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Modified quantum dimensions and

re-normalized link invariants

Nathan Geer, Bertrand Patureau-Mirand and Vladimir Turaev

Abstract

In this paper we give a re-normalization of the Reshetikhin–Turaev quantum invariants
of links, using modified quantum dimensions. In the case of simple Lie algebras these
modified quantum dimensions are proportional to the usual quantum dimensions. More
interestingly, we give two examples where the usual quantum dimensions vanish but the
modified quantum dimensions are non-zero and lead to non-trivial link invariants. The
first of these examples is a class of invariants arising from Lie superalgebras previously
defined by the first two authors. These link invariants are multivariable and generalize
the multivariable Alexander polynomial. The second example is a hierarchy of link
invariants arising from nilpotent representations of quantized sl(2) at a root of unity.
These invariants contain Kashaev’s quantum dilogarithm invariants of knots.

1. Introduction

One obstruction to applications of quantum link invariants associated with a ribbon category C
stems from the fact that certain simple (irreducible) objects of C may have zero quantum
dimensions. If the dimension of a simple object V ∈Ob(C) is zero, then the quantum invariants
of all (framed oriented) links with components labeled by V are equal to zero. A well-known
topological trick allows us to derive possibly non-trivial invariants in this setting, at least in the
case of knots. Namely, one presents a V -labeled knot L as the closure of a (1, 1) tangle T and
considers the endomorphism of V associated with T . This endomorphism is the product of the
identity IdV : V → V with an element 〈T 〉 of the ground ring of C. The tangle T is determined
by L uniquely up to isotopy and therefore 〈T 〉 is an isotopy invariant of L. This invariant may
be non-trivial even when dimC(V ) = 0. Note that the usual quantum invariant of L is equal to
〈T 〉 dimC(V ).

For a link L with at least two components labeled by V , the situation is more involved
because 〈T 〉 may depend on the choice of T . In many known examples of ribbon categories, an
appropriate re-normalization of 〈T 〉 does not depend on the choice of T and yields a possibly
non-trivial invariant of L, see [ADO92, GP08b, Kas95, KS91]. A systematic explanation of this
phenomenon seems to be missing in the literature. In this paper we suggest such an explanation.
It is based on a new notion of an ambidextrous object in C. Every simple ambidextrous object
J ∈Ob(C) determines a certain set A(J) of (isomorphism classes of) simple objects of C. For all
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Modified quantum dimensions and re-normalized link invariants

simple objects V belonging to this set we define a modified (quantum) dimension depending on J .
The modified dimension may be non-zero when dimC(V ) = 0. Using the modified dimensions we
define an isotopy invariant F ′(L) for any link whose components are labeled with objects of C
under the only assumption that at least one of the labels belongs to A(J). Most of these results
extend to closed C-colored ribbon graphs (i.e. to C-colored ribbon graphs with no inputs and
no outputs).

We give three families of examples illustrating our constructions. In the first example, C is the
category of finite-dimensional Uq(g)-modules, where Uq(g) be the Drinfeld–Jimbo C(q)-algebra
associated to a simple complex Lie algebra. In this case we recover the standard Reshetikhin–
Turaev link invariants. In the second example C is the category of topologically free Uh(g)-
modules of finite rank, where g is a Lie superalgebra of type I and Uh(g) is its quantized
universal enveloping C[[h]]-superalgebra. In this case we recover the link invariants defined by
the first two authors in [GP08b, GP08a]. These invariants generalize both the multivariable
Alexander polynomial of links and Kashaev’s link invariants. In the final example C is the
category of finite-dimensional weight Uq(sl(2))-modules where q is a root of unity. We show that
our construction in this case gives a generalization of the invariants defined by Akutsu, Deguchi
and Ohtsuki [ADO92], using a regularization of the Markov trace and nilpotent representations
of Uq(sl(2)) at a root of unity. In the later two examples the standard Reshetikhin–Turaev link
invariant coming from C is generically zero.

The paper is organized as follows. In § 2 we recall the basic results on ribbon categories. In § 3
we introduce the ambidextrous objects, the modified dimensions and the invariant F ′ of closed
C-colored ribbon graphs. In § 4 we extend F ′ to arbitrary C-colored ribbon graphs (this does not
yield a functor as in the standard theory but only a quasi-functor). In § 5 we study the basic
properties of F ′. Section 6 is devoted to the presentation of examples.

2. Ribbon Ab-categories

We describe the concept of a ribbon Ab-category (for details see [Tur94]). A tensor category C is
a category equipped with a covariant bifunctor ⊗ : C × C → C called the tensor product, a unit
object I, an associativity constraint, and left and right unit constraints such that the triangle and
pentagon axioms hold. When the associativity constraint and the left and right unit constraints
are all identities we say that the category C is a strict tensor category. By Mac Lane’s coherence
theorem any tensor category is equivalent to a strict tensor category.

A tensor category C is said to be an Ab-category if for any pair of objects V , W of C the set
of morphisms Hom(V, W ) is an additive abelian group and the composition and tensor product
of morphisms are bilinear.

Let C be a (strict) ribbon Ab-category, i.e. a (strict) tensor Ab-category with duality, a
braiding and a twist. Composition of morphisms induces a commutative ring structure on End(I).
This ring is called the ground ring of C and denoted by K. For any pair of objects V, W of C the
abelian group Hom(V, W ) becomes a left K-module where the action is defined by kf = k ⊗ f
where k ∈K and f ∈Hom(V, W ). An object V of C is simple if End(V ) =K IdV .

