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In an important recent paper H. E. Scheiblich gave a construction of free
inverse semigroups that throws considerable light on their structure [1]. In this note
we give an alternative description of free inverse semigroups. What Scheiblich
did was to construct a free inverse semigroup as a semigroup of isomorphisms be-
tween principal ideals of a semilattice E, say, thus realising free inverse semigroups
as inverse subsemigroups of the semigroup TE, a kind of inverse semigroup introduc-
ed and exploited by W. D. Munn [2]. We go instead directly to canonical forms
for the elements of a free inverse semigroup. The connexion between our construc-
tion and that of Scheiblich's will be clear. There are several alternative procedures
possible to reach our construction on which we comment on the way.

1. Introduction

Let I b e a non-empty set. Let X'1 = (x"1 IxeA'} be a set disjoint from
X, where x <->• x"1 is a one-to-one mapping of X upon X"1. Set Y = X u X " 1 .
Denote by !FY the free semigroup on Y: the elements of ^Y

 a r e t n e non-empty
words in the alphabet Y and the product of any two words u, v in ^Y is the word
uv obtained by juxtaposition of u and v. <^y denotes the semigroup with identity
obtained from ^Y by adjoining an identity element 1 to ^r. We shall also call 1
a word.

A word in &Y is said to be reduced if it does not contain a syllable xx'1 or a
syllable x-1x, xeX, as a subword. The word 1 of J^1 is also said to be reduced.
Any word of &) determines a unique reduced word obtained from it by deleting,
in succession, any syllables xx'1 or x~lx, xeX. The set of all reduced words in
^ w e shall denote by G. G is then the free group on X under the product

where u • v denotes the reduced word determined by uv.
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444 G. B. Preston [2]

If g is an element of G we shall denote its inverse in G by g~1. Set

F = {9i9~l---9k9k1\k ^ 1> each gieG\{\}},

and set F 1 = F u {1}. Then F is a subsemigroup of ^Y
 a n d F 1 is a subsemigroup

of Ĵ V1 . Denote by W1 the set FlG:

The product fg is here to be evaluated in &\. Finally set W = Wl \{l}.
There are now several possible ways of proceeding to construct / x, the free

inverse semigroup on X. We shall proceed by first constructing a semilattice E,
say, that will form the semilattice of idempotents of Ix. We shall then form a
semi-direct product* of E1 and G. The resulting semigroup J\ is not an inverse
semigroup and indeed is not regular. We shall then define a congruence on Jx

such that each congruence class contains precisely one regular element. The quo-
tient of Jx modulo this congruence will be 7̂ -. Finally Ix — /* \{1}. Alternatively
Ix may be identified with the semigroup of regular elements of Jx; and this is
perhaps the simpler approach.

It will be seen at the end that what has effectively been done is to introduce an
equivalence relation on W and then to define a product on the equivalence classes
to give Ix. Although this latter procedure is on the face of it more direct—we
shall give the formal definitions required later —the verification that the con-
structed object Ix is an inverse semigroup involves much the same argument as
in the procedure we have chosen to adopt.

Another possible procedure would be to consider the cartesian product
El x G, define an equivalence on this, and then define a product on the resulting
set of equivalence classes to give 7^ and so Ix. We shall not give the details of
this approach.

For each of the approaches mentioned we can instead go directly to Ix and
suppress the introduction of the 1. However the introduction of the 1 smoothes
the computational path.

' 2. The construction of Ix

LEMMA 1. Each element of F is uniquely expressible in the form g^
1, where k ^ 1, and gteG\{l},i = 1,2,—,k.

PROOF. Let a = g^gi1 ••• QkQu.^ • Then, as an element of Ĵ V, a is a unique
product of elements of Y, a = yt ••• yn, say. Each y3 is itself a reduced word, and
so belongs to G. Consider the product in G, y1 • ••• • yn. As we successively eval-
uate yx, y1 • y2, •••, it is clear that the first time we get the value 1 is when we have

What we term a semi-direct product (see below) is a generalization of the usual concept.
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evaluated the product as far as the initial segment g^g^1 of a. This determines gx

uniquely. Similarly, the next time the value of the product is 1 is on reaching the
end of the initial segment g^g^gig^1 • This determines g2 uniquely. A continua-
tion of the argument shows that the remaining gj are also uniquely determined.

