gumbel distribution. Let f (·)
be the auxiliary function corresponding to the distribution of X1. By hypothesis we know that,
for t > 0 and 1 ≤ i 
= j ≤ d ,

lim
x→∞P(qdY

β
j > tf (x) | qdY

β
i > x) = 0.

Using comment 3 in Section 2.1.3, it is enough to show that

lim
x→∞

P(Xj > tf (x), Xi > x)

P(X1 > x)
= 0,

and to see this, note that since f (x)→∞, for large x and all t > 0, [Xj > tf (x), Xi > x] ⊆
[qdY

β
j > tf (x), qdY

β
i > x]. Hence,

lim
x→∞

P(Xj > tf (x), Xi > x)

P(X1 > x)
≤ lim

x→∞
P(qdY

β
j > tf (x), qdY

β
i > x)

P(qdY
β
i > x)

= 0.

For Assumption 2.5, using comment 3 in Section 2.1.3, we show that, for some L > 0,

lim
x→∞

P(Xj > Lf (x), Xi > Lf (x))

P(X1 > x)
= 0.

By hypothesis we know that, for all 1 ≤ i < j ≤ d, there exists some Lij > 0 such that

lim
x→∞

P(qdY
β
j > Lijf (x), qdY

β
i > Lijf (x))

P(qdY
β
i > x)

= 0. (4.17)

Also, note that since f (x) → ∞, for large x, [Xj > Lijf (x), Xi > Lijf (x)] ⊆ [qdY
β
j >

Lijf (x), qdY
β
i > Lijf (x)]. Hence,

lim
x→∞

P(Xj > Lijf (x), Xi > Lijf (x))

P(X1 > x)
≤ lim

x→∞
P(qdY

β
j > Lijf (x), qdY

β
i > Lijf (x))

P(qdY
β
1 > x)

= 0

by (4.17).

5. An optimization problem

5.1. The problem

Suppose that we have a portfolio consisting of d financial instruments. The risk per unit of
the ith instrument is Xi . The goal is to earn a revenue of L dollars. Assume that each unit of
the ith instrument earns li dollars over the chosen time horizon. Subject to earnings being at
least L dollars, how many units of each instrument, a1, a2, . . . , ad , should be used to build the
portfolio, so that the probability that the total portfolio risk a1X1+a2X2+· · ·+adXd exceeds
some fixed large threshold x is minimal? Thus, consider the following optimization problem:

min{a1,...,ad }
P

( d∑
i=1

aiXi > x

)

such that a1l1 + a2l2 + · · · + adld ≥ L and ai ≥ 0, i = 1, 2, . . . , d.
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For a more general case, consider the following optimization problem:

min{a1,...,ad }
P

( d∑
i=1

aiXi > x

)

such that h(a1, a2, . . . , ad) ≥ L and ai ≥ 0, i = 1, 2, . . . , d.

5.2. The method

Suppose that X1, X2, . . . , Xd satisfy the assumptions of Corollary 4.1. Even with these
assumptions, obtaining an exact solution of the optimization problem is difficult. An obvious
way to obtain an approximate solution to the optimization problem is to assume that the threshold
x is big and use the asymptotic approximation of P(a1X1 + a2X2 + · · · + adXd > x) from
Corollary 4.1, hoping that the solution of the resulting optimization problem is close to the actual
optimal value. So, using the notation of Corollary 4.1, we solve the following optimization
problem:

min{a1,...,ad }
Nd P

(
X1 >

x

md

)
such that h(a1, a2, . . . , ad) ≥ L and ai ≥ 0, i = 1, 2, . . . , d.

Suppose that â1, â2, . . . , âd and ã1, ã2, . . . , ãd are two feasible solutions for the given set
of constraints. Set

m̂d =
d∨

i=1

âi , N̂d =
∑

{1≤i≤d : âi=m̂d }
ci,

m̃d =
d∨

i=1

ãi , Ñd =
∑

{1≤i≤d : ãi=m̃d }
ci .

If m̂d > m̃d then, since P(X1 ≤ x) ∈ MDA(�), as x →∞,

P(X1 > x/m̂d)

P(X1 > x/m̃d)
→∞.

