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1. Introduction

In 1990 Gowda and Teboulle published the paper [16], making a comparison of
several conditions ensuring the Fenchel-Rockafellar duality formula

inf{/ (x) + g(Ax) \x € X] = max{-/*(A V ) - * * ( - / ) I y* e Y*}.

Probably the first comparison of different constraint qualification conditions was
made by Hiriart-Urruty [17] in connection with s-subdifferential calculus. Among
them appears, as the basic sufficient condition, the formula for the conjugate of the
corresponding function; such functions are: f\ + /2, g ° A, max{f\,... , /„} , etc. In
fact strong duality formulae (like the one above) and good formulae for conjugates
are equivalent and they can be used to obtain formulae for e-subdifferentials, using a
technique developed in [17] and extensively used in [46].

Meantime other papers treated similar problems, using other conditions. The aim
of this note is to compare them with former conditions.

This paper is dedicated to Professors B. Craven and B. Mond on the occasion of
their retirement.

2. Interiority notions

In establishing sufficient conditions for duality one uses several notions of interi-
ority.

Let X be a real linear space and C c X a nonempty set. We recall that the algebraic
interior (or core) of C is

C = {x eX\WyeX, 38 >0, Wke[-S,S] : x + ky e C},
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354 C. Zalinescu [2]

that is, x e C if and only if C — x is absorbing, while the algebraic relative interior
(or intrinsic core) of C is

lC = {x e X | Vy eaffC, 3<5>O, VA. e [-5,3] : (l-A.)jt + Ay e C}.

In the sequel span C, aff C, cone C and conv C represent the linear, affine, conical
and convex hull of C, respectively; in particular cone C = [0, oo) • C.

When X is a topological vector space (t.v.s. for short) we introduce the notation

I 'C if aff C is a closed manifold,

0 otherwise,

while for X a locally convex space (l.c.s. for short) we consider

jb yC if XQ is a barreled linear subspace,

10 otherwise,

where Xo = span(C — c) for some (every) c e C;X0 is the linear subspace parallel to
aff C. Recall that the l.c.s. X is barreled if every closed, convex and absorbing subset
is a neighborhood of the origin of X. The first notation is introduced in [49, p. A90].

If X is a t.v.s. and C C X, int C, rint C and C denote the interior, the interior with
respect to aff C and the closure of C, respectively. Related to rint C and /cC is ri C,
the relative interior of C, introduced in [31, Definition 3.3.4]. More exactly

I rint C if aff C is a closed manifold,
n C = {

[ 0 otherwise.

Of course, rint C C ' C, and so rint C = ri C C icC if aff C is closed and rint C C
lfcC if the parallel space to aff C is barreled. Let C be a nonempty closed convex set;
by a standard argument, if X is a Frechet space (that is, a complete metrizable l.c.s.)
and aff C is closed then rint C = ri C = 1CC, while if X is a l.c.s. and the parallel
space to aff C is barreled then rint C = lbC. We shall see in the sequel other situations
when these equalities hold.

In the sequel, in this section, C C X is a convex set. It is easy to prove that

V j t e C : span(C -x)= cone(C - C),

whence aff C = x + cone(C — C) for every x € C; therefore cone(C — C) is the
linear space parallel to aff C. Moreover

x € C] <fr Vy € X, 3 X > 0 : (1 + k)x - ky € C <S> cone(C - *) = X
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and

x e ' C ^ V y e C , 3 A. > 0 : (I + X)x - ky e C

O cone(C - x) = cone(C - C)

<S» cone(C — x) is a linear space

X(C — x) is a linear space

\^Jn(C — x) is a linear space.
neN'

Taking into account the characterizations of the elements of ' C given above, we
see that

x € lbC o cone(C — x) is a barraled linear subspace of X

•&• ( J n ( C - x ) is a barreled linear subspace of X.
neN'

The condition 0 € tbC is used intensively by Simons [39] and the author [50, (HO)].
We have also that

x € 1CC ̂ > cone(C — x) is a closed linear subspace of X

<£• [_J A(C — X) is a closed linear subspace of X .

If X is a Frechet space and aff C is closed then icC = ibC, but it is possible to have
ibC ^ 0 and icC = 0 (if aff C is not closed).

We have that iCC is nothing else but the strong quasi relative interior sqri C intro-
duced in [19]; sqri C is used in [2,16].

Prior to the introduction of sqri C, Bonvein and Lewis [10] introduced the set qri C
of quasi relative interior points of C; x e qri C if * e C and cone(C — x) is a linear
subspace of X. Taking into account that in a finite-dimensional separated t.v.s. the
closure of a convex cone is a linear subspace if and only if itself is a linear subspace,
it follows that in this case qri C = 'C = sqri C (see [10, Proposition 2.4] for the first
equality).

Below we mention several properties of qri, some of them being slight refinements
of those in [10]. First note that

x€ qri C<&xeC A cone(C — x) = cone(C — C)

&x € C A x- CCcone(C-x), (1)

whence, taking into account that cone A = coneA for A c X,

qriC=CnqriC, 'CCqriC (even C f~l 'C C qri C ) , sqri C C qri C .
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It follows (see [10, Lemma 2.9] for X a l.c.s.) that

Vx e qri C, y e C, X € [0, 1) : (1 - X)x + Xy e qri C, (2)

and so, if qri C ^ 0 then qri C = C (see [10, Proposition 2.12] for X a l.c.s.).
Let Y be another t.v.s. and A € Jf(X, Y), where -£f(X, JO denotes the class

of continuous linear operators from X into Y. Then A (qri C) C qri A(C) (see [10,
Proposition 2.21] for X a l.c.s.). Indeed, if x e qri Cthen,by(l),*-C C cone(C-;t),
whence

Ax - A(C) = A(x - C) C A (cone(C-x))

C A(cone(C-x)) = cone (A(C) - Ax),

which shows that Ax e qri A(C). Moreover, if qri C ^ 0, then

A (qri C) C qri A(C) C A (qri C). (3)

Indeed, let x0 € qri C and take y € qri A(C) ( c A(C)). There exists x € C such
that y = Ax. From (2) it follows that (1 - X)x0 + Xx e qri C for X e (0, 1). From
the inclusion showed above we have that (1 — X)Ax0 + Xy e qri A(C) for A. e (0, 1).
Taking the limit as X -*• 1, we get y € A (qri C).

From (3) we obtain that sqri A(C) C A (qri C), if qri C ^ 0; this relation is shown
in [16, Proposition 3.5] for X a l.c.s. and Y a Baire space. Also from (3) one obtains
that A(qri C) = '(A(C)) if A € J&?(X, R") and qri C ^ 0 (see [10,_Proposition 2.10]
for X a l.c.s.); note that for a convex subset B of R" one has 'B = 'B = qri B.

The relation A (qri C) = '(A(Q) mentioned above and the fact that qri C happens
to be nonempty, even when ' C is empty (in many situations in infinite dimensional
spaces, as proven in [10]), show the usefulness of quasi relative interiors in partially
finite convex programs.

The notion of quasi relative interior is related to that of united sets, as mentioned
by Moussaoui and Voile [28]. In [21, Definition 1.7.5] and [24, Definition 7.6.5] one
says that the convex sets C\, C2 C X are united if they cannot be properly separated,
that is, if all closed hyper-planes which separate C\ and C2 contain both of them. In
[28] it is shown that

qri C = C n {x e X I {x} and C are united }.

