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Christina Kurzthaler1,2,3,4,‡, Danielle L. Chase1,‡ and Howard A. Stone1,†
1Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA
2Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
3Center for Systems Biology Dresden, 01307 Dresden, Germany
4Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany

(Received 21 September 2023; revised 21 December 2023; accepted 24 January 2024)

We study theoretically and experimentally pressure-driven flow between a flat wall and a
parallel corrugated wall, a design used widely in microfluidics for low-Reynolds-number
mixing and particle separation. In contrast to previous work, which focuses on
recirculating helicoidal flows along the microfluidic channel that result from its confining
lateral walls, we study the three-dimensional pressure and flow fields and trajectories
of tracer particles at the scale of each corrugation. Employing a perturbation approach
for small surface roughness, we find that anisotropic pressure gradients generated by
the surface corrugations, which are tilted with respect to the applied pressure gradient,
drive transverse flows. We measure experimentally the flow fields using particle image
velocimetry and quantify the effect of the ratio of the surface wavelength to the channel
height on the transverse flows. Further, we track tracer particles moving near the surface
structures and observe three-dimensional skewed helical trajectories. Projecting the helical
motion to two dimensions reveals oscillatory near-surface motion with an overall drift
along the surface corrugations, reminiscent of earlier experimental observations and
independent of the secondary helical flows that are induced by confining lateral walls.
Finally, we quantify the hydrodynamically induced drift transverse to the mean flow
direction as a function of distance to the surface and the wavelength of the surface
corrugations.
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1. Introduction

The development of microfluidic devices has lead to novel technological and biomedical
applications by making possible rapid sorting, mixing and focusing of various small
biological or synthetic constituents (Giddings 1993; Stone, Stroock & Ajdari 2004;
Whitesides 2006; Shields, Reyes & López 2015). The future design of ‘lab-on-a-chip’
devices, which, due to their small size, can be used routinely in different settings, could
be important e.g. in the analysis of single cells (Stott et al. 2010; Hosic, Murthy & Koppes
2016; Qasaimeh et al. 2017; Farahinia, Zhang & Badea 2021), thereby allowing for rapid
disease detection or for advancing the fundamental understanding of biological processes.

Microfluidic approaches have been utilized to guide and control transport processes
for several objectives. Examples range from the separation of the components of blood,
such as red or white blood cells (Huang et al. 2004; Davis et al. 2006; McGrath, Jimenez
& Bridle 2014), to the focusing and detection of biological cells (Qasaimeh et al. 2017;
Farahinia et al. 2021), to the mixing of particulate suspensions (Stroock et al. 2002a,b;
Stroock & McGraw 2004). The underlying methods rely on different physical mechanisms,
such as ‘active’ concepts, which use externally applied forces and filters (Giddings 1993;
Stone et al. 2004; Shields et al. 2015) or ‘passive’ concepts, which exploit hydrodynamic
effects due to fluid inertia (Segré & Silberberg 1961; Di Carlo et al. 2007; Humphry et al.
2010), pillar arrays in channels (Huang et al. 2004; Davis et al. 2006; McGrath et al. 2014),
or patterned microfluidic walls (Stroock et al. 2002b; Choi & Park 2007; Hsu et al. 2008;
Choi et al. 2011; Asmolov et al. 2015; Qasaimeh et al. 2017).