Now, since both N̂d , Ñd ∈ [∧d
i=1 ci, d

∨d
i=1 ci], we have, as x →∞,

N̂d P(X1 > x/m̂d)

Ñd P(X1 > x/m̃d)
→∞.

So, we hope that ã1, ã2, . . . , ãd is a better feasible solution for the optimization problem.
Values of a1, a2, . . . , ad which solve the above optimization problem can be computed by

solving the following two optimization problems in sequence.

(i) First solve
min{a1,...,ad }

md = max{a1, a2, . . . , ad}
such that h(a1, a2, . . . , ad) ≥ L and ai ≥ 0, i = 1, 2, . . . , d.

(ii) Suppose that the best choice of a1, a2, . . . , ad gives m as the value of the objective
function for the optimization problem in (i). Then we solve

min{a1,...,ad }
Nd =

∑
{1≤i≤d : ai=m}

ci

such that h(a1, a2, . . . , ad) ≥ L, max{a1, a2, . . . , ad} = m, ai ≥ 0, i = 1, 2, . . . , d.

https://doi.org/10.1239/aap/1253281064 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281064


Aggregation of risks 823

5.3. A special case

The motivating case is that h is a linear function with positive coefficients of the form

h(a1, a2, . . . , ad) = a1l1 + a2l2 + · · · + adld .

The approximate solution using the asymptotic form of P(
∑d

i=1 aiXi > x) is

a1 = a2 = · · · = ad = L

l1 + l2 + · · · + ld
.

This leads to m = L/(l1 + l2 + · · · + ld ) and Nd =∑d
i=1 ci .

6. Simulation studies

We carried out some simulation studies to check the accuracy of the asymptotic approxi-
mation in Theorem 2.2 for fixed large thresholds and also to check how good the approximate
solution is for the optimization problem. As expected, in some cases the approximation works
well whereas in others it performs poorly, which suggests caution when using the asymptotic
results for numerical purposes. Simulation also suggests that the approximate solution of
the optimization problem works well in cases where the simulation studies suggest that the
approximation is good for fixed large thresholds. One particular model studied, Example 3.5
with µ = 0 and σ = 1, is noted here to illustrate the point. We varied ρ and observed the
asymptotic behavior of the sum of the risks.

6.1. Where is the approximation good?

To test the approximation for P(X + Y > x), we need to find good simulation estimates of
the probabilities P(X + Y > x). This, however, is not easy, especially in the case when the
marginal distributions of the risks X and Y are subexponential, and is still a topic of current
research in the simulation community. The approach usually taken in these cases is conditional
Monte Carlo (see Asmussen and Glynn (2007, p. 173)). So, this method is used to compute
P(X+Y > x), and the simulation estimates are compared with the theoretical approximations.

The simulation of P(X + Y > x) uses the algorithm suggested in Asmussen and Rojas-
Nandayapa (2008) for ρ ∈ (−1, 1), who also noted the properties of this algorithm. If ρ = −1,
we have a way to compute the probability exactly. In this case, X = 1/Y almost surely, so in
the following manner we compute the required probability:

P

(
X + 1

X
> x

)
= P

(
X >

x +√x2 − 2

2

)
+ P

(
X <

x −√x2 − 2

2

)

= P

(
log X > log

(
x +√x2 − 2

2

))

+ P

(
log X < log

(
x −√x2 − 2

2

))

= �̄

(
log

(
x +√x2 − 2

2

))
+�

(
log

(
x −√x2 − 2

2

))
.

6.1.1. Patterns in the results. For judging the quality of the asymptotic approximation, we focus
on the simulation estimate P(X+Y > x) and not the threshold x, since a change of distribution
may imply a change in how rare a particular threshold crossing is. So, when comparing the
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quality of the asymptotic approximation across different models, it makes more sense to focus
on the value of P(X + Y > x), rather than the particular threshold x. When ρ = −1, exact
calculations suggest that the approximation is extremely good, even when the actual probability
P(X + Y > x) is of the order of 10−2. As expected, the asymptotic approximation improves
as a function of increasing threshold. When ρ ∈ (−1, 1), we rely on the simulation estimate
as a surrogate for the exact tail probability and compare it with the theoretical approximations.

