J. Austral. Math. Soc. (Series A) 53 (1992), 17-24

SELF-COMPLEMENTARY GRAPH DECOMPOSITIONS

C. A. RODGER

(Received 21 March 1990)

Communicated by L. Caccetta

Abstract

A complementary decomposition of λK_n into a graph G is an edge-disjoint decomposition of λK_n into copies of G such that if each copy H of G is replaced by its complement in V(H) then the result is an edge-disjoint decomposition of λK_n into copies of G^c ; it is a selfcomplementary decomposition if $G = G^c$. The spectrum for the last self-complementary graph on at most 7 vertices is found.

1991 Mathematics subject classification (Amer. Math. Soc.): 05 B 30, 05 B 40, 05 C 70.

1. Introduction

A G-design (of λK_n) is an ordered triple (V, B, λ) where V is the vertex set of λK_n (n = |V|) and B is a collection of graphs, each isomorphic to G, which form an edge-disjoint decomposition of λK_n ; n is called the *order* and λ is called the *index* of the G-design. Let C_m denote a cycle of length m. Let H^c be the complement of H in V(H).

In recent years, much attention has been focussed on G-designs and on G-designs with additional properties. For example, K_m -designs are just block designs, and C_m -designs have also been called balanced cycle designs and m-cycle systems. Perhaps the most natural question to ask about G-design is what is their *spectrum*, that is, for which values of n do they exist? In the case where $G = C_m$, the spectrum remains unknown, despite having been considered for at least 25 years (see [4] for example). More recently the

This research was supported by NSF grant DMS-8805475.

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

existence problem has been settled in the cases where G is a path [11], and where G is a star [10], and has nearly been settled when G is a graph with at most 5 vertices [1].

Related to this problem is the existence problem for G-designs that satisfy additional properties. For example, the spectra for C_m -designs that are resolvable, almost resolvable, or *i*-perfect have been successfully studied. Similar results exist when G is a star or a path. For a survey, see [7].

In this paper we consider the spectrum problem for self-complementary G-designs. A complementary G-design is a G-design (V, B, λ) with the additional property that replacing each copy H of G in B by its complement in V(H) results in a G^c -design. For example if $\lambda = 1$ and $G = K_{1,3}$ then $G^c = K_3$ (together with an isolated vertex), so complementary $K_{1,3}$ -designs are equivalent to nested Steiner triple systems; the spectrum for these has been found [8]. A self-complementary G-design is a complementary G-design in which $G \cong G^c$. For example, if $G = P_3$, a path of length 3, then $G = G^c$; the spectrum problem for self-complementary P_3 -designs has been found when $\lambda = 1$ [2, 6]. The spectrum for self-complementary C_5 -designs (also known as Steiner pentagon systems) has also been found [5]. Here we consider the remaining self-complementary graph with at most 7 vertices.

Let *M* be the graph with $V(M) = \{a, b, c, d, e\}$ and $E(M) = \{ab, bc, bd, cd, de\}$; throughout this paper we shall denote *M* by (a, b, c, d, e). Then $M \cong M^c$. The purpose of this paper is to find the spectrum for self-complementary *M*-designs, for all λ .

The graph M = (a, b, c, d, e).

2. Preliminary results

We shall make use of quasigroups with various properties in constructing the self-complementary *M*-designs. The properties that are not defined here are well known, but can be found in [9]. Let $Z_x = \{0, 1, ..., x - 1\}$, and let (a, b, c, d, e) + i = (a + i, b + i, c + i, d + i, e + i).

LEMMA 2.1. For n > 4, $n \notin \{6, 10\}$, there exist 3 idempotent mutually orthogonal quasigroups of order n.

LEMMA 2.2 [13]. For all odd $n \ge 5$ there exists an idempotent self-orthogonal quasigroup of order n which is orthogonal to an idempotent commutative quasigroup.