We denote the braiding in C by cV,W : V ⊗W →W ⊗ V and duality morphisms in C by

bV : I→ V ⊗ V ∗, b′V : I→ V ∗ ⊗ V, dV : V ∗ ⊗ V → I, d′V : V ⊗ V ∗→ I.
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The trace of any endomorphism f ∈ End(V ) of an object V of C is defined by

trC(f) = d′V ◦ (f ⊗ Id∗V ) ◦ bV ∈ End(I) =K.

Define dimC :Ob(C)→K by dimC(V ) = trC(IdV ). We call dimC(V ) the dimension of V .

3. The invariant F ′ of closed ribbon graphs

Let C be a strict ribbon Ab-category with ground ring K and the set of objects Ob(C). We
assume everywhere that K is an integral domain with field of fractions F.

For any object V of C and any endomorphism f of V ⊗ V , set

trL(f) = (dV ⊗ IdV ) ◦ (IdV ∗ ⊗f) ◦ (b′V ⊗ IdV ) ∈ End(V ),
trR(f) = (IdV ⊗d′V ) ◦ (f ⊗ IdV ∗) ◦ (IdV ⊗bV ) ∈ End(V ).

An object V of C is called ambidextrous if trL(f) = trR(f) for all f ∈ End(V ⊗ V ).
The following lemma gives examples of ambidextrous elements.

Lemma 1. We have two examples of ambidextrous elements.

(1) If J is an object of C such that the braiding cJ,J commutes with any element of End(J ⊗ J),
then J is ambidextrous.

(2) If J is a simple object of C such that dimC(J) 6= 0, then J is ambidextrous.

Proof. (1) Let f ∈ End(J ⊗ J). We have trR(f) = trL(c−1
J,J ◦ f ◦ cJ,J). However, cJ,J commutes

with End(J ⊗ J) and so c−1
J,J ◦ f ◦ cJ,J = f .

(2) Let f ∈ End(J ⊗ J). We have

trL(f) =
trC(f)

dimC(J)
IdJ = trR(f). 2

Next we recall the category of C-colored ribbon graphs RibC (for more details see
[Tur94, ch. I]). A morphism f : V1 ⊗ · · · ⊗ Vn→W1 ⊗ · · · ⊗Wm in the category C can be
represented by the following box and arrows:

Wm...
��

W1
��

f
Vn...

��
V1

��

Such boxes are called coupons. A ribbon graph is formed from several oriented framed edges
colored by objects of C and several coupons colored with morphisms of C. The objects of RibC
are sequences of pairs (V, ε), where V ∈Ob(C) and ε=± determines the orientation of the
corresponding edge. The morphism of RibC are isotopy classes of C-colored ribbon graphs and
their formal linear combinations with coefficients in K. From now on we write V for (V,+).

Let F be the usual ribbon functor from RibC to C (see [Tur94]). Let TV (T−V ) be a C-
colored (1, 1)-ribbon graph whose open string is oriented downward (respectively upward) and
colored with a simple object V of C. Then F (TV ) ∈ EndC(V ) =K IdV . Let 〈TV 〉 ∈K be such
that F (TV ) = 〈TV 〉 IdV .
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Let V and V ′ be objects of C such that V ′ is simple and define the following diagram.

Lemma 2. For all simple objects U , V , W of C such that W is ambidextrous and for any
C-colored ribbon graph T with two inputs and two outputs colored by U, V ,

Proof. Recall that trL(f) = trR(f) for all f ∈ End(W ⊗W ). This implies that:

(1)

for all C-colored ribbon graphs T ′ with two inputs and two outputs all colored by W .

By definition we have

(2)

Similarly,

(3)

Then (1) implies that the left-hand sides of the above equations are equal and so the lemma
follows. 2

Applying this lemma to U = V , we obtain that if U, W are simple objects of C such that W
is ambidextrous and S′(U, W )S′(W, U) 6= 0, then U is also ambidextrous.

If A is a subset of Ob(C), then let LA be the set of closed C-colored ribbon graphs, such that
at least one of the colors of the edges is in A. For a simple ambidextrous object J of C, set

A(J) = {V ∈Ob(C) | V simple and S′(J, V ) 6= 0}.

Fix a non-zero d0 ∈ F. For V ∈A(J) define

dJ(V ) = d0
S′(V, J)
S′(J, V )

∈ F.
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We view dJ(V ) as a modified quantum dimension of V determined by J . For any U, V ∈A(J),
Lemma 2 implies that

for any T . In particular, when T consists of two vertical intervals colored by U, V ∈A(J),

dJ(U) dimC(V ) = dJ(V ) dimC(U).

This shows that the functions dJ and dimC are proportional to each other. This is especially
interesting when dimC = 0 and dJ 6= 0, see the examples below.

Theorem 3. Let L ∈ LA(J) and V be the color of an edge of L belonging to A(J). Cutting this
edge, we obtain a colored (1, 1)-ribbon graph TV whose closure is L. Then

F ′(L) = dJ(V )〈TV 〉 ∈ F

is independent of the choice of the edge to be cut and yields a well-defined invariant of L.

