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A SPECTRAL THEOREM FOR HERMITIAN 
OPERATORS OF MEROMORPHIC TYPE ON 

BANACH SPACES 
BY 

T. OWUSU-ANSAH 

1. Introduction. It is well known that if T is a compact self-adjoint operator on a 
Hilbert space whose distinct non-zero eigenvalues {Xn} are arranged so that 
l^nl^l^-n+il for « = 1 , 2 . . . . and if En in the spectral projection corresponding to 
Xn, then r=2w=i ^nEn,

 w* t n convergence in the uniform operator topology. With 
the generalisation of self-adjoint operators on Hilbert spaces to Hermitian op­
erators on Banach spaces by Vidav and Lumer, Bonsall gave a partial analogue of 
this result for Banach spaces when he proved the following theorem. Let T be a 
compact Hermitian operator on a Banach space. Let {An} be an enumeration of the 
distinct non-zero eigenvalues of Tsuch that \Xn\ > \An+1\ for n—1,2,.... Let En be 
the spectral projection corresponding to An. Then r=2n«=i hnEn> w^ t n convergence 
in the uniform operator topology if each En is Hermitian or if Aw=0(l/#). Since no 
example of a compact Hermitian operator on a Banach space is known for which 
the expansion does not hold, it is natural to ask if the expansion might not indeed 
hold for all compact Hermitian operators on Banach spaces. We prove the following 
result. Let T be a Hermitian operator of meromorphic type on a complex Banach 
space X. Let {Xn} be an enumeration of its distinct non-zero eigenvalues. Let En 

be the spectral projection corresponding to Xn. If T has minimal uniform index 
1 relative to {Xn} (a theorem by Derr and Taylor shows that this requirement is 
equivalent to the convergence of the series 2n=i K^n *n t n e uniform operator 
topology), we have 

n\ j ^—V 0 ^ 2?E ; 

(ii) ^ = l £ i AnV-lim^o(/a) 2 - i hEnl(ia-K) 
(iii) r = 2 n = i hE«>if x i s reflexive. 

The key to all these results is theorem 3.4: Let T be a Hermitian operator on a 
Banach space. If T=A+B, with AB=BA=0 and B quasi-nilpotent, then i?2=0. 

2. Notation, definitions and preliminary results 

2.1 Notation. If X denotes a complex Banach space, then B(X) will denote the 
algebra of bounded operators on X. Also p(T), a(T) will denote the resolvent set 
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and spectrum respectively of an operator T, and R(X; r ) = ( A / - T ) - 1 will denote the 
resolvent of T. If Xn is an isolated singularity of R(X; T)9 then En will denote the 
residue of R{X; T) at Kn. 

2.2 Semi-inner product spaces. A semi-inner product on a linear space F is a 
mapping [. , . ] from Yx F into the complex field, such that 

2.2.1 [x+y9z] = [x9z] + [y9z] 

[2.x, y]=X[x9 y]9 for all complex X and all x9 y, z e Y. 

2.2.2 {x9x]>0ifx^09 xe Y. 

2.2.3 \[x9 y]\2<:[x9 x][y9y]9 x and y e Y. 

A semi-inner product space is a linear space on which a semi-inner product is 
defined. These definitions were introduced by Lumer [6] who also proved the 
following results : 

2.2.4 Every semi-inner product space is normed by ||x|| = [x, x]1/2 

2.2.5 Every normed linear space can be made into a semi-inner product space in 
such a way that the norm induced by the semi-inner product on the space coincides 
with the norm on the space [in general this can be done in infinitely many ways]. 

2.3 The numerical range of an operator Ton a Banach Space. Let Tbe an operator 
on a Banach space X. The set of complex numbers 

W (T) = {[Tx9 x]:[x,x] = l , x e X } , 
where [. , . ] is some semi-inner product on X, is called the numerical range of T with 
respect to that semi-inner product. This definition is due to Lumer, who also proved 
the following results: 

2.3.1 The closed convex hull of the numerical range of an operator on a Banach 
space is independent of the semi-inner product used as long as it is consistent with 
the norm on the space. 
2.3.2 In particular, if the numerical range of an operator is real for any one such 
semi-inner product, then it is real for all others. 

2.4 Hermitian operators on a Banach space. An operator T on a complex Banach 
space X is said to be hermitian if and only if its numerical range with respect to 
some semi-inner product on X consistent with the norm is real. By 2.3.2, this con­
cept of hermiticity does not depend on the semi-inner product. This definition is 
due to Lumer who also proved the following result: 

2.4.1 An operator T on a Banach space is hermitian if and only if | | /+ /a r | | = 
l+0(a ) as a -> 0, where a is real and / is the identity operator on X. This result 
shows the equivalence of Lumer's definition of hermiticity and that given by 
Vidav [13]. 
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2.5 Operators of meromorphic type. Let X be a complex Banach space and let T 
be a bounded linear operator on X such that a(T) is a denumerable set of points 
with A=0 as the only point of accumulation. If every non-zero point of a{T) is a 
pole of R(À; 7), then Tis called an operator of meromorphic type. For the basic 
properties of such operators, see [10], [11] and [12]. 

3. Expansion in terms of spectral projections 

3.1. THEOREM. Let T be a hermitian operator on a Banach space. Then 
\\(s+ir—T^H^l/lrl/or all real s and all real non-zero r. 