Assume that X is a separated l.c.s. Ifcone(C—x) (= cone(C—x)) is a linear subspace
then x e C. Moreover, assuming that aff C is closed and rint C ^ 0, if cone(C — x)
is a linear subspace then x 6 rint C; when aff C has finite codimension this statement
follows from [28, Theorem III.2].
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Indeed, the first statement follows by separating strictly [x} and C if x £ C. For
the second statement we may suppose that x = 0. As aff C is closed and C C aff C,
it follows that 0 € C C aff C; thus Xo = aff C is a linear subspace. If 0 £ rint C,
applying a separation theorem in Xo, we get x£ e XQ such that (x, x$) > 0 for all
x e rint C. Taking an extension x* e X* of x£ we have that 0 < (x, x*) for every
* € C, and so 0 < (JC, x*) for every x €= coneC. As coneC is a linear subspace we
obtain that 0 = (x, x*) for every x € coneC, contradicting the fact that {x, x*} > 0
for all x € rint C (# 0). Therefore x e rint C.

3. Subdifferentiability criteria

Let/ : X -> R; the domain of/ is dom/ = {JC € X | / (x) < oo}, the epigraph
of / is epi/ = {{x,t) € X xR \ f{x) < t], while the sublevel set of/ at height
A. 6 R is the set [f < X] = {x € X | / (x) < A}. The function / : X -+ R is proper
if dom/ 7̂  0 and / does not take the value —oo.

In the sequel we denote by A{X) the class of proper and convex functions / :
X —> R, and by T(X) the class of lower semicontinuous (l.s.c. for short) functions
/ e A(X).

It is well known (see [27, Proposition lO.c], [24, Theorem 6.4.6], etc.) that the
function/ € A(X) is subdifferentiable at any x € dom/ where/ is continuous; it
is also well known that / is continuous at x € dom/ if and only if/ is bounded
above on a neighborhood of JC . Other sufficient conditions for subdifferentiability were
obtained. We mention some of them, (almost) explicitly stated in the literature; another
condition will follow from Theorem 3 in the next section (see Remark 3). We recall
that A C X is cs-closed if whenever (An)neN. c [0, co), Yln>i K = 1, (cn)neN« C C
and the series X!n>i ^«cn ls convergent with sum x, then x € C; A is cs-complete if
whenever (An)n6N. c [0, co), £„>, kn = 1, (cn)neN. C C and (]T^=1 Kcm)n^ is a
Cauchy sequence, the series £ n > 1 A.ncn is convergent with sum x 6 C. Of course, if
C is cs-complete then C is cs-closed, and if C is cs-closed then C is convex. The
function/ is cs-closed {cs-complete) if epi / is cs-closed (cs-complete) in X x R.

If/ e A(X) and x0 € dom/ , taking g 6 A(X), g(x) =f(xo + x), we have that
3/ (*o) = 9g(0); s ° . without loss of generality, we may take x0 = 0.

PROPOSITION 1. Let X be a l.c.s. andf e A(X). Each of the following statements
ensures that 3/ (0) is nonempty:

(i) there exists k0 e (/(0),oo) such that 0 € rint(/ < A.o] {or, equivalently,
0 € dom/ anrf/ |̂ 0 « continuous at 0, where Xo = span(dom/));

(ii) X is separated, dimX0 < oo an JO 6 '(dom/);
(iii) / S V{X) andO e lfc(dom/);
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(iv) / is cs-closed, 0 e lc(dom/) and X is a Frechet space.

Moreover, if X is separated and dimXo < oo then '(dom/) = rint(dom/), if
f e V(X) and ib(domf) ^ 0 then lfc(dom/) = rint(dom/)( and iff is cs-closed,
lc(dom/) ^ 0 and X is a Frechet space then <c(dom/) = rint(dom/).

PROOF. If (ii), (iii) or (iv) holds then 0 € dom/ and f0 = f \Xo is continuous
at 0; in particular 0 e rint(dom/). Suppose that (i) holds. By what we said at the
beginning of this section, 3/0(0) ^ 0. Because X is a l.c.s., every <p e 3/o(O) may be
extended to x* e X* (by Hahn-Banach theorem). Of course such an x* is in 3/ (0).

Taking x0 e '(dom/) [or l6(dom/) or ic(dom/)] and the function/" defined by
f (x) = / (x + x0) for x e X, in everyone of the three situations f satisfies the
conditions in (ii), (iii) and (iv), respectively. Therefore 0 € int(dom/), whence
xo 6 rint(dom/).

The next result is related to the preceding proposition.' Recall first that for
/ e A(X), the directional derivative of/ at x0 e dom/ is defined (and exists) by
/'(xo;x) = lim;V) (f(xo + tx) -f(xo))/t e R.

PROPOSITION 2. Suppose that the hypotheses of Proposition 1 hold. Then

= f'(0;x) ifxeXQ,
sup {(x, x*) \x* e 3/(0)} < / ' ( 0 ; JC) = OO ifx e X0 \ Xo,

= f'(0;x) = oo ifxeX\Xo,

the supremum being attained for x 6 Xo. Moreover, Xo is closed if and only if

Vx eX : f'(0;x) = sup{(x,x*) | x* e 3/(0)}.

PROOF. First of all note that, with the notation from the proof of Proposition 1, we
have

3/o(0) = {x* |*0 | x* € 3/(0)} and/'(0;x) = \ \

I CO II X € X \ XQ.

Since/o is continuous at 0 (6 Xo), we have that

VJC e Xo : /o'(O;x) = max {(x,x*) \ x* e 3/0(0)},
'The referee considered that "in Proposition 1, it could be interesting to know if the directional derivative
of/ at 0 is equal to the support function of 3/ (0). This is true assuming that/ 6 F(X), X Banach and
0 e ic(Aomf) (see [11])"; in the same conditions this result was obtained before in [43, Theorem 7].
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whence, for 3c € Xo,

sup {<*,**) | JC* 6 3/(0)} = sup{(x,je*|Xo) | JC* e 9/(0)}

= sup {<3c, x*) I x* € 3/0(0)} = max {{x, x*) | x* g 3/0(0)}

= /o'(0;3cO=/'(0;J).

If 3c £ Xo = X ^ , there existsx* e X* such that3c*|Xo = 0 and (x, x*) ^ 0. Taking
x*0 e 3/ (0) (^ 0 by Proposition 1), we obtain that

sup {(3c, x*) | x* € 3/(0)} > sup{(3c,3cj + tx*) | r g R} = oo =/'(0;3c).

Let now x e Xo\ Xo. Since / 0 is continuous at 0, by [44, Proposition 2], / 0 is
Lipschitz at 0, that is, there exists VQ a closed, convex and symmetric neighborhood
of Oe Xo such that Vo C dom/0 and \fo(x) - fo(y)\ < Pvo(x -y)fovd\\x,y e VQ,
where p Vo denotes the Minkowski functional associated to the set Vo. It follows that
/o(O;x) < Pvo(x) for all x € Xo. Replacing eventually Vo by a subset, we may
suppose that Vo = V C\ Xo, where V is a closed, convex and symmetric neighborhood
of 0 € X. So we have that/0'(0;x) < p v(x) for all x e XO. It follows that

VxeXo, Vje*g3/(0) : (x,x*) = {x,x*\Xo) </O'(O;JC) < pv(x).

As x € Xo, there exists a net (xt) c Xo converging to x. From the relation above,
taking into account the continuity of x* € 3/(0) and pv, we obtain that (3c, x*) <
PvOOforallx* € 3/ (0), and so sup {(3c, JC*) \x* e 3/(0)} <pv&) < oo .

REMARK 1. Condition (i) is surely known by convex analysts, and explicitly stated
in [51, Theorem 2.4.5] and [13, Lemma 3.1] (in this paper the neighborhood being
taken for the Mackey topology). Condition (ii) is, practically, [35, Theorem 23.4]. In
[7, Corollary 5.6] it is shown that/ is continuous if (iii) or (iv) holds and Xo = X; in
[9, Theorem 1] one obtains again that/ is continuous under (iii) if Xo = X.