Let us agree to write g :£ h, for g, h in G, ifg is an initial segment of h, i.e. if
there exists g', say, in G, such that g-g'=gg' — h. Here, to require that g-g'
= gg' means requiring either that gg' is reduced as it stands or that one of g and
g' equals 1. Hence, for example, I ^ g, for all g in G. Then ^ is a partial order on G.

If A and B are nonempty subsets of G, we mean by A ^ B that each element
of A is less than some element of B. If A is finite then Max A will denote the set of
its maximal elements.

Because of Lemma 1, i f / = g ^ 1 •••gkgk~
1eF, then the set {g\,---,gk} is

uniquely determined by/ . We call it the domain, D o m / of/, and if / = 1, we de-
fine Dom / = {1}. We define the carrier o f / t o be C a r / = Max Dom/ .

We say that two elements e and / of Fl are ~ equivalent if they have the
same carrier: e ~ / if and only if Car e = Car / .

LEMMA 2. ~ is a congruence on F1.

PROOF. ~ is clearly an equivalence relation; that it is a congruence follows
from the fact that g is a partial order on G.

We shall denote F1/ ~ by E1. Note that 1 is the sole element of its ~ equiva-
lence class. Set E = E1 \{1}. Effectively also E = F / ~ .

It will frequently be convenient to denote any element/~ of E1 simply by/ .
We shall consequently allow ourselves when following this convention to replace
/ a t any stage by any word o f f 1 ~ equivalent to it.

LEMMA 3. E is a semilattice and El is a semilattice obtained from E by the
adjunction of an identity element 1.

Relative to the natural order of the semilattice, e ^ / if and only i / C a r /
^ Car e, for e,ftE^. Hence the set of maximal elements relative to its natural
order, of E, is

{xx~11 x e X} U {x~ ! x | x e X}.

PROOF. Clearly, if e./eJS1, then

Car e2 = Car e,
and

Care /= Car/c.
Thus E1 is a semilattice.

Now e ^ / in the semilattice E1, relative to its natural order, means that
ef = e. But ef = e, i.e. ef~ e, if and only if Car(e/) = Car e. Since Car(e/)
= Max(Car e u Car / ) , therefore Car(e/) = Car e if and only if Car/ ^ Car e.
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Each element x of G determines a transformation ê  of E1 defined as
follows. If e = 1, we set eex = xx'1. If e = g^i1 •••gkgk~

1then we set

eex = xx~\x • gt)(x • gj-1 - ( x

We must show that the e* are well-defined on E1, i.e. we must show that, if e ~f,
then eex ~fex- The following lemma provides what is needed. If A c G and xeG,
set x • A = {x • a | a e A}.

LEMMA 4. Let A £ G and x e G. Let a e A and suppose that x • a is a maxi-
mal element ofx • A. Then either a is a maximal element of A orx-a g x.

PROOF. Suppose that a is not a maximal element of A; then there exists b in A
such that a < b, i.e. such that b = ac = a • c for some c ^ 1. This implies that
x • a < x • b unless the process of reducing the words absorbs the whole of a, i.e.
unless x = x'a~l = x' • a"1 for some x'. (In such a case x • a = x', while xb
= x'c, and any further reduction between x' and c will lead to a situation where
x • a < x • b.) But if x = x' • a"1 then

x • a = x' g x.

Now suppose that c ~ / , e, / e F1. If e = 1, then / = 1 and so eex = fex. If
« = 0101*1 •••9k9kl> s e t ^ = D o m c. Then Car eex = Max({x} Ux • A), the pos-
sibility that some of the x • gt equal 1 not affecting this statement. From Lemma 4,
if x • a. a e A, is a maximal element of x • A, either a is a maximal element of A,
i.e. a e Car e, or x • a ^ x. Thus Car eex = Max({x} u x • Car e). Since Car e
= Car/, therefore Car esx = Car/sA., i.e. esx ~fex.