The results indicate that the closer ρ is to −1, the better the approximation. For ρ = −1,
the approximation is good for events with probability of the order of 10−2, and to achieve
comparable precision in the relative error when ρ = 0, the event has to be much rarer and have
a probability of the order of 10−10. For ρ = 0.9, the results for different thresholds did not
show any convergence pattern. This emphasizes that in practice the numerical approximations
should be used with caution. Clearly, for ρ = 1, the asymptotic approximation is not correct
and ρ = 0.9 is expected to behave somewhat like the case in which ρ = 1.

Tables 1–4 give representative results. We first give the results for ρ = −1 in Table 1, since
in this case no simulation is required. The ratio column in Table 1 is defined as

ratio = actual probability

asymptotic approximation
.

For the subsequent tables, the ratio and half-width columns are defined as

ratio = simulation estimated probability

asymptotic approximation
,

half-width = half-width of the 95% confidence interval of the ratio.

In each case, 107 observations were used to compute the probability estimates.

Table 1: ρ = −1.

Threshold Actual probability Asymptotic approximation Ratio

10 0.0219 0.0213 1.0272
16 0.0056 0.0056 1.0121
24 0.0015 0.0015 1.0060
30 6.7365 ×10−4 6.7091 ×10−4 1.0041

100 4.1233 ×10−6 4.1213 ×10−6 1.0005
1000 4.9238 ×10−12 4.9238 ×10−12 1.0000

Table 2: ρ = −0.9.

Threshold
Simulation estimated Asymptotic

Ratio Half-widthprobability approximation

3 0.3687 0.2719 1.3556 0.0006
5 0.1207 0.1075 1.1227 0.0012

10 0.0221 0.0213 1.0375 0.0026
20 0.0028 0.0027 1.0082 0.0064
30 6.8873 ×10−4 6.7091 ×10−4 1.0265 0.0119
40 2.2134 ×10−4 2.2524 ×10−4 0.9827 0.0183
50 9.3675 ×10−5 9.1526 ×10−5 1.0235 0.0285
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Table 3: ρ = 0.

Threshold
Simulation estimated Asymptotic

Ratio Half-widthprobability approximation

10 0.0338 0.0213 1.5844 0.0033
50 1.0798 ×10−4 9.1526 ×10−5 1.1798 0.0002

100 4.5032 ×10−6 4.1213 ×10−6 1.0927 0.0001
300 1.2117 ×10−8 1.1718 ×10−8 1.0341 0.0000
600 1.6147 ×10−10 1.5853 ×10−10 1.0185 0.0122

1000 4.9821 ×10−12 4.9238 ×10−12 1.0118 0.0000
2000 1.9620 ×10−14 2.9310 ×10−14 1.0106 0.0000

Table 4: ρ = 0.9.

Threshold
Simulation estimated Asymptotic

Ratio Half-widthprobability approximation

10 0.0521 0.0213 2.4439 0.0088
30 0.0030 6.7091 ×10−4 4.4081 0.0275
50 5.2652 ×10−4 9.1526 ×10−5 5.7527 0.0759
75 1.1217 ×10−4 1.5781 ×10−5 7.1077 0.1843

100 3.4333 ×10−5 4.1213 ×10−6 8.3307 0.3642

6.2. How good is the portfolio suggestion?

Here, we consider the quality of our approximate solutions for the optimization problem. We
choose the same risk model given in Example 3.5, because we have information about which
values of ρ lead to good asymptotic approximations. We resort to a naive method for analyzing
the optimization. For different (a1, a2), we obtain estimates of P(a1X + a2Y > x) through
simulation. To obtain the estimates, proceed as follows. For a1, a2 > 0,

(
a1X

a2Y

)
=

(
exp(log(a1)+X1)

exp(log(a2)+X2)

)
.