Proof. The theorem follows from Lemma 2 and the definition of dJ . 2

We call the invariant F ′ the re-normalized Reshetikhin–Turaev link invariant.
Let A=A(J) be the set of objects W of C such that there exists a finite family of tuples

(Ui, Vi, fi, gi), where Ui ∈A(J), Vi ∈Ob(C) and gi : Ui ⊗ Vi→W, fi :W → Ui ⊗ Vi satisfying
IdW =

∑
gi ◦ fi. Note that A has the property that W ⊗ V ∈A for all V ∈Ob(C) and W ∈A.

The map LA→ F, L 7→ F ′(L) extends to a map LA→ F as follows. Let L be a closed C-colored
ribbon graph with one edge colored by W ∈A. Pick a decomposition IdW =

∑
gi ◦ fi as above.

Then

IdW = F


∑
i

W
��
gi

Vi
��

Ui
��
fi

W

��


.

We define F ′(L) applying this expansion to the edge of L colored by W and then cutting as
above the edge of the resulting graph labeled by Ui. It is easy to show using Theorem 3 that this
extension is independent of the decomposition of IdW .

4. The quasi-functor F ′

In this section we extend the invariant F ′ to C-colored ribbon graphs with endpoints. This leads
us to a notion of a quasi-functor which we briefly discuss in a more general setting. This section
is essentially independent from the rest of the paper.

Let E be a category. Given a map M :Ob(E)×Ob(E)→Sets we use the notation m ∈M to
mean that there exist two objects X and Y of E such that m ∈M(X, Y ).
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Definition 4. A E-bimodule is a map M :Ob(E)×Ob(E)→Sets endowed with two operations:

� : HomE(Y, Z)×M(X, Y )→M(X, Z),
� : M(Y, Z)×HomE(X, Y )→M(X, Z),

where X, Y and Z are any objects of E . Given morphisms f and g of E and m ∈M we require
that:

(1) (f ◦ g) �m= f � (g �m);

(2) m� (f ◦ g) = (m� f) � g;

(3) (f �m) � g = f � (m� g);

whenever the operations in these equalities make sense.

Remark that if one has Id �m=m� Id =m for all m ∈M these axioms mean that M is a
bifunctor contravariant in the first place and covariant in the second place with M(X, f)(m) =
f �m and M(f, Z)(m) =m� f .

Example 5. The functor HomE is a E-bimodule with � = � = ◦.

Example 6. Let K be an integral domain and suppose that (M,�,�) is a E-bimodule with
values in K-modules. If Γ is a K-module, then we define an E-bimodule HE by HE(X, Y ) =
HomK(M(Y, X), Γ) with operations � and � defined as follows. Let f : Y → Z and f ′ : Z→X
be morphisms of E and let φ be an element of HE(X, Y ), then

(f � φ)(m) = φ(m� f) and (φ� f ′)(m′) = φ(f ′ �m′),

where m ∈M(Z, X) and m′ ∈M(Y, Z).

Suppose now that E is a tensor Ab-category and that M is a E-bimodule which takes values
in abelian groups. We assume that the operations � and � are bilinear.

Definition 7. We call M a monoidal E-bimodule if it is endowed with two bilinear operations:

: HomE(X, Y )×M(X ′, Y ′)→M(X ⊗X ′, Y ⊗ Y ′),
: M(X, Y )×HomE(X ′, Y ′)→M(X ⊗X ′, Y ⊗ Y ′)

such that for any morphisms f , g and h in E and any m ∈M:

(1) (f ⊗ g) m= f (g m);

(2) m (f ⊗ g) = (m f) g;

(3) f (m g) = (f m) g;

(4) (f ◦ g) (h�m) = (f ⊗ h) � (g m);

(5) (h�m) (f ◦ g) = (h⊗ f) � (m g);

(6) (f ◦ g) (m� h) = (f m) � (g ⊗ h);

(7) (m� h) (f ◦ g) = (m f) � (f ⊗ g);

whenever the operations in these equalities make sense.
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Definition 7 can be illustrated with diagrams. For example, Axiom (4) is given by

f
◦
g

h
∇
m

=
f ⊗ h
∇

g m

where the composition operations should be read from the top to the bottom and tensor
operations from left to right.

Example 8. The functor HomE is a monoidal E-bimodule with � = � = ◦ and = =⊗.

Suppose that G :D→ E is a monoidal functor between two tensor Ab-categories. Let M be a
monoidal E-bimodule and M′ be a monoidal D-bimodule.

Definition 9. A G-bilinear monoidal quasi-functor G′ : M′→M is a family of maps G′ :
M′(X, Y )→M(G(X), G(Y )) indexed by the objects X and Y of E , such that for every
m ∈M′(X, Y ) and every morphism f of D one has:

(1) G′(f �m) =G(f) �G′(m);

(2) G′(m� f) =G′(m) �G(f);

(3) G′(f m) =G(f) G′(m);

(4) G′(m f) =G′(m) G(f);

whenever the operations in these equalities make sense.

Let us now go back to the situation of § 3. Define a C-bimodule structure on HC = HomK

(HomC , F) as in Example 6. In particular, for any objects U, V of C we have

HC(U, V ) = HomK(HomC(V, U), F)

and if f and g are morphisms of C and φ ∈HC , then

(f � φ)(g) = φ(g ◦ f) and (φ� f)(g) = φ(f ◦ g)

when these operations make sense.