We shall frequently write e* for eex.

LEMMA 5. For eac/i x fn G, ex is an endomorphism of El.

PROOF. Let e, feF1. If e = 1, then (ef)x = fx and exfx = x x " ' f - / * from
the definition of ~ . Similarly, if / = l,(ef)x = exfx.

Suppose that e ^ 1 and/ j= 1. Set A = Dom c and B = Dom/. Then Dom(e/)
= AKJB. Hence

Car(e/)* = Max({x} U x • {A U £))

= Max(({x} Ux • 4) u({x} Ux • B))

= Car exfx.

Thus (e/)* ~ ex/x. This completes the proof.

The mapping x -»• e^, x e G, is almost an antihomomorphism of G into End E1.
The extent to which it fails to be is clarified in the next lemma.
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as required.

Finally, suppose that y ^ 1, and that some y • gt equal 1. Then the correspond-
ing factors (y • g^{y • gf,)"1 will be suppressed in the right-hand side of (1) above.
Hence, in evaluating this right-hand side the corresponding expressions
(x.y.gi) (x • y • g,)'1 will not occur. However, since each such expression is equal
to xx"1 , and xx" 1 already occurs on the right-hand side, from the definition of ~ ,
we have, with no factors missing, from (1),

= xx~\x • y)(x • y)-\x • y • 9l)(x • y • gj-1 - ( x • y • gk)(x • y • g,)-1

completing the proof.
We can now define, in terms of the endomorphisms sx, the semi-direct pro-

duct Jx as the set E1 x G on which a product is given by

LEMMA 7. Jl
x is a semigroup.

PROOF. Let (<?,x), (f,y), (g,z)eEl x G.
Then
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((e,x)(f,y))(g,z) = (ef*,x • y)(g,z) = (efxgx-",(x • y) • z)

= (efxxx-1gx-",x-(yz)),

by the definition of ~ , since/* ~ xx~lfx,

= (efx(gy)x,x(yz)),
by Lemma 6,

= (e
since e^eEnd E1,

We now find the idempotents and the regular elements of Jx.

LEMMA 8. is1 x {1} is the set ofidempotents of Jx. It forms a subsemigroup
of Jx isomorphic to El.

PROOF. This result is immediate from the definition of the product in j \ .
For (e,x)2 = (e,x) if and only if x • x = x,i,e. if and only if x = 1.

LEMMA 9. Let (e,x)eJx. Then (e,x) is a regular element of Jx if and only
if {x} ^ Car e, i.e. if and only if Car xx~*e = Car e.

PROOF. Let (e, x) be regular. Then there exists (/, y) such that (e, x)(f, y)(e, x)
= (e, x). Hence

(efxex-y, x • y • x) = (e, x).

Thus x • y • x = x, so that x • y = 1, and

e /V = e,
i.e.

exx~^f*e = e.

From the definition of ~ it follows that {x} g Car e.
Conversely, suppose that {x} ^ Car e. Set y = x"1; then

By Lemma 6)(e
)')x = xx~iex-y = xx~*el = xx-1e. However, since {x} ^ Care,

Car xx-1e = Car e. Hence xx- 1e = e. Thus exx~1ee = e and

We may now proceed in two ways. The first way is that of the next lemma.

LEMMA 10. The regular elements of Jx form an inverse subsemigroup of Jx
x.

PROOF. Let a, b be regular elements of Jx. Let a', b' be hverses of a, b, res-
pectively. Then, since the idempotents of Jx commute, by Lemmas 3 and 8,
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ab(b'a')ab = a(bb')(a'a)b = {aa'a)(bb'b) = ab,
and similarly,

b'a'(ab)b'a' = b'a'.
Thus ab is regular.

Since the idempotents of this regular subsemigroup form a semilattice it forms
an inverse semigroup.