4. The fundamental duality formula

In [36] Rockafellar uses systematically the perturbation functions in order to derive
optimality conditions and duality formulae. This approach is also used in [5,12,13,
15,32,46,47,49-51].

In the rest of the paper X, Y, Z are separated locally convex spaces (s.l.c.s. for
short), yx denotes the class of convex neighborhoods of the origin in X and 9Sx
denotes the class of nonempty bounded subsets of X; recall that B c X is bounded if
for every V € Yx there exists X > 0 such that B c A. V.
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Let <t> 6 A(X x Z). Using the definition of the conjugate or the Young-Fenchel
inequality, we have

Vx eX, z* € Z* : <t>(x, 0) > -cD*(O, z*),

whence

inf{<t>(x,0)\x eX}> sup{-<D*(0,z*) | z* e Z*}.

In convex analysis the relation

inf{<D(;c, 0) | x € X] = max{-<D*(0, z*) I z* e Z*) (4)

is fundamental. So, it is very important to have sufficient conditions which ensure the
validity of (4). Usually one considers the family of convex minimization problems

,z), xeX,

for z & Z, and the corresponding marginal (or value) function

It is known, and simple to prove, that h is convex, dom h = Prz (dom <t>) and
h*(z*) = ®*(0, z*) for every z* € Z*. In the sequel we shall suppose that 0 e dom h,
or equivalently, 0 e Prz(dom<t>). In this situation h(0) 6 R or h(0) = — oo. Recall
that if the convex function / : X ->• R takes the value -oo then / is identically —oo
on '(dom/) and/* is identically +oo on X*. Therefore (4) holds if h(0) = -oo. If
/i(0) € R, (4) is equivalent to h(0) = -h*(z*) for some z* € Z*, that is, 3/i(0) ^ 0.
Before stating the next theorem we introduce an hypothesis on sets (in product spaces)
which is intermediate between cs-closedness and cs-completeness. Let A C X x Y;
we say that A satisfies (Hx) (the letter x refers to the variable x) if

I V^")"2i c [0, oo), ((*„, vn))n21 c A with £„>, kn = l, J2n>i x"yn = y,

\ (ELi x***)n>i a Cauchy sequence, 3x = £„>, Xnxn and (x, y) e A.

Recall that / 6 A(X) is quasi-continuous (see [21, Definition 1.7.3], [24, Def-
inition 7.6.3], the last one under the name of rf-quasi-continuity) if aff(dom/) is
closed with finite codimension and / |aff(dom/) is continuous at every x e rint(dom/),
supposed to be nonempty.

In the next theorem we state several sufficient conditions for the fundamental duality
formula (4).

THEOREM 3. Let O € A(X x Z) be such that 0 € Prz(domcD). Consider Zo =
span (Prz(dom 4>)). Each of the following conditions is sufficient for (4) :
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(i) there exists A.o € R such that {z € Z | 3 x e X, <f>(x, z) < A.o} € yZo;
(ii) there exists x0 e X such that (x0, 0) € dom 4> and <P(xQ, •) is continuous at 0;

(iii) dim Zo < oo and 0 € '(Prz(dom 4>));
(iv) X is a Frechet space, <P € T(X x Z) andO € '*(Prz(dom<!>)) ;
(v) X, Z are metrizable, 0 e ">(Prz(dom <$>)) ana" epi <t> satisfies (Hx);

(vi) X, Z are Frechet spaces, <J> € T(X x Z) anrf 0 € lc(Prz(dom # ) ) ;
(vii) r/iere exists x0 € X such that <t>(x0, •) is quasi-continuous and {0} and

Prz(dom <f>) are united.

PROOF, (i) says that the marginal function h satisfies condition (i) of Proposition 1.
Therefore (4) holds.

(ii) =» (i) Of course, if (ii) is satisfied then Za = Z and (i) holds with Xo =
4>(*o,O) + l.

If (iii) is satisfied then h satisfies condition (ii) of Proposition 1 (so (i) holds).
If (iv) holds, taking <J>0 : X x Zo -»• R, <J>0(x, z) = $>(x, z), the conditions of

[46, Theorem 4.3] are satisfied. Therefore (i) is valid (even the stronger condition (5)
below).

(v) is slightly stronger than the hypotheses of [50, Proposition 3]; therefore the
conclusion holds.

(vi) => (iv) and (vi) => (v) are obvious.
(vii) =>• (i) By [21, Proposition 1.7.4] or [24, Proposition 7.6.4], h is quasi-

continuous, and so rint(dom h) ^ 0. Since {0} and dom h are united, the discussion
from the end of Section 2 shows that 0 e rint(dom h), and so h\Zo is continuous at 0,
that is, (i) holds.

REMARK 2. Condition (ii) may be found in almost all books and articles dealing
with perturbation functions. See, for example, [21, Theorem 1.7.1], [24, Theorem
7.6.1], [15, Proposition 2.3], [36, Theorem 18(a)]. Condition (vii) is stated by Joly
and Laurent [21, Theorem 1.7.7] (see also [24, Theorem 7.6.7]) for <I> l.s.c, and
by Moussaoui and Voile [28, Theorem IV. 1] for arbitrary <1>; note that in [21,24]
there are also other conditions implying (vii)]. Condition (iii) is explicitly stated in
[36, Theorem 18(b)] for Zo = Z, in [21, Theorem 1.7.9], [24, Theorem 7.6.9] for
dimZ < oo and in [51, Theorem 2.6.5 (iv)]. Condition (i) with Zo = Z is [36,
Theorem 18 (a)], and, in the present form, may be found in [51, Theorem 2.6.5 (i)]
and [13, Theorem 3.2]. As mentioned in the proof, condition (iv) is established in
[46, Theorem 4.3] for Zo = Z (and R replaced by a s.l.c.s. ordered by a normal cone),
while condition (v) is given in [50, Proposition 3]. Condition (vi) seems to be first
used, in the present form, in [49, Theorem 6]. It is obtained again by Jeyakumar [18,
Proposition 3.1]; he uses sqri (Pz(dom 4>)) instead of lc(Prz(dom <!>)), but these sets
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coincide. For X and Z Banach spaces and Zo = Z condition (vi) is established by
Rockafellar [36, Theorem 18 (c)] for X reflexive, and Robinson [32, Corollary 1]; it
is also obtained in [4, Theorem 3.1], and [6, Theorem A2].

REMARK 3. Note that every convex function / : Z ->• R may be viewed as a
marginal function; just take X = {0} and 4> : X x Z -*• R, <$(x,z) = f(z).
Therefore every condition from Theorem 3 gives a subdifferentiability criterion. The
new ones (in comparison with Proposition 1) are given by: epi / is cs-closed and
0 € '*(dom/), and / is quasi-continuous and {0} and dom/ are united (in particular
if 0 e qri(dom/))2 . The last situation, even not explicitly stated, can be found in
[21,24].

In applications it is important to have conditions on 4> which ensure that also the
functions 4>, <&(x, z) = <J>(x, z) — (x,x*) with** e X*, satisfy them. Such conditions
are (ii)-(vii) from Theorem 3.

Other conditions of this type are:

3k0 g R, x0 6 X, V U € rx : {z € Z | 3x e x0 + U, <t>(x, z) < Xo} e rZo, (5)

3k0 e R, B € Slx, Vo e rZo : Vo C {z e Z | 3 * e B, <t>(x, z) < k0], (6)

V f / e r x , 3A. > 0 : { z e Z \3xeXU, < P ( x , z ) < V e ^ , (7 )

where, as in Theorem 3, Zo = span (Prz(dom
Condition (5) (for Zo — Z and R replaced by a s.l.c.s. ordered by a normal cone)

is stated in [46, (4.2')], while condition (6) is stated in [51, Theorem 2.6.5 (i')].
Condition (7) is inspired by the conditions used in [13].