To give HC a monoidal structure, let us recall the partial traces in C: if f ∈HomC(X ⊗ Z,
Y ⊗ Z) set trR(f) = (IdX ⊗d′Z) ◦ (f ⊗ IdZ∗) ◦ (IdX ⊗bZ) ∈HomC(X, Y ) and if f ∈HomC(X ⊗ Y,
X ⊗ Z) set trL(f) = (dX ⊗ IdZ) ◦ (IdX∗ ⊗f) ◦ (b′X ⊗ IdY ) ∈HomC(Y, Z).

Then

: HomC(U, V )×HC(U ′, V ′)→ HC(U ⊗ U ′, V ⊗ V ′),
: HC(U, V )×HomC(U ′, V ′)→ HC(U ⊗ U ′, V ⊗ V ′)

are defined as follows.
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(1) If f ∈HomC(U, V ) and φ ∈HC(U ′, V ′), then f φ ∈HC(U ⊗ U ′, V ⊗ V ′) is given by

(f φ)(g) = φ(trL(g ◦ (f ⊗ IdV ′))).

where g is any element of HomC(V ⊗ V ′, U ⊗ U ′). This operation can be represented by the
following diagram.

(2) If f ∈HomC(U ′, V ′) and φ ∈HC(U, V ), then φ f ∈HC(U ⊗ U ′, V ⊗ V ′) is given by

(φ f)(g) = φ(trR(g ◦ (IdU ′ ⊗f)))

where g is any element of HomC(V ⊗ V ′, U ⊗ U ′). Again this operation can be represented
by the following diagram.

One can check that these maps make HC a monoidal C-bilinear module.

Fix now a simple ambidextrous object J in C and a non-zero element d0 of F. Set A=A(J).
Let RibA be the monoidal RibC-bimodule defined as follows. The operations of RibA are the
composition and tensor product of RibC , i.e. � = � = ◦ and = =⊗. Let V and W be
objects of RibC , then RibA(V, W ) is the set of C-colored ribbon graphs in HomC(V, W ) with at
least one color in A. In particular, RibA(∅, ∅) = LA.

Theorem 10. The invariant F ′ : LA→ F extends naturally to a F -bilinear monoidal quasi-
functor F ′ : RibA→HC by the formula

F ′(T )(g) = F ′(trRibC(T ◦ cg))

where T ∈ RibA(V, W ), g ∈HomC(F (W ), F (V )) and where cg is a coupon labeled by g. This
expression can be represented by the following diagram.

Proof. Let T and T ′ be morphisms of RibC and RibA, respectively. Suppose that T ◦ T ′ is defined.
Let T ′′ be the trace in RibC of T ◦ T ′ and let C be a coupon labeled by F (T ′). The proof follows
from the fact that

F ′(T ′′) = F ′(trRibC(T ◦ C)) = F ′(T )(F (T ′)).
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For example, we now check equality (1) of Definition 9. Let T and T ′ be as above. Let g be a
morphism of C and let cg be a coupon labeled by g. Suppose that g is a morphism such that
F ′(T � T ′)(g) is defined. If cg is a coupon labeled by g, then we have

F ′(T � T ′)(g) = F ′(trRibC(T ◦ T
′ ◦ cg)) = F ′(T ′)(F (cg ◦ T ))

= F ′(T ′)(g ◦ F (T )) = (F (T ) � F ′(T ′))(g).

Checking equalities (2)–(4) of Definition 9 are similar. 2

5. Properties of dJ and F ′

The following lemma shows that the function dJ satisfying the conditions of Theorem 3 is
essentially unique.

Lemma 11. Let J ∈Ob(C) be a simple ambidextrous object such that J ∈A(J). Suppose that
d :A(J)→ F is a function such that the construction of Theorem 3 with dJ replaced by d yields
a well-defined invariant for all L ∈ LA(J). Then d= dJ for an appropriate choice of d0.

Proof. Let L be the Hopf link with components colored V and J , where V is a simple object
of C. By opening one strand of L and then the other, we obtain

d(V )S′(J, V ) = d(J)S′(V, J).

So, d= d−1
0 d(J) dJ . 2

This lemma implies, in particular, that if J1, J2 are two simple ambidextrous objects such
that A(J1) =A(J2), then dJ1 = dJ2 for any choice of d0 in the definition of dJ1 and an appropriate
choice of d0 in the definition of dJ2 .

Lemma 12. Let V, W be simple objects in C, then S′(V, W ) = S′(V ∗, W ∗).

Proof. We have

where the first and the fourth equalities follow from the definition of S′, the second from
composing with the morphism (IdV ⊗dV )(bV ⊗ IdV ) and the third from the property that
F (↑V ) = F (↓V ∗). 2

Lemma 13. If an object J in C is ambidextrous, then so is J∗.

Proof. We have to prove that trL(f) = trR(f) for any endomorphism f of J∗ ⊗ J∗. First we
define an endomorphism f ′ of J ⊗ J by the following formula.
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As V is ambidextrous we have trL(f ′) = trR(f ′) and thus

In ribbon categories, modules are canonically isomorphic to their bidual and if T is a colored
ribbon graph, changing both the orientation of an internal edge and its color to its dual does not
affect F (T ). Doing this for the internal edges of the two ribbon graphs above, we deduce that

which means that trR(f) = trL(f). 2

Corollary 14. For any simple ambidextrous object J ∈Ob(C), we have A(J∗) = {V ∗ | V
∈A(J)} and dJ∗(V ∗) = dJ(V ) for all V ∈A(J). If V, V ∗ ∈A(J) satisfy S′(V, V ∗) 6= 0, then
dJ(V ∗) = dJ(V ).