COROLLARY. 7/(e, x) is a regular element of Jx then it has a unique inverse,
namely (ex \x~l), in J^.

PROOF. That any inverse is unique follows from Lemma 10 because any in-
verse of a regular element is itself regular. That {ex~\x~l) is the inverse of (e,x)
when it is regular was part of the proof of Lemma 9.

Let us denote the semigroup of regular elements of Jx, i.e., by Lemma 10,
the maximal inverse subsemigroup of J^, by Ix.

The second possible construction of Ix is as a homomorphic image of Jx.
We shall say that (e,x) ~ (f,y) if and only if x = y and Car xx~le = Car yy'1

It is immediate that {e, 1)~ (/, 1) if and only if e ~f, where the latter ~ denotes
our earlier equivalence on E1. Since we have already seen (Lemma 8) that E1 x {1}
may be identified with E1, our new definition of ~ may be regarded as merely
extending ~ from El to Jx.

LEMMA 11. ~ is a congruence on Jx.

PROOF. Let (e,x),(/,y),(g,z) e J*x and suppose that (e,x) ~ (/,y). Thus x = y
and Car xx~le = Car xy~'/,i.e. Car xx~1e = Car yy~lf.

To prove right compatibility, consider

(e,x)(0,z) = (egx,x-z)
and

since x = y. Now, by the definition of ~ on Fl, gx ~ xx~1gx, so by Lemma 2,

(x • z)(x • z)-legx ~ (x • z)(x • z ) " 1 ^ " V

~ (x • z)(x • z)~1fxx~1gx,

since exx"1 ~/xx~I ,

-(x-zXx-z)-1/^;

hence (e, x)(g, z) ~ (/, y){g, z).

To deal with left compatibility, consider
(g, z){e, x) = (gez, z • x)

and
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{g,z){f,y) = (gf\z-x\
since x = y. Since

xx~xe ~ xx~lf,
therefore,

(xx-V)£z~(xx-1/)£2,
so, by Lemma 5,

zz~\z • x)(z • x)~ V ~ zz~\z • x)(z • x)-xfz.
Thus

(z-x)(z-x)-1
e

z~(z-x)(z-x)-1/2.

By Lemma 2, therefore

(z • x)(z • x)" lge* ~ (z • x)(z • x)~ lgf .

Hence ~ is right compatible.

LEMMA 12. Each congruence class of ~ inJx contains precisely one regular
element. Hence Jxl ~ = Ix-

PROOF. The final statement follows immediately from Lemma 10, for the set
of regular elements of Jx form the inverse semigroup Ix.

Let(e,x)eJx. Then
(xx-1e,x)~(e,x)

and, by Lemma 9, (xx^e.x) is regular. Thus each ~ class contains a regular
element.

Suppose that (e, x) ~ (/, y) and that (e, x) and (/, y) are regular. Since (e, x)
~ (f,y), therefore x = y and Car(xx~'e) = Car(yy~lf). Since (e,x) is regular,
Car xx'1 e = Car e; since (/, y) is regular, Car (yy~'/) = Car /. Thus x = y and
Car e = Car/, i.e. e ~f. Thus (e,x) = (f,y).

We now define Ix to be l\ \{1}. Ix is clearly an inverse subsemigroup of Ix.
Define <f> : X -»Ix thus

>̂ : x -»• (xx~', x), x e X.

Then >̂ is one-to-one i.e. <f> embeds X in 7̂ -. In the next section we show that
(Ix, <p) is a free inverse semigroup on X.

We comment now an another possible construction of Ix, mentioned earlier,
starting from the set W. We define an equivalence ~, say, on W thus:

fg ~ eh if and only if g = h and Car/gg"1 = Car ehh~x,

for/, eeFl,g,heG, fg,ehe W. On Wj~ we then define a product as follows:

where, if e = h^i^1--- hih~l, then
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With this product we then take Wj~ as Ix.

3. The freedom of (Ix, (f>)

In what follows we take Ix as the subsemigroup of Jx consisting of all the
regular elements of Jx other than 1.