Let $h_i = \{2i, 2i+1\}$ and let $H = \{h_i | 0 \le i \le s-1\}$; the elements of H are called *holes*. A self-orthogonal quasigroup with holes H is a quasigroup (\mathbb{Z}_{2s}, \cdot) in which

(a) for $0 \le i \le s - 1$, $2i \cdot 2i = 2i = (2i + 1) \cdot (2i + 1)$ and $(2i + 1) \cdot 2i = 2i + 1 = 2i \cdot (2i + 1)$, and

(b) for all $(x, y) \in (\mathbb{Z}_{2s} \times \mathbb{Z}_{2s}) \setminus (\bigcup_{i=0}^{s-1} (h_i \times h_i))$ there exists a unique pair *i* and *j* such that $i \cdot j = x$ and $j \cdot i = y$.

A self-orthogonal quasigroup with holes H, (Z_{2s}, \cdot) is orthogonal to a commutative quasigroup with holes H, (Z_{2s}, \circ) if for all $(x, y) \in (Z_{2s} \times Z_{2s}) \setminus (\bigcup_{i=0}^{s-1} (h_i \times h_i))$ there exists a unique pair i and j such that $i \cdot j = x$ and $i \circ j = y$.

LEMMA 2.3 [12]. For all $n \equiv 2 \pmod{4}$, $n \notin \{6, 30, 66, 174\}$ there exists a self-orthogonal quasigroup with holes H that is orthogonal to a commutative quasigroup with holes H.

Clearly self-complementary *M*-designs bear some relation to K_5 -designs (block designs with block size 5). We shall use the following result of Hanani.

LEMMA 2.4 [3]. For all $n \equiv 1$ or 5 (mod 20) there exists a K_5 -design of K_n . There does not exist a K_5 -design of $2K_{15}$.

We will need some small *M*-designs.

LEMMA 2.5. There exist self-complementary M-designs of K_n for $n \in \{5, 11, 31\}$.

PROOF. $(Z_5, \{(0, 1, 2, 3, 4), (1, 4, 2, 0, 3)\}, 1)$ is a self-complementary *M*-design of K_5 . $(Z_{11}, \{(0, 4, 1, 2, 7) + i | 0 \le i \le 10\}, 1)$ is a self-complementary *M*-design of K_{11} (reducing all sums modulo 11).

 $(Z_{31}, \{(0, 1, 5, 17, 8) + i, (0, 2, 20, 12, 18) + i, (0, 5, 22, 25, 1) + i | 0 \le i \le 30\}, 1)$ is a self-complementary *M*-design of K_{31} (reducing all sums modulo 31).

[4]

LEMMA 2.6. There exist self-complementary M-designs of $2K_n$ for $n \in \{6, 10, 15, 16, 20, 30\}$.

Proof.

$$\begin{split} n &= 6: \quad (Z_6, \{(0, 4, 1, 2, 3) + i \mid 0 \leq i \leq 5\}, 2) \\ n &= 10: \quad (\{\infty\} \cup Z_9, \{(0, 3, 5, 6, 1) + i, (1, 2, \infty, 0, 4) + i \mid 0 \leq i \leq 8\}, 2) \\ n &= 15: \quad (\{\infty\} \cup Z_{14}, \{(0, 1, 2, 4, 6) + i, (0, 4, \infty, 11, 5) + i \mid 0 \leq i \leq 13\}, 2) \\ n &= 16: \quad (Z_{16}, \{(0, 1, 2, 4, 7) + i, (0, 2, 7, 14, 6) + i, (0, 5, 11, 1, 8) \\ &\qquad + i \mid 0 \leq i \leq 15\}, 2) \\ n &= 20: \quad (\{\infty\} \cup Z_{19}, \{(0, 1, 2, 4, 6) + i, (0, 3, 7, 11, 16) + i, (0, 5, 11, 18, 10) + i, (0, 9, \infty, 2, 12) + i \mid 0 \leq i \leq 18\}, 2) \\ n &= 30: \quad (\{\infty\} \cup Z_{29}, \{(0, 1, 5, 11, 20) + i, (0, 3, 14, 7, 20) + i, (0, 1, 3, 6, 4) + i, (0, 5, 11, 21, 13) + i, (0, 7, 19, 27, 12) \\ &\qquad + i, (0, 12, \infty, 1, 16) + i \mid 0 \leq i \leq 28\}, 2) \end{split}$$

Finally, we note the following necessary conditions.