Proof. Lemma 12 implies that

A(J∗) = {V ∈Ob(C) | V simple and S′(J∗, V ) 6= 0}= {V ∗ | V ∈A(J)}

and, for all V ∈A(J),

dJ(V ) = d0
S′(V, J)
S′(J, V )

= d0
S′(V ∗, J∗)
S′(J∗, V ∗)

= dJ∗(V ∗).

Consider the Hopf link H with components labeled by V and V ∗. Then, by definition,
F ′(H) is equal to both dJ(V )S′(V ∗, V ) and dJ(V ∗)S′(V, V ∗). Now Lemma 12 implies that
S′(V ∗, V ) = S′(V, V ∗) 6= 0 and therefore dJ(V ∗) = dJ(V ). 2

Let I be the set of isomorphism classes of simple objects of C. We call a subset B of I complete
if S′(U, V ) 6= 0 for all U, V ∈B and S′(U, W ) = 0 for all U ∈B, W ∈ I −B.

Lemma 15. Let B be a complete subset of the set I, which contains at least one ambidextrous
object. Then:

(1) all objects in B are ambidextrous;

(2) for any object J ∈B, we have A(J) =B;

(3) let F ′J , F
′
J ′ be the invariants derived above from arbitrary pairs (J ∈B, d0) and (J ′ ∈B, d′0),

respectively, where d0, d
′
0 ∈ F \ {0}; then

F ′J =
dJ(J ′)
d′0

F ′J ′ .

Proof. The first claim follows from the definition of a complete set and the remark following
Lemma 2. The equality A(J) =B follows from the definitions.

Lemma 11 implies that dJ ′ is proportional to dJ . More precisely, dJ = (d′0)−1 dJ(J ′) dJ ′ . Thus,

F ′J(L) = dJ(V )〈TV 〉= (d′0)−1 dJ(J ′) dJ ′(V )〈TV 〉= (d′0)−1 dJ(J ′)F ′J ′(L). 2
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The completeness condition on B seems to be very strong. However, complete sets arise
naturally in our examples, see §§ 6.1, 6.2 and 6.3. In such a situation Lemma 15 states that
the ambidextrous object J defines a ‘cluster’ A(J) of ambidextrous objects with the property
that any element of this cluster leads to an invariant proportional to F ′J . There are two kinds of
clusters depending on whether or not dimC(J) = 0. The case dimC(J) = 0 is of particular interest
because then F ′ may be non-zero while the usual invariant F restricted to LA is zero, as will be
clear from the next lemma.

From now on and up to the end of this section we fix a simple ambidextrous object J in C.

Lemma 16. For any V ∈A(J),

dimC(V ) = d−1
0 dimC(J) dJ(V ).

Proof. Consider the Hopf link H with components labeled by J and V ∈A. Now F (H) can be
computed in two ways, namely by cutting the component labeled by J or cutting the component
labeled by V . This gives

F (H) = S′(V, J) dimC(J) = S′(J, V ) dimC(V ).

Thus, dimC(V ) = d−1
0 dimC(J) dJ(V ). 2

The next corollary follows directly from the previous lemma.

Corollary 17. The following hold:

(1) if dimC(J) = 0, then dimC(V ) = 0 for all V ∈A(J) and F (L) = 0 for all L in LA;

(2) if dimC(J) 6= 0, then F ′ is proportional to F .

The following two propositions show that F ′ has behavior similar to the functor F .

Proposition 18. Let U, V, W ∈Ob(C) be such that W ∼= U ⊗ V . Let L be a C-colored link, such
that a component of L is colored by W . Let L‖ be the link obtained from L by replacing this
component of L by two parallel copies colored by U and V . If L‖ is an element of LA(J), then

F ′(L) = F ′(L‖).

Proof. Since W ∼= U ⊗ V there exist morphisms f :W → U ⊗ V and g : U ⊗ V →W such that
f ◦ g = IdU⊗V and g ◦ f = IdW . Use the equality g ◦ f = IdW to replace a portion of the W -
colored component of L by two strings labeled by U and V and two coupons labeled f and g. Then
by sliding one of the coupons around the component and using the equality f ◦ g = IdU⊗V one
arrives at L‖. Then F ′(L) = F ′(L‖) since F ′ is a well-defined C-colored ribbon graph invariant. 2

Proposition 19. Let L be an element of LA(J) with a circle component colored by W ∈Ob(C).
If W is the only color of L in A(J), then we additionally assume that W ∗ ∈A(J) and
S′(W,W ∗) 6= 0. Let L− be obtained from L by reversing the orientation of the W -colored
component and changing its color to W ∗. Then F ′(L) = F ′(L−).