Now,

(
Z1
Z2

)
=

(
log(a1)+X1
log(a2)+X2

)
∼ N

((
log(a1)

log(a2)

) (
1 ρ

ρ 1

))
, ρ ∈ [−1, 1).

So, again, we are in the framework of Asmussen and Rojas-Nandayapa (2008), and we use the
algorithm given in their paper to estimate the rare event probabilities. When either a1 or a2
is equal to 0, we can compute the exact probability and, hence, do not need an estimate. We
choose (a1, a2) in the following way. Let C be the set of all possible (a1, a2) which satisfy the
constraint. First, a1 is chosen from the corresponding projection of C with a small grid, and
then, for each a1, a2 is determined from the constraint. Let us call this set C∗. For (a1, a2) ∈ C∗,
P(a1X+a2Y > x) is estimated through simulation and then it is observed which (a1, a2) gives
the minimum estimate of P(a1X + a2Y > x). Let (ã1, ã2) be this pair, i.e.

P(ã1X + ã2Y > x) = min
(a1,a2)∈C∗

P(a1X + a2Y > x).
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Also, let (a∗1 , a∗2) be the approximate solution of the optimization problem, as noted in the
previous section. Relative error of the approximate solution is computed by comparing P(a∗1X+
a∗2Y > x) with min(a1,a2)∈C∗ P(a1X + a2Y > x).

6.2.1. Identifying patterns. We do not have error estimates for our simulation results. One
could consider bootstrapping to obtain such error estimates, but we have not done so. Despite
the weaknesses of the naive procedure, the results are interesting.

We note one case with the linear constraint 2a1+3a2 = 1. The suggested optimum portfolio
based on asymptotic approximation is (a∗1 , a∗2) = (0.2, 0.2). The cases where ρ = −0.9, 0, 0.9
are chosen, the reason being that we know from the results in the earlier section that the
asymptotic approximation is good in the case ρ = −0.9, reasonable when ρ = 0, and rather
bad when ρ = 0.9. The approximate solution (a∗1 , a∗2) relies on replacing the original objective
function by its asymptotic approximation, and so it is reasonable to expect different accuracies
for these three values of ρ, and this turned out to be the case. In the cases ρ = −0.9 and ρ = 0,
we see that ã1 comes close to 0.2 as the threshold x increases. But, in the case of ρ = 0.9, no
pattern in the convergence of ã1 is observed, which is expected because, for ρ = 1, both the
risks are actually the same random variable, implying indifference to the choice of (a1, a2) ∈ C.

Another remark is that for ρ = −0.9, 0, 0.9, the relative errors do not show any convergence
pattern. Perhaps to expect otherwise is unrealistic as we are using the minimum of some
simulation estimates to compute the relative error. Still, we illustrate through an example the
accuracy by comparing with an extreme case where we build the portfolio consisting of only
one asset. For ρ = 0 and threshold x = 10, the extreme cases will yield probabilities 0.2441
and 0.1360. These risk probabilities are quite high compared to that of our suggested optimal
portfolio (a∗1 , a∗2) based on asymptotic approximation, which has risk probability P(a∗1X +
a∗2Y > x) = 1.0793×10−4; also, the minimum of the simulation estimates P(ã1X+ ã2Y > x)

is of the same order. So, the suggested portfolio (a∗1 , a∗2) is quite effective in reducing the risk
and possibly close to the best one.

The following additional conclusion can be made. In the case ρ = −0.9, even when
P(ã1X + ã2Y > x) is as big as 0.11, it is quite close to P(a∗1X + a∗2Y > x), indicating that
the suggested optimal choice (a∗1 , a∗2) significantly reduces the risk probability. For ρ = 0, a
comparable statement can be made when the minimum of the probability estimates is of the
order of 10−2. However, for ρ = 0.9, the relative errors are never close to 0. Interestingly,
even for ρ = 0.9, P(ã1X + ã2Y > x) and P(a∗1X + a∗2Y > x) are almost always of the same
order. However, it should be noted at this point that even in the case ρ = 0.9, the extreme
cases where the portfolio is built on entirely one of the assets, P(a1X+ a2Y > x) is of a much
bigger order than P(ã1X + ã2Y > x). So, in this case, P(a1X + a2Y > x) possibly differs
considerably from choices where a1, a2 > 0 and the case where either a1 = 0 or a2 = 0, but
does not differ too much among the choices where (a1, a2) ∈ C, a1, a2 > 0. This fact justifies
the intuition mentioned before that the case ρ = 0.9 is similar to the case ρ = 1.