LEMMA 2.7. If there exists a self-complementary M-design of λK_n then (a) if $\lambda \equiv 1, 3, 7$ or 9 (mod 10) then $n \equiv 1$ or 5 (mod 10), and if $\lambda = 1$ then $n \neq 15$,

(b) if $\lambda \equiv 2, 4, 6 \text{ or } 8 \pmod{10}$ then $n \equiv 0 \text{ or } 1 \pmod{5}$, (c) if $\lambda \equiv 5 \pmod{10}$ then $n \equiv 1 \pmod{2}$, $n \neq 3$, (d) if $\lambda \equiv 0 \pmod{10}$ then $n \notin \{2, 3, 4\}$.

PROOF. If there exists a complementary *M*-design of λK_n then there exists a K_5 -design of $2\lambda K_n$. Therefore, by Lemma 2.4, if $\lambda = 1$ then $n \neq 15$. The rest of the lemma follows from straightforward counting arguments.

3. The case $\lambda = 1$

THEOREM 3.1. Let $n \equiv 5 \pmod{10}$. There exists a self-complementary *M*-design of K_n except if n = 15.

PROOF. Let n = 10s + 5 = 5(2s + 1). By Lemmas 2.5 and 2.7 we can assume that $2s + 1 \ge 5$. Let (Z_{2s+1}, \cdot) be an idempotent self-orthogonal quasigroup that is orthogonal to the idempotent commutative quasigroup

 (Z_{2s+1}, \circ) (these quasigroups exist by Lemma 2.2). Then define a self-complementary *M*-design $(Z_5 \times Z_{2s+1}, B, 1)$ as follows:

(a) for $0 \le i \le 2s$, let $\{((0, i), (1, i), (2, i), (3, i), (4, i)\}, ((1, i), (4, i), (2, i), (0, i), (3, i)\} \subseteq B$, and

(b) for $0 \le i < j \le 2s$, and for $0 \le r \le 4$, let $((2 + r, i \cdot j), (r, i), (1 + r, i \circ j), (r, j), (2 + r, j \cdot i)) \in B$, (where the sums in the first coordinate are reduced modulo 5).

The fact that this defines an *M*-design easily follows from the fact that (Z_{2s+1}, \circ) is a quasigroup and that (Z_{2s+1}, \cdot) is an idempotent commutative quasigroup. The orthogonality of the quasigroups ensures that together the complements of each copy of *M* form an *M*-design.

To see this, notice that the complements of the copies of M in (a) produce the same set of copies of M. The complement of the graphs defined in (b) are

(*)
$$\{(r, j), (2+r, i \cdot j), (1+r, i \circ j), (2+r, j \cdot i), (r, i)\}$$

for $0 \le i < j \le 2s$ and $0 \le r \le 4$. So, for example, the edge $\{(a, b), (a, c)\}$ is in the graph (*) where $i \cdot j = b$ and $j \cdot i = c$; there is exactly one such choice for i < j by the self-orthogonality of (Z_{2s+1}, \cdot) . Similarly the edge $\{(a, b), (a + 1, c)\}$ is in the graph (*) with $i \circ j = b$ and $i \cdot j = c$ (or $j \cdot i = c$); there is exactly one such choice for i < j by the orthogonality of (Z_{2s+1}, \circ) and (Z_{2s+1}, \cdot) . The remaining details are left to the reader.

THEOREM 3.2. Let $n \equiv 11 \pmod{20}$. There exists a self-complementary *M*-decomposition of K_n except possibly if $n \in \{151, 331, 871\}$.

PROOF. Let n = 20s + 11 = 5(4s + 2) + 1. Using Lemma 2.5 we can assume that $s \ge 2$. Let (Z_{4s+2}, \cdot) be a self-orthogonal quasigroup with holes $\{\{2x, 2x + 1\} | 0 \le x \le 2s\}$ that is orthogonal to (Z_{4s+2}, \circ) , a commutative quasigroup with holes $\{\{2x, 2x + 1\} | 0 \le x \le 2s\}$ (these quasigroups exist by Lemma 2.3). Define a self-complementary *M*-design $(\{\infty\} \cup (Z_5 \times Z_{4s+2}), B, 1)$ as follows:

(a) for $0 \le x \le 2s$, place a copy of the self-complementary *M*-design in Lemma 2.5 on the vertices $\{\infty\} \cup (Z_5 \times \{2x, 2x+1\})$ in *B*, and

(b) for $0 \le i < j \le 4s + 1$, $\{i, j\} \notin \{\{2x, 2x + 1\} | 0 \le x \le 2s\}$ and for $0 \le r \le 4$ let $((2 + r, i \cdot j), (r, i), (1 + r, i \circ j), (r, j), (2 + r, j \cdot i)) \in B$. The fact that this defines a self-complementary *M*-design follows in the same way as the proof of Theorem 3.1.