PROPOSITION 4. Let <t> € A(X x Z). Then (5) <£• (7) =K6), and (6) =» (7) j /X is
a normed vector space.

Conditions (i)-(vi) being those of Theorem 3, we have: (ii) => (6), (vi) =* (iv) =>
(5), (iii) =• (6) and (vi) =» (v) =>• (i).

Moreover, taking D = Prz(dom<I>), one /ww: i/dim(spanD) < oo then 'D =
rint D; if® is l.s.c, X is a Frechet space and ibD # 0 then ibD = rint D; if® is l.s.c,
X,Z are Frechet spaces and icD / 0 f/ien /cD = rint D.

PROOF. (5) =>• (7) Consider A.o e R and x0 € X given by (5). Let U e >i- There
exists ju > 0 such that x0 € nU. Let V = {z e Z \ 3x € x0 + U, <£>(x, z) <
•̂o} e "̂ zo- Taking A. = max{A.o, M + U and z € V, there exists JC e x0 + U such that

<*>(*> z) < -̂o- ASJC 6 x o + ( / C M ^ + f/ = ( / i + l ) f / C A.{/, the conclusion follows.

2This is related to referee's remark: "in [28], Moussaoui and Voile proved that 9/ (0) is non void
assuming that/ is quasi-continuous with 0 e qri(dom/)".
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(7) => (5) It is obvious that there exists x0 £ X such that <J>(x0,0) < oo. Consider
A.o = max{<t>(x0, 0), 0} + 1 and let U e fx. There exists Uo e Vx symmetric such that
Uo+ Uo C U. There exists A.[ > 0 such that x0 € X{ Uo. By hypothesis, there exists
A. > Xo + A., such that Vo = [z e Z | 3x e XU0, <t>(x, z) < X] e yZo. Let V = A."1 Vo

and take z e V. As A.z e Vo, there exists ;t' e A f/0 such that $ (* ' , A.z) < A.. It follows
that

<D ((1 - A.-')(x0, 0) + A . " V , A.z)) < (1 - A.-')<t>(x0, 0) + X~l<i>(.x', Xz) < Xo,

whence <i> (x, z) < Xo, where x = x0 + A."1 (x' — x0) € x0 + Uo + Uo C x0 + U.
(6) =» (7) Let f/ e yx\ there exists ^ > 0 such that B <z ixU. Taking A. =

max{A.o, /i) we have that

{zeZ\3x eB, <t>(x, z) < Xo} c {z e Z \ lx € fiU, <t>(x, z) < Xo]

C{zeZ\3x eXU, <D(JC,Z) < A.}.

The conclusion follows.
(7) =$• (6) when X is a normed vector space. Take U = Ux = {x € X | \\x\\ < 1}.

There exists A.o > 0 such that {z e Z \3x € X0U, <i>(x, z) < Xo] e VZo- As A.of/ is
bounded, the conclusion follows.

It is obvious that (ii) implies (6) with B = [x0], while (vi) => (iv) is evident. As
observed in the proof of Theorem 3, (iv) =^ (5). The implication (v) => (i) is shown
in the proof of [50, Proposition 3].

Suppose that dimZ0 < oo and 0 € '(Prz(dom<I>)). It follows that there exist
Z\,. • • , zm € Prz(dom<I>) such that Vo = conv{z,, . . . , zm] € yZo. For every i,
1 < i < m, there exists JC, € X such that (*,-, z,) e dom <J>. Let A.o = max{4>(x,, z,) |
1 < i < m) and B = conv{;ci,... , xm). It is obvious that B is bounded and for
z e Vo there exist A.,,... , Xm > 0 with £™=1 A., = 1 such that z = £7=i XtZi. Then
x = ^7=i hxi € B and Q>(x, z) < A.o. Hence (iii) => (6).

The fact that 'D = rint D if dim(span D) < co is obvious. Let 4> be l.s.c, X be a
Frechet space and consider zo e ibD. Taking <J>0 defined by <&0(x, z) = <£>(*, z + Zo),
we have that 0 6 ' ' 'Prztdom^o). Of course 4>0 verify (iv) of Theorem 3. As
remarked above, condition (5) holds, which implies that 0 e rint (Prz(dom <t>0)), that
is, zo € rint D. Similarly one obtains the other relation.

We state another duality formula which will be useful in the sequel.

THEOREM 5. Let F e A(X x Y), srf C X x Y a nonempty convex set, and let
D = U[*/(x)-y | (x, v) € dom F), wheres*{x) = {y € Y | 3x € X, (x, y) e a/}.
Assume that 0 € D and let Yo = span D. If one of the following conditions holds:

(i) for every U e % there exist X > 0 and Vo € VYo such that

{0} x Vo C rfn (XU x Y) - [F < X];
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(ii) there exist Xo e R, B e SBX and Vo e yYo such that

(0}x V 0 C ^ n ( i i x Y)-[F<X0];

(iii) dim Yo < oo andO € 'D;
(iv) there exists (x0, yo) € J2/ H dom F such that F(x0, •) is continuous at y0',
(v) X, Y are metrizable, [(F is cs-complete and s# is cs-closed) or(F is cs-closed

and £/ is cs-complete)] and 0 e lbD;
(vi) X, Y are Frechet spaces, F is l.s.c, srf is closed and 0 e lbD,

then there exists z* € Y* such that

M{F(x, y) | (x, y)€tf} = inf{F(;c, y) + (z, z*> I (*, y + z)

PROOF. Let Z = y and

r.z)\
loo otherwise.

It follows easily that <t> is convex and Prz(dom 4>) = D. It is obvious that the conclu-
sion of the theorem is equivalent to inf(jcy)eXxY *(•*. y\ 0) = maxz.eZ« —4>*(0, 0; z*).
So we have to show that if one of the conditions of the theorem is verified then a
condition of Theorem 3 holds.

If (i) holds it is immediate that <i> verifies condition (i) of Theorem 3. The impli-
cation (ii) =» (i) is obvious. Similar to the proof in Proposition 4 we have that (iii)
=• (ii). We have also that (iv) =>• (ii); just take B = {x0}, ^o = F(x0, y0) + 1 and
Vo = [y 6 Y | F(jc0, yo + y) < *o} (in this case Yo = Y).

If (vi) holds, it is clear that <J> satisfies condition (iv) of Theorem 3. By Proposition
4 it follows that relation (7) holds. Therefore for U x Y e f/x Y there exist X > 0 and
V € yYo such that

Vc{z€ Y | 3(x,y)ekUx Y, 4>(x,y;z) < X]

= [z e Y | 3 * e XU, (x,y + z)es/, F(x, y) < X],

which means that (i) holds.
If (v) holds then the conclusion is given by [50, Proposition 5].

Note that every condition of the preceding theorem is verified by F, F{x,y) =
F{x, y) — (x, x*), where x* € X*, when it is verified by F. Conditions (i) and (ii) are
inspired by the conditions used in [13].