Proof. We consider two cases: (a) if W is the only color of L in A(J) and (b) otherwise. In
the latter case we have F ′(L) = dJ(V )〈F (TV )〉 where V ∈A(J) is the label of another circle
component (or an edge) of L and TV is obtained from L by cutting this component (edge).
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However, F (TV ) = F (T ′V ) where T ′V is obtained from TV by reversing the orientation of the
W -colored component and changing its color to W ∗. In the former case we have

F ′(L) = dJ(W )〈TW 〉
= dJ(W )〈T−W ∗〉
= dJ(W ∗)〈⊥W ∗〉
= F ′(L−)

where ⊥W ∗ is the ribbon graph T−W ∗ rotated 180◦. (We use here the second claim of
Corollary 14.) 2

Proposition 20. If L ∈ LA(J), L+ ∈ LOb(C), then the disjoint union L t L+ belongs to LA(J)

and F ′(L t L+) = F ′(L)F (L+).

Proof. The proof follows from the definitions. 2

Remark 21. Both Propositions 18 and 19 can be extended to analogous statements for non-
closed C-colored ribbon graphs. In other words, F ′ behaves under cabling and reversing
orientation in the same way as the standard ribbon functor F .

6. Examples

We give three classes of examples of ambidextrous objects and associated re-normalized link
invariants.

6.1 Link invariants from Lie algebras

Let g be a simple Lie algebra and let Uq(g) be the Drinfeld–Jimbo C(q)-algebra associated to g

(see [Tur94, §XI.6]). (Note here that q is not a root of unity.) Let C be the category of finite-
dimensional Uq(g)-modules. It is well known that C is a ribbon Ab-category with ground ring
K = C(q). Here F =K and trC (respectively dimC) is the quantum trace (respectively quantum
dimension).

Lemma 22. All simple objects of C are ambidextrous.

Proof. This follows from Lemma 1, as dimC(J) 6= 0 for any simple object J of C. 2

Let I be the set of isomorphism classes of simple objects of C. One can show that S′(V, W ) 6= 0
for any V, W ∈ I (for a similar calculation, see [GP08b, Proposition 2.2]). Thus, A(J) = I for
all J ∈ I. The construction of § 3 derives from J and any non-zero d0 ∈ F a function dJ and an
invariant F ′. Lemma 15 implies that F ′ is essentially independent of the choice of J .

Proposition 23. For any J ∈ I and d0 = qdim(J), the J-determined quantum dimension dJ is
equal to the usual quantum dimension and F ′ is the usual Reshetikhin–Turaev quantum group
invariant arising from g.

Proof. This follow from Corollary 17. 2
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6.2 Link invariants from Lie superalgebras

In [GP08b, GP08a] the first two authors derived new link invariants from Lie superalgebras
osp(2|2n) and sl(m|n) with m 6= n. In particular, the invariants associated with sl(m|1) generalize
both the multivariable Alexander polynomial of links and Kashaev’s link invariants. We explain
here that the construction of [GP08b, GP08a] is a special case of the construction of § 3.

In this section we work in the category of vector superspaces with even morphisms, i.e. the
category whose objects are Z/2Z-graded vector spaces and the morphisms are even linear maps.
A Lie superalgebra g = sl(m|n) or g = osp(2|2n) gives rise to the quantized universal enveloping
C[[h]]-superalgebra Uh(g). Let C be the category of topologically free Uh(g)-modules of finite
rank (i.e. modules of the form V [[h]] where V is a finite-dimensional g-module). It is known
that C is a ribbon Ab-category with ground ring K = C[[h]], see, for instance, [GP08b] and
references therein. The object V [[h]] of C is simple if and only if V is a simple g-module. The
finite-dimensional simple g-modules are divided into two classes: typical and atypical. A simple
g-module is typical if each time it is a submodule or a factor module of a finite-dimensional
g-module, it splits as a direct summand. We call a Uh(g)-module V [[h]] (a)typical if V is a
(a)typical g-module.

Let I be the set of isomorphism classes of simple objects of C and let B be the subset of I
consisting of isomorphism classes of typical Uh(g)-modules.

Lemma 24. If V is an element of B, then dimC(V ) = 0. The link invariant F restricted to LB
is zero.

Proof. The first statement follows from a direct calculation using the character formula of V
(see [GP08b]). The second statement follows from Corollary 17. 2

The following lemma is a restatement of [GP08b, Lemma 2.8].

Lemma 25. There exists an element J0 ∈B such that J0 ⊗ J0 splits as a direct sum of elements
of B with multiplicity one. In particular, the algebra EndC(J0 ⊗ J0) is commutative.

Corollary 26. The object J0 of C is ambidextrous.

Proof. Lemma 25 implies that the braiding cJ0,J0 commutes with all elements of EndC(J0 ⊗ J0).
Thus, the corollary follows from Lemma 1. 2

In [GP08b] the first two authors have shown that S′(U, V ) 6= 0 for all U, V ∈B and
S′(U, W ) = 0 for all U ∈B, W ∈ I −B. In other words, the set B is complete.

Proposition 27. Every element J ∈B is ambidextrous and A(J) =B. The construction in § 3
gives a function d = dJ :B→ C[[h]][h−1] and an invariant F ′ = F ′J , which do not depend on J
up to multiplication by a non-zero element of C[[h]][h−1].

Proof. Since B is complete and contains J , the lemma follows from Lemma 15. 2

The link invariant introduced in [GP08b] is defined on LB. Its definition is similar to the
definition of F ′ above but uses a certain function d :B→ C[[h]][h−1] rather than d. By Lemma 11,
the function d must be proportional to d and therefore the link invariant of [GP08b] is equal to
the invariant F ′ associated with an arbitrary J ∈B and an appropriate d0 (depending on J).
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Remark 28. (1) In this example there is no canonical choice for J ∈B. However, for each J
there is a suitable choice of d0 (possibly, distinct from d0 = 1) such that dJ has a nice formula
(cf. [GP08b]). This justifies our choice to include the factor d0 in the definition of F ′.