The results are summarized in Tables 5, 6, and 7 for ρ = −0.9, 0, 0.9 and constraint
2a1 + 3a2 = 1. For each fixed ρ, we give

• the threshold x,

• ã1, where (ã1, ã2) ∈ C∗ and

P(ã1X + ã2Y > x) = min
(a1,a2)∈C∗

P(a1X + a2Y > x),

• E1 = min(a1,a2)∈C∗ P(a1X + a2Y > x),
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Table 5: ρ = −0.9.

Threshold ã1 E1 E2 Relative error

1 0.13 0.1097 0.1204 0.0975
3 0.18 0.0067 0.0069 0.0322
5 0.19 0.0013 0.0013 0.0294

10 0.19 1.0299 ×10−4 1.0592 ×10−4 0.0284
20 0.21 2.0806 ×10−6 2.0806 ×10−6 1.2213 ×10−15

Table 6: ρ = 0.

Threshold ã1 E1 E2 Relative error

1 0.03 0.1349 0.1723 0.2765
3 0.16 0.0093 0.0101 0.0759
5 0.18 0.0016 0.0017 0.0503

10 0.19 1.0424 ×10−4 1.0793 ×10−4 0.0354
20 0.20 4.3888 ×10−6 4.3888 ×10−6 0

Table 7: ρ = 0.9.

Threshold ã1 E1 E2 Relative error

1 0.01 0.1360 0.1798 0.3223
3 0.01 0.0140 0.0208 0.4831
5 0.02 0.0033 0.0050 0.5146

10 0.02 2.8357 ×10−4 4.9475 ×10−4 0.7447
20 0.04 1.3241 ×10−6 2.4023 ×10−6 0.8142

• E2 = P(a∗1X + a∗2Y > x),

• the relative error is equal to (E2− E1)/E1.

For each value of ρ, a1 was chosen with gap 0.01 from the projection of C∗, i.e. we considered
a1 = 0, 0.01, 0.02, . . . , 0.5. For each such a1, we used 10 000 observations to obtain the
estimates of the probability P(a1X + a2Y > x).

7. Concluding remarks

An important case for the study of the asymptotic behavior of the sum of risks is the case where
the risks are asymptotically independent, identically distributed, and belong to the maximal
domain of attraction of the Gumbel distribution. Many commonly occurring risk distributions
fall into this category. We have provided sufficient conditions for

lim
x→∞

P(X + Y > x)

P(X > x)
= 2,

and extended the conditions to cover the case where the marginal distributions are not the same,
and to the case where some risk distributions have lighter tails but the distribution does not
belong to the maximal domain of attraction of the Gumbel distribution. We were not able to
provide necessary and sufficient conditions for this kind of asymptotic behavior, which is an
unresolved problem. It will be interesting to see if it is possible to find a distribution of risks
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(X, Y ) for which the risks are asymptotically independent, but not independent, identically
distributed, and belong to MDA(�), and the asymptotic behavior of the sum is different than
the two cases mentioned in the introduction, viz.

lim
x→∞

P(X + Y > x)

P(X > x)
∈ {2,∞}.

Even for cases where the asymptotic behavior is understood, nothing is known about the
rate of convergence in these cases, i.e. a quantitative estimate of how good the approximation
2 P(X > x) is for the quantity P(X + Y > x) for a large threshold x. Simulation studies
indicated that in certain circumstances the approximation is accurate, but in other cases its
accuracy is dismal.

We observed in the previous section that when the tail probability approximation is good,
the approximate solution of the optimization problem is also accurate, whereas in the other
cases this solution has poor accuracy. So, results on the rate of convergence would contribute
to understanding the appropriateness of the approximate solutions in different scenarios.
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