Taking J / = X X ( 0 ) , the conclusion of the preceding theorem is just the conclusion
of Theorem 3. Conditions (i), ii), (iii) and (iv) become (7), (6), (iii) and (ii) of
Theorem 3, respectively; to conditions (v) and (vi) correspond slightly stronger forms
of conditions (v) and (vi) of Theorem 3, respectively.
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REMARK 4. If F(x, y) = f (x) + g(y) with / <= A(X), g e A(K), for condition
(i) of Theorem 5 it is sufficient (and necessary if/, g have proper conjugates) to have

v u e rx, 3k > o, v € yYo -. vc [g < A] - ^ ( A f / n [ / • < xj),

while for condition (ii) of Theorem 5 it is sufficient (and necessary if/, g have proper
conjugates) to have

3X0 6 R, B € ^ x , Vo € n 0 : Vo C [g < Ao] - tf(B D | /

Of course, these two conditions are equivalent if X is a normed space.

5. Generalized Fenchel-Rockafellar duality

In control problems appear functions of the type: x i-> F(x,Ax), where F :
X x Y -*• R is a convex function and A € ^f(X, Y). It is important to have formulae
for the conjugate and £-subdifferential of <p{ : X -> R, <pi(;t) = F(x, AA:). Such
functions are considered, for example, in [15, Section 3.4], [3, Section 5.2].

THEOREM 6. Let F e A(X x Y), A e J?(X, Y) and(px defined above. Assume that
0 e D = {Ax — y | (x, y) € dom F] a/u/ rate Ko = span D. If one of the following
conditions holds:

(i) there exist Xo e R, Vo e ^KO(O) and B € 38X such that

{0}x V0c{(x,Ax)\xeB}-[F<\0];

(ii) /or every U e % there exist X > 0 a«rf V 6 ^ 0 SMC/I that

{0} x V c {(*, Ax)\x ekU}-[F< A.];

(iii) dim Ko < oo and Oe 'D;

(iv) f/iere exww x0 € X such that (x0, Ax0) € dom F and F(x0, •) is continuous at
Ax0;

(v) X is a Frechet space, F € V(X x Y) and 0 6 '*D;
(vi) X and y are metrizable, [(F is cs-closed and gr A is cs-complete) or F is

cs-complete] andO € lbD;
(vii) X and Y are Frechet spaces, F € F(X x Y) and 0 € icD,

then

inf{F(x, Ax)\x eX} = max{-F*(A*y*, -y*) | y* e T} (8)

VJC* € X* : tf (*•) = min{f(jc* - A*y\ y*) \ y* e T ) , (9)

Vx e dom<p,, e > 0 : de<px{x) = {A*y*+x* | ( J C * , / ) e 3£F(A:,AA:)}. (10)
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PROOF. Consider 4> : X x Y -> R, 4>(x, y) = F(x, Ax - y). Then $ satisfies
one of the conditions (6), (7), (ii)-(vi) of Theorem 3 when F satisfies one of the
conditions (i)-(vii), respectively. Applying Theorem 3 for the application (x, y) H>
®(x,y) — (*>**)> one obtains (9). For (10) one uses the characterization of de<p\ (x) :
x* € de(P\(x) if and only if* € dom^i and<pi(x) +<p*(x*) < (x,x*) +e.

Note that the conclusion of the theorem [excepting (v)] follows also from Theorem
5 for F replaced by F — x* and a/ replaced by gr A.

Note also that (iii) =• (i) =>• (ii), (iv) => (i), (vii) =• (v) =>• (ii) and (vii) => (vi).

REMARK 5. Condition (iv) is used by Ekeland and Temam in [15, Theorem 4.1] to
obtain (8), by Tiba [42] [for X, Y reflexive Banach spaces and F l.s.c] and Zalinescu
[45] to obtain (10) for £ = 0. Condition (vi) is used in [50, Corollary 2] to obtain (9).
Condition (vii) (with Yo = Y) may be found in [47, Theorem 4 (9)] and conditions (i),
(iii), (iv), (vii) (in Banach spaces) are considered in [51, Theorem 2.7.1] for the same
conclusions.

PROPOSITION 7. Let F e A(X x Y), A e S£(X, Y) and D = {Ax - y \ (x, y) e

dom F}. //"dim(span D) < oo then 'D = rint D; ifX is a Frechet space, F is l.s.c.
and ibD ^ 0 then ibD = rint D; ifX, Y are metrizable, [(F is cs-closed and gr A is
cs-complete) or F is cs-complete] and lbD ^ 0 then lbD = rint D; ifX, Y are Frechet
spaces, F is l.s.c. and icD ^ 0 then icD = rint D.

Moreover, suppose that X, Y are Banach spaces and F € T{X x Y). Then

ic{Ax - y | (x, y) e dom 3F) = ri{Ax -y\(x,y)e dom dF] = icD =riD,

while if one of the above sets is nonempty then

[Ax -y | (x,y) € domdF] = ic{Ax -y \ (x,y) edom3F) = D.

In particular, if icD ^ 0 then the sets ic{Ax - y \ (x,y) e dom3F} and
{Ax — y | (x, y) € dom dF} are convex.

PROOF. The first part follows from Proposition 4 taking <t>(x, y) = F(x, Ax — y).
Suppose that X, Y are Banach spaces, F e F(X x Y) and consider E = {Ax — y \
(x, y) e domdF}. By Br0ndsted-Rockafellar theorem (see [30, Theorem 3.18]) we
have that dom F C dom 3 F. Hence

E C D c[Ax-y \(x,y) € dom3F}.

It follows that aff E c aff D c aff E. Therefore, if aff E is closed then aff D
is closed, and the above relation shows that icE c icD (= ri D). Let us show
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the converse inclusion. Let y0 e icD and consider the function Fo e V(X x Y),
Fo(x< y) = F(x, y — yo). Of course, dom Fo = dom F + (0, y0) and dom3F0 =
domdF + (0,y0). Therefore 0 e IC(Pry(domFo)). Taking <po(x) = F0(x,Ax),
<p0 G r(X). Hence dom 3^0 7̂  0, which shows, by the preceding theorem, that there
exists x such that dF0(x, Ax) = dF(x, Ax — y0) ^ 0. Therefore y0 € E. So we
obtained that 'D = icD C E C D, which shows that aff E = aff D and 'D C '£. It
follows that 'c£ = icD = rint £.

Suppose that ICD ^ 0 (for example). From what was proved above, we have that

rintD = lD = icD = rint£ = 'E = icE C E c D C £.

Hence £ = icE = D. The conclusion follows.

REMARK 6. Taking into account the preceding proposition, for X, Y Banach spaces
and F e T{X x Y), we may add to the sufficient conditions in Theorem 6 the following
conditions:

0 e ri{Ax -y\(x,y)e dom8F) ,

0 &ic{Ax -y\(x,y)€ dom3F},

0 £ic{Ax -y\(x,y)e conv(dom3F)},

and

Yo = cone{Ax —y\(x,y)e dom dF} is a closed linear space.

Indeed, the first three conditions are, evidently (using the preceding proposition),
equivalent to 0 € ic{Ax — y \ (x, y) e dom F}. In the fourth case Yo = aff {Ax — y \
(x, y) e dom 3F}, and therefore 0 e ic{Ax - y \ (x, y) e dom F).

6. Fenchel-Rockafellar duality

Consider now the case when F from the preceding section has separated variables.