(2) The extension of F ′ in § 3 could be useful in computing F ′ for links colored with non-
semisimple modules.

(3) It would be interesting to extend the constructions of this section to other Lie
superalgebras.

6.3 Link invariants from Uq(sl(2)) at roots of unity

In this section we consider the generalized multivariable Alexander invariants defined by
Akutsu, Deguchi and Ohtsuki (ADO) in [ADO92], which contain Kashaev’s invariants (see
[Kas95, MM01]). These invariants are indexed by positive integers. In [Mur08], Murakami gives
a framed version of these invariants using the universal R-matrix of Uq(sl(2)) and calls them the
colored Alexander invariants. Here we show that these invariants are restrictions of invariants
defined using ribbon categories as formulated above.

Fix a positive integer N and let q = eπ
√
−1/N be a 2N -root of unity. We use the notation

qx = eπ
√
−1x/N . Here we give a slightly generalized version of Uq(sl(2)). Let UHq (sl(2)) be the

C(q)-algebra given by generators E, F, K, K−1, H and relations

HK =KH, HK−1 =K−1H, [H, E] = 2E, [H, F ] =−2F,

KK−1 =K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, [E, F ] =
K −K−1

q − q−1
.

The algebra UHq (sl(2)) is a Hopf algebra where the coproduct, counit and antipode are defined
by

∆(E) = 1⊗ E + E ⊗K, ∆(F ) =K−1 ⊗ F + F ⊗ 1,
∆(H) =H ⊗ 1 + 1⊗H, ∆(K) =K ⊗K, ∆(K−1) =K−1 ⊗K−1,

ε(E) = ε(F ) = ε(H) = 0, ε(K) = ε(K−1) = 1,
S(E) =−EK−1, S(F ) =−KF, S(K) =K−1.

Define Ūq(sl(2)) as the Hopf algebra UHq (sl(2)) modulo the relations EN = FN = 0.

We say a Ūq(sl(2))-module V is a weight module if V has a weight decomposition with
respect to H and if qH acts as K. Let C be the tensor Ab-category of finite-dimensional weight
Ūq(sl(2))-modules (here the ground ring is C). We say a simple weight module is typical if its
highest weight is in the set (C \ Z) ∪ {−1 + kN | k ∈ Z}, otherwise we say it is atypical. A typical
module is N -dimensional and indexed by its highest weight λ. We denote such a module by Vλ
(for a basis of this module see [Mur08]). The weights of Vλ are λ− 2i for 0≤ i≤N − 1, so its
character formula is

∑N−1
i=0 uλ−2i where the coefficient of ua is the dimension of the a-weight

space.

We now recall that the category C is a ribbon Ab-category. For a ∈ C and n ∈ N we set
{a}= qa − q−a and {n}! = {n}{n− 1} . . . {1}. In [Oht02], Ohtsuki defines an element Rt given
by

Rt = qH⊗H/2
N−1∑
n=0

{1}2n

{n}!
qn(n−1)/2En ⊗ Fn,
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where qH⊗H/2 is a formal symbol. If v and v′ are two weight vectors of weights of λ and λ′, then
qH⊗H/2 acts on v ⊗ v′ by

qH⊗H/2 · (v ⊗ v′) = qλλ
′/2v ⊗ v′.

Thus, the action of Rt on the tensor product of two objects of C is well defined and induces an
endomorphism on such a tensor product. Moreover, Rt gives rise to a braiding cV,W : V ⊗W →
W ⊗ V on C defined by v ⊗ w 7→ τ(Rt(v ⊗ w)) where τ is the permutation x⊗ y 7→ y ⊗ x
(see [Mur08, Oht02]).

Remark 29. It is important that Ūq(sl(2)) contains H because the modules Vλ and Vλ+2N over
Uq(sl(2))/{EN = FN = 0} are isomorphic but the action of the R-matrix on V ⊗2

λ and V ⊗2
λ+2N are

different. These modules are distinct in C as H acts differently.

Let V and W be objects of C. Let {vi} be a basis of V and {v∗i } be a dual basis of V ∗. Then

bV : C→ V ⊗ V ∗, given by 1 7→
∑

vi ⊗ v∗i
dV : V ∗ ⊗ V → C, given by f ⊗ w 7→ f(w)

are duality morphisms of C.
Also, in [Oht02] Ohtsuki defines an element u given by

q−H
2/2

N−1∑
n=0

S(tn)sn

where Rt = qH⊗H/2
∑N−1

n=0 sn ⊗ tn and q−H/2 is a formal symbol whose action on a weight vector
vλ is given by q−H

2/2 · vλ = q−λ
2/2vλ. Let θ = uKN−1 =KN−1u. The twist θV : V → V is defined

by v 7→ θ−1v (see [Mur08, Oht02]).
If L is a link colored with objects of C such that one of the colors is typical, then F (L) = 0

where as above F is the usual ribbon functor F : RibC →C. We now show that the general
construction above gives rise to a non-trivial invariant F ′, which contains the ADO invariants
and so Kashaev’s invariants.

Fix a typical Ūq(sl(2))-module Vλ0 such that λ0 ∈ C \ 1
2Z and denote it by J0.