Proof. This result follows from the Hille-Yosida-Phillips theorem [3, p. 626], 
but we give here a simple proof in terms of semi-inner products, which is implicit 
in [7]. Let t=s+ir9 r^O be a complex number. Since Tis hermitian, its spectrum is 
on the real axis so that t=s+ir is in the resolvent set of T. Let (r—r)~1 j=z, 
||7l| = l . T h e n j = ( r - r ) z a n d s o 

\\z\\-\\y\\ = \\(t-T)z\\-\\z\\ 

Z\[(t-T)z9z]\ 

= IMl4——ATz,z]\ 
I N l 2 I 

Thus 

\\y\\>\\z\\ ^s-^Tz,z]J+r2J2 

;> NI • M. 
Hence 

NI ^ \\y\\l\r\ = l/|r|. 
Thus 

IK'-TT1!! ^ i/|r|. 

3.2. REMARK. (Atkinson): The above inequality implies that for a Hermitian 
operator, any pole of R(À, T) must be simple. 

3.3. THEOREM. Let X be a reflexive Banach space and suppose that TeB(X) is 

hermitian. Then X=TX@{x | x eX, Tx=0} and for any real sequence Xn -> 0, 
2,nj£09 the sequence {iXnR(iXn; T)} converges in the strong operator topology to the 

projection T0 whose null manifold is TX and whose range is {x | 7^=0}. 

Proof. This result follows immediately from theorem 3.1 and [3, Cor. 5, p. 597]. 

3.4. THEOREM. Let T be a hermitian operator on a Banach space. If T=A+B, 
with AB=BA=0 and B quasinilpotent, then 2?2=0. 

Proof. Since AB=BA=0, Tn=An+Bn for all n>\. Thus BTn=B(An+Bn)= 
Bn+1. Hence B{X-T)-1=B{X-B)-1 for \X\ greater than the spectral radius of T, 
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by the power series expansion for resolvents. Thus since the intersection of the 
resolvent sets of T and B is connected, we have B(X—T)-1=B(X—BY1 for all 
XeP{B)nP{T) 

By theorem 3.1, 

Hr^V^-rr1!! <i/|sin0|, 
for r sin 05^0. 
Thus 

Wre^Bire^-B)-1]] = ^"BireP-T)-^ 

< | | £ | | . ( l / | s i n 0 | ) , 
r sin 0^0 . 
Hence for r > 0 , we have 

IsmOl'Wre^Bire'^Br'WKWBW 
Now the function 

F(X) = ( l / A ^ l / A ) - * - 1 ) = B(l+2.B+??B2+ • • • ) 

is entire in A, since B is quasi-nilpotent. 
Also as shown above, |sin 0| • \\F(reie)\\ <> \\B\\. 

Thus by [5, Lemma 3.13.1, p. 101], F(X) is a constant. Since F(À)=B+XB2-{ , it 
follows that B2=0. 

3.5. THEOREM. Let T be a hermitian operator of meromorphic type on a reflexive 
Banach space. Let {An} be an enumeration of the distinct poles. Let En be the spectral 
projection corresponding to Àn. If T has minimal uniform index 1 relative to {An}, 
then 3 r=2n=i ^n^n-> wtih convergence in the uniform operator topology. 

Proof. By 3.2 each Xn is a simple pole of R(X, T), so that Fn=(T-An)En=0. 
Hence by [12, Theorem 8, p. 96], T=A+B, where -4=2nU AnEn and B is quasi-
nilpotent with AB=BA=0. We must show that B=0. By theorem 3.4, J B 2 = 0 . 

By theorem 3.3, X=TX@{x e X: Tx=0} so that it suffices to show that Bz=0 
for z in TX and for z in the null space of T. If z is in TX, then for some j e X, we 
have z=7>. Hence Bz=BTy=B(A+B)y=BAy+B2y=0. If Tz=0, then since 
(Xn-T)En=0, we have AnEnz=TEnz=:EnTz=0. 
Thus 

i 4 z = f An£nz = 0. 

Hence 

Bz = Tz -^ l z = 0. 

3.6. THEOREM. Let T be a herimitian operator of meromorphic type on a Banach 
space. Let {Àn} be an enumeration of the poles. Let En be the spectral projection 
corresponding to Àn. If T has minimal uniform index 1 relative to {Àn}, then T2= 
2^Li hnEni with convergence in the uniform operator topology. 
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Proof. By 3.2 each Xn is a simple pole of R(X; T), so it follows that Fn= 
(T-An)En=0. 

Hence by [12, Theorem 8, p. 96], T=A+B, where A=J^^XnEn and B is 
quasi-nilpotent, with AB=BA=0. Hence by theorem 3.4, B2=0. Thus 
( r - Z ^ W ^ O . Hence T^2T^=1 lnEn+2n=i & = 0 . Thus 3T»-
2 2S=i * X + 2 £ . i fe=0, since TEn=lnEn. Hence r 2 = ^ = 1 A X -

3.7. COROLLARY. Lef The a hermitian operator of meromorphic type on a Banach 
space. Let {Àn} be an enumeration of the poles of R(A; T). Let En be the spectral 
projection corresponding Xn. If T has minimal uniform index 1 relative to {An}, then 

T=iAn£„-lim(ia)i A ^ _ 
w=l a->0 n=l ( ï a — An) 

where a is real. 

Proof. By 3.2 each Xn is a simple pole of R(A, T) and so Fn=(T-An)En=0. 

Hence by [12, theorems 1 and 5] and theorem 3.4, 

where 5 = r - ^ = 1 *„£; and 5 2 =0 . Hence B=X\X-T)-1-IA-X*^1 (XnEn)j 
X{X—2„). We put A=/a for real a, use theorem 3.1 and let a—>-0. 
We get 

B = - l im(fa) 2 | a„£„)/( /a)( ia-A n) 

Hence 

T = i A A - l i m ( f a ) i ( A n E w ) / ( z a - A J . 
w=l a-»0 n=l 
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