THEOREM 8. Letf e A(X), g e A(Y) and A e Sf(X, Y). Assume that dom/ D
A~'(dom^) ^ 0 and let Yo = span (A(dom/) — domg). Consider (fo € A(X),

= f (x) + g(Ax). If one of the following conditions holds:

(i) there exist k0 e R, B € SBX and Vo e %a such that

Vo C A (\f < ko] nB)-[g< Xo];
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(ii) for every U € % there exist A. > 0 and V € VY0 such that

VcA(\f <k]r\kU)-lg<X]\

(hi) dim Yo < oo andO e '(A (dom/) — domg);
(iv) there exists x0 e dom/ fl A"1 (dom g) such that g is continuous at Ax0;
(v) X is a Frechet space, f, g are l.s.c. and 0 e ib(A (dom/) — dom g);

(vi) X, Y are metrizable, / , g have proper conjugates, [(/, g are cs-closed and
gr A is cs-complete) or f, g are cs-complete] andO € '*(A(dom/) — domg);

(vii) X, Y are Frechet spaces, / , g are l.s.c. and 0 e /c(A(dom/) — domg) ;
(viii) Y = R", qri(dom/) ^ 0 and A (qri(dom/)) n 'dom g ^ 0,

then

g(Ax)\xeX}=mzx{-f*(A*y*)-g*(-y*)\yt e Y*}, (11)

Vx* € X* : <p*2(x*) = min{/*(x* - A*y*) + g*(y*) | y* € Y*), (12)

s > 0 : 3£^2(x) = ( J (dej (x) + A* (de2g(Ax))) .

(13)

PROOF. Consider F : X x y -> R, F(x, y) = / ( x ) + g(^). It is obvious that
F is l.s.c. if and only if/ , g are l.s.c, dom F = dom/ x domg, F*(x*,y*) =

/*(*•) + rC?*) and 3,F(*,y) = U1,«I>0.,1.w1=,3.I/(*) x ^^Cy)- I{ i s e a sy t o

see that if one of the conditions (i)-(vii) holds then the corresponding condition from
Theorem 6 is verified. If (viii) holds, using the properties of the intrinsic core in
finite-dimensional spaces and [10, Proposition 2.10] (recalled in Section 2), we have

'(A(dom/) - domg) = '(A(dom/)) - '(domg) = A(qri(dom/)) - '(domg),

and so (iii) holds too. The conclusions follow.

REMARK 7. As in Theorem 6, we have that (iii) => (i) =• (ii), (iv) =>• (i), (vii) =>
(v) =» (ii), (vii) => (vi), and of course, as mentioned in the proof, (viii) => (iii).

Note that conditions (i) and (ii) of Theorem 6 for F(x, y) = / (AT) + g(y) imply
conditions (i) and (ii) of Theorem 8, respectively, if/ and g have proper conjugates.
Indeed, let / (x) > (x, x*) + a for x € X and g(y) > {y, y*) + $ for y e Y, where
x* e X*, y* e r , o , ^ e R are fixed. Take Uo - {x e X | |(JC,JC*)| < 1} and
Vo = {y e F | |(y, y*)\ < 1}. Assume that condition (ii) of Theorem 6 holds. Let
U € * i , and take U' = UH Uo; there exist A.' > 0 and V̂ ' € rKo such that

{0} x V C {(*, AJC) I JC € A'f/'} - [F < A.'].
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Lety e V0C\ V; there exist* e k'U', u e dom/, v e domg such that/ (u) + g(v) <
k' and (0, y) = (x, Ax) — (M, V). Hence x — u and y = Ax — v. It follows that

g(v) < k' - f (x) < k' - {x,x*) - a < k' + I - a,

and

/ (x) <k'- g(v) <X'-(v,y*)-p<k'+l- p.

Taking k - max{A/, k' + 1 - a, k' + 1 - 0} and V = VonV & yYo, we have that (ii)
of Theorem 8 holds.

In a similar way one obtains that (i) of Theorem 8 holds if (i) of Theorem 6 does.

REMARK 8. All the statements of Proposition 7 hold for the corresponding hy-
potheses; in this case D = A (dom/) — domg, F l.s.c. is replaced by / , g l.s.c, F
cs-closed (cs-complete) is replaced by / , g have proper conjugates and are cs-closed
(cs-complete) and dom dF is replaced by dom 3/ x dom dg.

REMARK 9. The conclusions of Theorem 8 (with e = 0) are stated by Rockafellar
[34] using condition (iv). Conditions (iv) and (vii) [for X, Y Banach spaces, X
reflexive and Yo = Y] are used by Rockafellar [36, Example 11'] for the Fenchel-
Rockafellar duality formula (11). Condition (iv) is used also in [15, Remark 3.4.2],
[5, Theorem 3.2.4] and [41, Proposition 3.2] [with R replaced by an ordered space] for
(11). The same formula is obtained under a condition stronger than vii) by Aubin [3,
Theorem 14.1.3] [forX, Y reflexive Banach spaces and 0 € int(A(dom/) — domg)],
by Borwein [8, Theorem 8.1] [for Yo = Y] (see also [48]), by Attouch and Brezis [1,
Corollary 2.3] [for X, Y Banach spaces and Yo = Y], by Cominetti [14, Theorem 2]
[for X, Y Banach spaces and Yo = Y], by Aze [4, Theorem 3.2] [for X, Y Banach
spaces] and by Gowda and Teboulle [16, Theorem 3.5 and p. 931]. Rodrigues and
Simons [38, Theorem 6] and Rodrigues [37, Theorem 2.5, Corollary 3.1] use condition
(vii), while Simons [39, Theorem 5] uses a stronger form of (vi) [f, g cs-convex, X, Y
Frechet spaces and 0 € ic(i4(dom/) - domg)] to obtain (12) and (13) (with e = 0);
Combari, Laghdir and Thibault [12, Corollary 4.16] use conditions (iv) and (vii), while
the same authors in [13, Corollary 4.6] use (ii) for the same conclusions. Conditions
(i), (iii), (iv) and (vii) [for X, Y Banach spaces] are used in [51, Theorem 2.7.3].

In [36, p. 50], it is suggested that (11) (with x € D(A) and y* € D(A*)) is also
valid if X, Y are reflexive Banach spaces, / e T(X), g eT(Y),A: D(A) C X -> Y
is a densely defined linear operator with closed graph and 0 e ( / l (dom/) — dom g)'.
Applying [8, Theorem 8.1], (11) would be true even if X, Y are Frechet spaces. The
following example shows that this is not true.
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Let X = Y = e2 and A : D(A) c i2 ->• I2, A(x) = (xu 2x2,... , nxn,...), where
D(A) = [x = (xux2,...) € I2 | (xu2x2,... ,nxn,...) € I2}; it is easy to see that
A is a densely defined linear operator with closed graph and A* = A. Consider also
x = ( 1 , 1 / 2 , . . . , 1 / B , . . . ) 6 i 2 \ D ( A ) , f e r ( t 2 ) , f ( x ) = t i f x = t x , = o o
otherwise, and g = 0. It is clear that all the above conditions are verified, but

inf{f (x) + g(Ax) \ x € D(A)} = inf{f(x)\xe D(A)} = / ( 0 ) = 0,

while

sup{- /*(AV) - 8*i~y*) I y" e D(A*)} = - /* (0) ,

because domg* = {0}. As - /*(0) = inf{/(;t) | x e £2} = -oo , the Fenchel-
Rockafellar duality formula does not hold in this case.3

When / = 0 it is possible to establish similar results to those in Theorem 8 for
A a densely defined linear operator with closed graph. The next theorem is stated
even for A replaced by a convex process &/. We recall that for the convex process
£/ C X x Y (that is, srf is a convex cone), its adjoint is the (closed) convex process
tf* = {(y^x*) e Y* x X* | (-**,/)

THEOREM 9. Let g e A(Y) and si C X x Ya convex process. Assume thatO € D,
where D = srf(X) — domg, and consider Yo = spanD. If one of the following
conditions holds:

(i) for every U € Yx there exist X > 0 and V € yYo such that V c [g <

(ii) tfiere? exist XoeR, B e&x and Vo € Vr<) such that V c [g < A.] -
(iii) dim Ko < °o and 0 € '£>;
(iv) r/iere exu^ x0 e ^/~'(domg) such that g is continuous at some point in

(v) X, Y are metrizable, g has proper conjugate, [(g is cs-closed and &/ is cs-
complete) or (g is cs-complete and si verify (Hx))] and 0 6 ibD\

(vi) X, Y are Frechet spaces, g is l.s.c, &/ is closed and 0 6 ibD,

and<pi : X -> R, (p3(x) = inf{g(y) \ y € s/(x)}, then

Vx* e X* : <p;(x*) = min[g\y*) \ y* € s/(x*)).