LEMMA 3.3. Let $n \equiv 1 \pmod{20}$. There exists a self-complementary Mdesign of K_n . **PROOF.** By Lemma 2.4 there exists a K_5 -design of K_n ; replace each copy of K_5 with the self-complementary *M*-design of K_5 in Lemma 2.5.

LEMMA 3.4. If there exist self-complementary M-designs of K_m and of K_{n+1} and if there exist 3 orthogonal quasigroups of order n then there exists a self-complementary M-design of K_{mn+1} .

PROOF. Let (Z_n, \cdot_1) , (Z_n, \cdot_2) and (Z_n, \cdot_3) be 3 orthogonal quasigroups. Let $(Z_m, B_1, 1)$ be a self-complementary *M*-design of K_m and for each $i \in Z_m$ let $(\{\infty\} \cup (\{i\} \times Z_n), B(i), 1)$ be a self-complementary *M*-design of K_{n+1} . Then $(\{\infty\} \cup (Z_m \times Z_n), B, 1)$ is a self-complementary *M*-design of K_{mn+1} , where

$$B = \bigcup_{i \in \mathbb{Z}_m} B_i \cup \{ ((a, i), (b, j), (c, i \cdot_1 j), (d, i \cdot_2 j), (e, i \cdot_3 j)) \mid i \in \mathbb{Z}_n, \\ j \in \mathbb{Z}_n, (a, b, c, d, e) \in \mathbb{B}_1 \}.$$

COROLLARY 3.5. There exist self-complementary M-designs of K_{151} , K_{331} and K_{871} .

PROOF. Apply Lemma 3.4 with (m, n) = (5, 30), (11, 30) and (5, 174) respectively.

THEOREM 3.6. The spectrum for self-complementary M-designs of index 1 is $n \equiv 1$ or 5 (mod 10), $n \neq 15$.

PROOF. This follows from Lemmas 2.7, 3.3 and 3.4, Corollary 3.5 and Theorems 3.1 and 3.2.

4. The cases $\lambda > 1$

THEOREM 4.1. Let $n \equiv 0$ or 1 (mod 5). There exists a self-complementary *M*-design of $2K_n$.

PROOF. Of course if there exists a self-complementary *M*-design of K_n then there also exists one of $2K_n$. For $n \in \{6, 10, 15, 16, 20, 30\}$ self-complementary *M*-designs of $2K_n$ are constructed in Lemma 2.6. For n = 50, modify the construction in Theorem 3.2 with s = 2 by using a copy of the self-complementary *M*-design of $2K_{10}$ in (a) and taking two copies of each of the blocks in (b); this produces a self-complementary *M*-design of $2K_{50}$ on the vertex set $Z_5 \times Z_{10}$.

In any other case, n = 5s or 5s + 1 where s is an integer for which there exist 3 idempotent mutually orthogonal quasigroups of order s, say (Z_s, \cdot_1) , (Z_s, \cdot_2) and (Z_s, \cdot_3) (see Lemma 2.1). If n = 5s then a self-complementary *M*-design $(Z_5 \times Z_s, B, 2)$ can be formed as follows:

(a) for $0 \le x \le s - 1$, B contains a copy of a self-complementary M-design of $2K_5$ on the vertex set $Z_5 \times \{x\}$, and

(b) for $0 \le i \le s - 1$, $0 \le j \le s - 1$, $i \ne j$ and $0 \le r \le 4$ let $((2+r, i \cdot j), (r, i), (1+r, i \cdot j), (r, j), (2+r, i \cdot j)) \in B$.

If n = 5s + 1 then a self-complementary *M*-design $(\{\infty\} \cup (Z_5 \times Z_s), B, 2)$ can be produced by using a self-complementary *M* design of $2K_6$ on the vertex set $\{\infty\} \cup (Z_5 \times \{x\})$ in part (a) above.