We are to show that (Ix, <j>) is a free inverse semigroup on X. In other words,
we are to show that if S is an inverse semigroup and a : X -> S is any mapping,
then there is a unique morphism 6 : Ix -* S, say, such that (j>0 = a..

To construct 8, first let us adjoin an identity element 1, an additiona one if S
already has one, to S to form the inverse semigroup S*. Define /? : G -> S* as
follows:

xfi = xa, xeX,

where (xa)~ l is the inverse in S*,

1)3=1,

where yiy2---yn is reduced.

LEMMA 13. Let g,heG and suppose that g g h. Then

in S*.

PROOF. There exists g' in G such that h = gg'= g • g'. Hence, from the defini-
tion of fS,

hP
Thus

We may now define 9 as follows. Let (e,g) e Ix. Then e ^ 1, for Car gg~*e
= Car e, and (e,g) # (1,1). Hence e = gxglx •••gkglx, say. Define

where, on the right of this equation, (g^)'1, i = 1, •••,k, denotes the inverse of
gfi in S. From Lemma 13, if e ~ / ( i n F1), so that (e,g) = (/,g) in /^, then the
above definition gives (e,g)9 = (f,g)6. Thus 0 is well-defined.
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The following lemma contains two results needed to show that 0 is a mor-
phism.

LEMMA 14. Let T be any inverse semigroup. Let a,b,me T. Then

(i) (amXm-'fcXm-1^)-1 = {ab){ab)-lam,

(ii) (am^m'^b) = (am)(am)~1ab.

PROOF, (i) (arnXm'^Xm"1^ ' 1 = a • mm-1 • bb'1 • m = abb~1mm~lm

= a • a~1a • bb~l • m = abb~1a~1am.

(ii) (amXw"1^) = a • a~xa • mm*1 • b = amm-1 a~x • ab.

Consider now {e, g), (/, h) in Ix. Then

(e,gXf,h) = W,g • h).

Since e and / are not equal to 1, we have e = g^i1 •••gkgiT1 and / = h ^ 1

- M i " 1 . s a v - S e t 9iP = st,i = U-,k, hjfi = tJt j = 1,2,-,/, gfi = s, and hp
= t.

Suppose that g • h = g'u • u~xh', where g = g'u, h = u~xh', and # • /i
= g' • h'hg = g'ti, and that

g-hj^g^uj-ur'h'j,
where

0 ( % = 0 , a , " 1 * ; = hj, g-h- = g<» • h'j = g<%,

for; = 1, - , /. Set g(np = su\ Ujp = rJt hjp = t'Jt g'p = s', h'p = f, and Uj8 = r.

Then, by definition of 0,

On the other hand,

(e,g)9(t,h)e = (s^'

1 •••sks^1ss-1(st1ti
1)--tltr

1t

by successive applications of Lemma 14, part (i),
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by Lemma 14, part (ii),

completing the proof that 9 is a morphism.
Now, immediately from the definition of 9,

x<t>9 = (xx~\x)9

= xcc, if x e X.

Thus <j)6 = a. It remains to show that 9 is uniquely determined by this condition.
This will be so if X<f> is a set of generators of Ix. This is so, for we easily check
that, if e = g ^ 1 •••gkgk~

1 then

(1) (e,g) = (gig~i1A)-

and for any h in G,

(2) {hh-\V> = (hh-

Moreover , if /i = y 1 ••• yn,y,e Y, t hen

(3) (hh-\h) = (ytyV.y^yV^-iyj^.yJ.

a product of elements of X<j> and their inverses.
The final remarks of the above proof lead to a canonical form for the elements

of Ix. If 0 , g)elx, we may choose e, by the definition of ~ (on F1), so that Car e
= Dom e. Suppose that then e = gxg~^ •••gkg^1. Then e is uniquely expressible
in this form, modulo ~ , up to a permutation of the factors g@^- Modulo such
permutations, equations (1), (2) and (3), above, enable each element of Ix to be
expressed as a unique product of elements of X and their inverses.
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