Moreover, ifx € dom^3 = ^" ' (domg) is such that <pi(x) — g(y) with y e &/(x),
and s > 0 then d£(pi(x) C si* (deg(J)) (with equality if si is a linear subspace).

3 As observed by the referee, the preceding counterexample works for an arbitrary densely defined and
closed linear operator A : D(A) c X - » Y, g = 0 and / defined similarly for x e X \ D(A).
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PROOF. Taking F(x, y) = g(y) in Theorem 5, perturbed with x* e X*, one obtains
the expression of <p\(x*). For obtaining 3£^3(J) one uses the standard argument.

Note that (iii) => (ii) =• (i), (iv) => (ii), (vi) =>• (i) and (vi) =>• (v).
Generally, the conclusions of the preceding theorem, for &/ = grA with A e

3f(X, Y), is obtained applying Theorem 8 taking/ = 0 (see Remark 9 for references),
or directly using condition (iv) (in infinite-dimensional spaces) and condition (iii) in
finite-dimensional spaces. In the next remark we do not refer to that situations. Note
that in [36] and [17] are used other conditions, too.

REMARK 10. The formula for q>l(x*) under condition (v) is obtained in [50, Propo-
sition 7]. Let srf = grA with A a densely defined linear operator with closed graph.
Rockafellar [36, Theorem 19(c)] obtains the results (with e = 0) under condition (vi)
[for X, Y Banach spaces, X reflexive and Yo = Y], while Hirriart-Urruty [17, Theorem
2.2] obtains them under (vi) [for X, Y Banach spaces and Yo = Y]\ Aze [4, Theorem
2.1] uses condition (ii) to obtain <p^(x*) [for X, Y normed spaces and Yo = Y]. For
A € J?(X, Y), condition (vi) is used by Penot [29, Theorem 3.7] to obtain 3<p3 [for
X, Y Banach spaces and Yo = Y], Zalinescu [46], [47, Theorem 4 (8)] [for Yo = Y],
by Rodrigues [37, Theorem 2.3] to obtain (p$(x*) [for ">D replaced by ieD]. When
A : X -*• Y is linear with complete graph the conclusions of the theorem (with e = 0)
are obtained under variants of (v) by Rodrigues and Simons [38, Corollary 4] [for Y
a Frechet space, g l.s.c. and lbD replaced by ICD] and by Simons [39, Theorem 4] [for
g cs-convex].

7. Fenchel duality formula

In this section we are interested in duality, conjugate and e -subdifferential for the
sum of two convex functions. The main result is the following.

THEOREM 10. Let f,g € A(X). Assume that dom/ n domg # 0 and let Xo =
span (dom/ — domg). If one of the following conditions holds:

(i) there exist X.Q € R, B e SBX and Vo e YXo such that

Vo C [f < Xo] n B - [g < koy,

(ii) for every U e Vx there exist A. > 0 and V € yXo such that

vclf <x]nxu-[g<xy,

(iii) dimX0 < oo andO e '(dom/ — domg);
(iv) there exists x0 € dom/ D dom g such that g is continuous at x0;
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(v) X is a Frechet space, f,g e T(X) and 0 e '*(dom/ - dom g);
(vi) X is metrizable, / , g have proper conjugates, f is cs-closed, g is cs-complete

andO e '*(dom/ - domg);
(vii) X is a Frechet space, f,g€ r ( X ) andO e i c (dom/ — domg);

(viii) X is a Banach space, f,g € T(X) and 0 e /c(dom df - dom dg);
(ix) g is quasi-continuous and d o m / and dom g are united,

then

inf{/(*) + g(x) \xeX}= max{-/*(x*) - g*(-x*) | x* e X*} (14)

V** e X* : {f + gnx*) = min{f*(x* - y*) + g*(y*) | y* e X*}, (15)

and

Wx e dom/ n domg, £ > 0 : de(f + g)(x) = \J (dcj(x) + deig(x)).

(16)

PROOF. Taking A = Idx, the conclusion follows from Theorem 8 under conditions
(i)-(v) and (vii). When X is a Banach space conditions (vii) and (viii) are equivalent
by Proposition 11 below. If (vi) or (ix) holds, taking Y = X and <E>(x, y) = f (x) +
g(x — y), condition (v) or (vii) (respectively) of Theorem 3 is verified.

Note that (iii) =>• (i) => (ii), (iv) =>• (i), (vii) => (v) => (ii) and (v) =» (vi).
Generally, the conclusions of the preceding theorem are obtained using condition

(iv) (in infinite-dimensional spaces; see [24,27,33], etc.) and condition (iii) in finite-
dimensional spaces. In the next remark we do not refer to that situations. Note that in
[36] and [17] are used other conditions, too; see also [48, Proposition 1].

Ponstein [31, Theorem 3.14.20] obtains (14) using the condition: X is a Banach
space, ri(dom/) D ri(domg) ^ 0, whence Xt = aff(dom/) and X2 = aff(domg)
are closed, / | x , , g\x2

 aie (upper semi-) continuous on ri(dom/) and ri(domg),
respectively, and X i +X2 is closed. This condition is stronger than (ii) [or, equivalently,

(i)].
Indeed, let x0 € ri(dom/) n ri(domg). Using a standard argument, one may

assume that x0 = 0, and so Xi and X2 are closed linear subspaces, as well as
Xo — X\ — X2 = span(dom/ — domg). By hypothesis, there exist p, k > 0 such
that

pUxnXiClf <k], puxnx2c[g<k\.

As T : X\ x X2 ->• Xo, T(xx, x2) = x{ +x2, is linear and continuous and Xx x X2, Xo

are Banach spaces, there exists r) > 0 such that Xo D rj Ux C X, D p Ux - X2 D p Ux-
It follows that Xo n t) Ux C [f < A.] n p Ux - [g < A.] n p Ux. Therefore (ii) holds.
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REMARK 11. Condition (ix) is used by Joly and Laurent [21, Proposition 2.1.6] (see
also [24, Proposition 7.8.5]) for (14); it seems that (ix) is used by Joly [20] for (15) (see
[26]). Note also that Mentagui [26, Proposition 3.1] shows that 0 e lc(dom/ — domg)
if X is a Banach space and (ix) holds. Condition (vii) is used by Rockafellar [36,
Theorem 20 (c)] (under an equivalent form) [for X a reflexive Banach space and Xo =
X], Penot [29, Theorem 3.6], Zalinescu [47, Theorem 4 (15)] [for Xo = X], Attouch
and Brezis [1, Theorem 1.1 and Corollary 3.1] [for X a Banach space], Zalinescu [50,
Corollary 4], Rodrigues and Simons [38, Corollary 7], Combari, Laghdir and Thibault
[12, Corollary 4.16]; a stronger form of (vi) [X a Frechet space, / , g cs-closed and
0 e lc(dom/ — domg)] is used by Simons [39, Corollary 6], condition (vi) is used
in [45, Corollary 1], condition (viii) is used in [2, Theorem 4.2] [for X a reflexive
Banach space], while condition (ii) is introduced by Combari, Laghdir and Thibault
[13, Corollary 4.7] for (15) and (16) with e = 0; Jeyakumar [18, Lemma 3.1] uses
(vii) for the Fenchel duality formula (14). Condition (i) was first used by Aze [4,
Corollary 2.2] [for X a normed space under the form: there exist s, r, k > 0 such that
sUx C[f < k] n rUx - [g < k] D rUx] for obtaining (15). Conditions (i) and (vii)
[for X Banach spaces] are used in [51, Theorem 2.7.3].