Lemma 30. The tensor product J0 ⊗ J0 splits as a direct sum of typical Ūq(sl(2))-modules with
no multiplicity. In particular, the algebra EndC(J0 ⊗ J0) is commutative.

Proof. First, using the character formula for J0 one sees that all of the weights of J0 ⊗ J0 are not
integral. Then since typical modules always split we have that J0 ⊗ J0 is a direct sum of typical
modules. The character formula for a typical module then implies that J0 ⊗ J0 =

⊕N−1
i=0 V2λ0−2i,

which completes the proof. 2

Corollary 31. The element J0 is ambidextrous.

Proof. The corollary follows directly from Lemmas 1 and 30. 2

Next we compute dimC(Vλ) and S′(Vλ, Vλ′). To do this we need the morphisms d′V : V ⊗
V ∗→ C and b′V : C→ V ∗ ⊗ V defined by

d′V = dV cV,V ∗(θV ⊗ IdV ∗) b′V = (IdV ∗ ⊗θV )CV,V ∗bV .

A direct computation shows that

d′V (v ⊗ f) = f(K1−Nv), b′V (1) =
∑

KN−1vi ⊗ v∗i .
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Lemma 32. Let Vλ be typical Ūq(sl(2))-module, then dimC(Vλ) = 0.

Proof. Let {vi} be a basis of Vλ such that vi is a non-zero vector of weight λ− 2i. By definition
we have dimC(Vλ) = (d′Vλ ◦ bVλ)(1) which is equal to

N−1∑
i=0

vi ⊗ v∗i =
N−1∑
i=0

v∗i (K
1−Nvi) =

N−1∑
i=0

q(N−1)(λ−2i) = q(N−1)λ 1− q−2N

1− q−2

where q−2N = 1 and so dimC(Vλ) = 0. 2

Lemma 33. Let Vλ be a typical module and let Vλ′ be any simple weight module with highest
weight λ′. We have

S′(Vλ, Vλ′) = q(λ+1−N)(λ′+1−N) {N(λ′ + 1−N)}
{λ′ + 1−N}

,

where {N(λ′ + 1−N)}/{λ′ + 1−N} is a Laurent polynomial in qλ
′
.

Proof. The proof follows from a direct computation. A detailed presentation of an analogous
computation is given in [GP08b, Proposition 2.2]. 2

Let I be the set of isomorphism classes of simple objects of C and let B be the subset of I
consisting of isomorphism classes of typical Ūq(sl(2))-modules.

Lemma 34. The usual invariant F restricted to LB is zero.

Proof. The proof follows from Corollary 17 and Lemma 32. 2

Let Vλ be in B, then from Lemma 33 we have S′(Vλ, V ) 6= 0 for all V ∈B and S′(Vλ, W ) = 0
for all W ∈ I \B. In other words, the set B is complete.

Proposition 35. Every element of J ∈B is ambidextrous and B =A(J). The construction
in § 3 gives a function dJ :B→ C and an invariant F ′J , which do not depend on J up to
multiplication by a non-zero element of C.

Proof. Since B is complete and contains J , then the lemma follows from Lemma 15. 2

Let d = dJ0 and F ′ = F ′J0
be objects defined in § 3 arising from the ambidextrous element J0

and the constant d0 = 1/(
∏N−2
j=0 {λ0 +N − j}). We now compute d explicitly. By a direct

computation, for λ ∈ C \ Z one has

1∏N−2
j=0 {λ+N − j}

= (−1)Nq−N(N+1)/2 {λ+ 1−N}
{N(λ+ 1−N)}

.

Therefore, from the expression of S′ in Lemma 33 we have that
N−2∏
j=0

{λ0 +N − j}S′(J, Vλ) =
N−2∏
j=0

{λ+N − j}S′(Vλ, J).

Then, by definition, we have

d(Vλ) =
1∏N−2

j=0 {λ+N − j}
,

where we use the above choice of d0.
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Next we show that F ′ restricts to the colored Alexander invariant given by Murakami
in [Mur08]. The colored Alexander invariant is a reconstruction of the link invariants defined
in [ADO92]. Murakami’s construction uses the universal R-matrix of Uq(sl(2)) and state sums. In
particular, let T be a (1,1)-tangle whose ith component is colored by a parameter λi (i= 1, . . . , k)
and the first component is the open component. Murakami defines ONT (λ1, . . . , λk) to be the
element of End(Vλ1) obtained by assigning the matrix elements of the R-matrix for the crossings
of T and particular scalars to the maximal and minimal points of T (these scalars are the same as
the scalars coming from the morphisms bVλi , dVλi , b

′
Vλi
, d′Vλi

given above). Let ΦN
T (λ1, . . . , λk) =

d(Vλ1)ONT (λ1, . . . , λk). Then in [Mur08], Murakami showed that ΦN
T (λ1, . . . , λk) is a framed

version of the analogous invariant defined in [ADO92]. Thus, ΦN
T (λ1, . . . , λk) is a well-defined

invariant of a colored framed link L obtained by closing the tangle T ; denote this invariant by
ΦN
L . Since the construction of F ′ uses the same R-matrix, duality, twist and scaling d as the

construction of ΦN
L we have proved the following theorem.

Theorem 36. The invariant F ′ restricted to framed links colored with typical modules is equal
to the colored Alexander invariant ΦN

L .
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