The fact that these constructions produce self-complementary M-designs follows in the same way as the proof of Theorem 3.1.

THEOREM 4.2. Let $n \equiv 1 \pmod{2}$. For all $n \neq 3$ there exists a selfcomplementary M-design of $5K_n$.

PROOF. Let n = 2s + 1. By Lemma 2.2 there exists an idempotent selforthogonal quasigroup (Z_{2s+1}, \cdot) that is orthogonal to an idempotent commutative quasigroup (Z_{2s+1}, \circ) . Then $(Z_{2s+1}, \{(i \cdot j, i, i \circ j, j, j \cdot i) | 0 \le i < j \le 2s\}$, 5) is a self-complementary *M*-design of $5K_n$.

THEOREM 4.3. For all $n \ge 5$ there exists a self-complementary M-design of $10K_n$.

PROOF. For n = 6 or 10, such a design can be produced by taking 5 copies of the designs in Lemma 2.6. For any other n, by Lemma 2.1 there exist 3 idempotent mutually orthogonal quasigroups of order n, say (Z_n, \cdot_1) , (Z_n, \cdot_2) and (Z_n, \cdot_3) . Then $(Z_n, \{(i \cdot_1 j, i, i \cdot_2 j, j, i \cdot_3 j) | \{i, j\} \subseteq Z_n, i \neq j\}$, 10) is a self-complementary *M*-design of $10K_n$.

5. Conclusions

The results in the previous sections can be combined to give the following theorem.

THEOREM 5.1. The necessary conditions in Lemma 2.7 for the existence of a self-complementary M-design of λK_n are sufficient.

PROOF. This follows immediately from Lemma 2.7 and Theorems 3.6, 4.1, 4.2 and 4.3 by combining self-complementary *M*-designs with $\lambda \in$

 $\{1, 2, 5, 10\}$ to obtain self-complementary *M*-designs for other values of λ , except when $\lambda = 3$ and n = 15. Recently a self-complementary *M*-design of $3K_{15}$ was constructed by Elizabeth J. Billington (private communication).

References

- J. C. Bermond, C. Huang, A. Rosa and D. Sotteau, 'Decompositions of complete graphs into isomorphic subgraphs with five vertices,' Ars Combinatoria 10 (1980), 211-254.
- [2] A. Granville, A. Moisiadis and R. Rees, 'On Complementary Decompositions of the complete graph,' *Graphs and Combinatorics* 5 (1989), 57-62.
- [3] H. Hanani, 'Balanced incomplete block designs and related designs,' *Discrete Math.* 11 (1975), 255-369.
- [4] D. G. Hoffman, C. C. Lindner and C. A. Rodger, 'On the construction of odd cycle systems,' J. Graph Th. 13 (1989), 417-426.
- [5] C. C. Lindner and D. R. Stinson, 'Steiner pentagon systems,' Discrete Math. 52 (1984), 67-74.
- [6] R. Rees and C. A. Rodger, 'Subdesigns in complementary path decompositions and incomplete two-fold designs with block size four,' Ars Combinatoria, to appear.
- [7] C. A. Rodger, 'Graph decompositions,' Le Matematiche 45, (1990), 119-139.
- [8] D. R. Stinson, 'The spectrum of nested Steiner triple systems,' Graphs and Combinatorics 1 (1985), 189-191.
- [9] A. P. and D. J. Street, Combinatorics of experimental design, Oxford Univ. Press, 1987.
- [10] M. Tarsi, 'Decompositions of complete multigraphs into stars,' Discrete Math. 26 (1979), 273-278.
- [11] M. Tarsi, 'Decompositions of a complete multigraph into simple paths: non-balanced handcuff designs', J. Combinatorial Th. (A) 34 (1983),60-70.
- [12] L. Zhu, 'Existence of Holey Solssoms of Type 2^n ,' Congressus Numerantium 45 (1984), 295-304.
- [13] L. Zhu, 'A few more self-orthogonal latin squares with symmetric orthogonal mates,' Proc. 13th Conf. on Num. Math. and Computing, University of Manitoba, 1983.

120 Mathematics Annex Auburn University Auburn, AL 36849-5307 USA