PROPOSITION 11. Letf,g e A(X) and take D = dom/ — domg. If dim(spanD)
< oo then 'D = rintD, while if X is metrizable, f, g have proper conjugates, f is
cs-closed, g is cs-complete and ibD ^ 0 then ibD = rint D.

Suppose that X is a Banach space andf, g e T(X). Then for every x € lbD there
exist rj, A > 0 such that

[f < X] nkUx - [g < X] <lkUx. (17)

Moreover, taking E = dom 3/ — dom dg, we have

icE = ri E = lc(conv E) = ri(conv E) = icD = nD,

and, if'cD is nonempty then icE = E = D.

PROOF. The first part follows from Proposition 4 taking Y = X and <J>(*, y) =
f(x) + g(x-y).

Suppose that X is a Banach space and / , g € T(X) and take x e ibD. Replacing /
by / , / (u) = / (« + x), we may suppose that x = 0. It follows that condition (vii)
of Theorem 10 holds, and, as noted after its proof, condition (i) is verified. Therefore
there exist rj > 0, k0 6 R and B e SBX such that

t)Ux naff D C[f <ko]nB-[g< k0].

https://doi.org/10.1017/S033427000001095X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001095X


374 C. Zalinescu [22]

Taking A.' > max{A.o, 0} such that B C X' Ux and A. = X' + rj we obtain that

naff D e l / < x o ] n s - [ j » <A0]n(fl

The rest of the conclusion follows from Proposition 7 taking F(x, y) = / (x)+g(y)
and A = Id*.

REMARK 12. Attouch and Thera [2, Theorem 4.10] obtain the weaker formula int
(dom/ — dom g) = int(dom 3/ - dom dg) when X is a reflexive Banach space,
while Simons [40, Theorem 36] obtains (practically) the same formula for X only
a Banach space. Note the particular case x = 0 e D' (whence aff D = X) of the
preceding proposition. In this situation from (17) one obtains Lemma 1, Theorem 3
and Corollary 4 of Simons [40], and Lemma 3.4 of Aze [4].

8. Conjugates and subdifferentials of composed
convex functions

In this section Y is ordered by a convex cone Q C Y (for yx, y2 6 Y, yx < y2 if and
only if y2 — y\ e Q). We adjoin to Y a greatest element oo getting Y' = Y U {oo} and
extend the algebraic operations and the order on J" as usually. Consider// : X —*• Y*\
dom H = {x € X | H(x) e Y], epi H = {(x, y) e X x Y \ H(x) < y}. H is convex
if epi H is convex (that is, //(AJC, + (1 - k)x2) < XH(xt) + (1 - k)H(x2) for all
X e (0, 1) and xx, x2 e X). Let g : Y -> R. We say that g is increasing on E C K if
yi, y2 € E and yj < y2 imply g(yi) < g(y2); g is increasing if g is increasing on the
whole space Y. For g and H as above, we define g o H by (g o //)(x) = g(H(x)) if
x e dom H, = oo otherwise (which amounts to say that g(oo) = oo).

In the next theorem we give formulae for the conjugate and e-subdifferential of
f +goH.

THEOREM 12. Let Y be ordered by the convex cone Q, f € A(X), H : X -+ Y'
be convex and g € A(Y) be increasing on //(dom H) + Q. Then <p4 = / + g o H
is convex. Assume that 0 € D, where D = //(dom H n dom/) — domg + Q, and
consider Yo = span D. If one of the following conditions holds:

(i) for every U e '~fx there exist A. > 0 and V € >V0 such that

V cH(XUn[f <A.]DdomH) - [g < X] + £>;

(ii) there exist k0 e R, B € SBX and Vo € VY0 such that

Vo c H (B n [f < Xo] n dom //) - [g < Xo] + Q;
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(iii) dim Yo < oo and Oe 'D;
(iv) there exists x0 € dom/ D H~l(domg) such that g is continuous at H(XQ)',

(v) X, Y are metrizable, f, g have proper conjugates, [(/, g are cs-closed and
epi H is cs-complete) or (/, g are cs-complete and epi H is cs-closed)] and 0 € ibD;

(vi) X, Y are Frechet spaces, f, g are l.s.c. and 0 € lbD,

then

Vx* e X* : <pl(x*) = min{(f + y* o H)*(x*) + g*(y*) \ y* € Q+], (18)

Ve > 0, x 6 dom^4 : d£(p4(x)

itl (f + y* o H)(x) | y* € 3£2g(//(x)) n <2+, e, + £2 = £)• (19)

PROOF. Let F(x, y) = f (x) + g(y) and ^ / = epi H; F € A(X x K) and ^ is
convex. Sincegis increasing on //(dom / / ) + £ , it follows that ̂ >4(;c) = inf{F(x,y)+
hpi H (x, y) | y € Y] for every J: € X. Hence <p4 is the marginal function associated to
the convex function F + 1^; hence (p4 is convex.

If one of the conditions (i)-(vi) is verified, then F and si satisfy the corresponding
condition of Theorem 5. As noticed after that theorem, also the perturbed function
F, F{x, y) = F(x, y) — (x,x*), satisfies the same condition. Therefore there exists
z* € Y* such that

inf (f(x) + g(y)-(x,x*))= inf (f (x) + g(y) - (x,x*) + (z, z*)).
Cr,;y)eepitf Or,y+z)eepi H

Denoting the left term by a and the right one by ft, and using again the fact that g is
increasing on //(dom H) + Q, we have

a= inf inf (f (x) + g(y) - (x,x*))
xedomH yeH(x)+Q

and

= inf
xedomH

= inf inf
xedomH qeQ.yeY

It follows that 0 = -oo if z* i Q+. If z* € Q+ then

-P= sup sup((x,x*)-f(x)-(H(x),z*)
xedomH yeY

As the inequality < holds always in (18), it follows that (18) holds.
The inclusion D holds always in (19) (see also [12, Proposition 4.4] for e = 0),

while the converse inclusion follows from (18) by a standard argument.
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REMARK 13. Combari, Laghdir and Thibault [13, Theorem 4.4, Proposition 5.4]
obtain the conclusions of the preceding theorem (with e = 0) under conditions (i)
and (vi) with tbD replaced by ICD and g increasing. The case / = 0 was considered
by several authors: Kutateladze [22,23] treats the algebraic case, Hiriart-Urruty [17,
Theorem 5.1] obtains (19) under condition (iv) [for Y = R], Zaiinescu [46], [47,
(6)], [51, Theorem 2.7.5] uses (iv) and, in [47, Theorem 4 (11)], [51, Theorem 2.7.5],
a stronger form of (vi) [instead of epi H is closed, dom H is closed and H\domH is
continuous (and Xo = X in the first reference)], Lemaire [25, Proposition 2] obtains
(19) for £ = 0 using condition (iv). Note that the general case may be obtained from
the one with / = 0.

A final remark: the conditions using >CD and D' (in Frechet spaces) are, practically,
equivalent; this is easy to see from the general approach by perturbation functions, but
no so evident for the Fenchel duality. This fact was pointed in [50, Theorem 6], but
we considered that it is not worth to detail all the situations treated in [46]. This was
the case with the continuous versions of the problems treated in [46], too; we only
sketched them in § 4 of that paper (but the details may be found in the author's thesis,
University of Iasi, 1983).
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