Several passive approaches utilize surface topography, relying on the careful design and
synthesis of surface structures, mostly at the micron scale. Corrugations oriented obliquely
to the axial flow direction or v-shaped herringbone structures were proposed originally
for the mixing of laminar streams (Stroock et al. 2002a,b; Stroock & McGraw 2004). In
addition to mixing, passive approaches have been used to separate or detect particles. For
example, microfluidic channels with oblique corrugations on one wall have been applied
widely to separate colloidal particles (Choi & Park 2007; Hsu et al. 2008; Choi et al.
2011) and for the detection of plasma (Qasaimeh et al. 2017) or circulating tumour cells
(Stott et al. 2010). The parallel oblique corrugations on the top or bottom wall generate
a transverse pressure gradient, and due to the lateral confinement of the channel, helical
streamlines result, where the pitch of the helix spans several corrugations (Stroock et al.
2002a,b; Stroock & McGraw 2004). The recirculating flows generated by the corrugations,
which will be in opposite lateral directions at the corrugated and flat surfaces, transport
particles to each lateral wall depending on the particle’s position along the channel height,
which depends, for example on the particle’s size or density, and can be controlled
using inertial focusing (Segré & Silberberg 1961; Di Carlo et al. 2007). Therefore,
particles with different properties can be transported to opposite lateral walls and sorted
according to the property of interest. Similarly, v-shaped, or herringbone, corrugations
create counter-rotating vortices in the microchannel. These flows bring particles to their
equilibrium configuration between adjacent vortices either near the herringbone surface or
near the planar wall, depending on their density, to separate particles into different streams
for sorting or detection (Hsu et al. 2008).

The aforementioned studies focused on the recirculating flows, generated by surface
topography, at the scale of the channel size. The effect of surface structure on the flow
and particle motion near the surface, at the scale of individual corrugations, remains
relatively unexplored. Recent insights for the non-trivial trajectories come from our work
on particle sedimentation near corrugated surfaces (Chase, Kurzthaler & Stone 2022),
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Surface corrugations induce helical near-surface flows

where we quantified, experimentally and theoretically, the impact of corrugation shape
and particle size on the transport behaviour without background flow and due only to
the disturbance flow generated by the interaction of the particle and surface structure. In
contrast to results observed in microfluidic channels, where particles are separated by size
due to differences in their equilibrium positions along the channel height, it was shown
that the magnitude of the lateral displacement for particles of different sizes depends not
only on their distance to the corrugated wall, but on non-trivial relationships between the
particle size and corrugation wavelength.

Here, we complement these findings by studying pressure-driven flow between a
corrugated surface and a parallel flat wall. Using a perturbation ansatz for the amplitude
of the surface structure, we calculate the pressure field induced by the surface pattern and
derive analytical expressions for the three-dimensional flow fields up to second order in the
surface roughness. Based on these results, we determine the motion of tracer particles near
the corrugated wall. While the large-scale helicoidal flows in corrugated microchannels,
generated by the combined effect of the corrugations and the lateral confining walls,
have diameter equal to that of the channel dimension and a pitch of several wavelengths
(Stroock et al. 2002a), our results reveal that tracer particles also follow three-dimensional
helical trajectories, independent of the lateral confining walls, which have a pitch of one
wavelength and a diameter that depends on the distance to the corrugated surface and the
corrugation wavelength. Projected to two dimensions, the trajectories of tracer particles
resemble the oscillatory near-surface motion observed in several experiments (Choi &
Park 2007; Hsu et al. 2008; Choi et al. 2011; Qasaimeh et al. 2017). The oscillatory
pattern is characterized by near-surface particle motion along the corrugations while
moving above grooves and across the corrugations while moving over ridges. Moreover,
our results demonstrate that near-surface particles exhibit an overall drift along the surface
corrugations, leading to a skewed helical trajectory. We quantify the overall displacement
as a function of surface wavelength and particle position along the channel height, showing
that the lateral drift can be achieved independent of the recirculating flows generated in
closed channels.

Our paper is structured as follows. In § 2, we outline a hydrodynamic model for the
pressure-driven flow between a flat wall and a parallel rough wall. In § 3, we describe
our experimental method for measuring the flow field in a corrugated microchannel
using particle image velocimetry. To our knowledge, this is the first experimental
measurement of velocity fields in corrugated microchannels. We also outline our method
for three-dimensional single-particle tracking in the corrugated channels. In § 4, we
provide experimental and theoretical results for the roughness-induced pressure and
flow fields and compare them qualitatively and quantitatively. Furthermore, we find
good agreement between our experimentally measured mean velocities and the theory
from Stroock et al. (2002a) for flows generated in corrugated microchannels with
confining lateral walls. Most importantly, our results are complemented by theoretical and
experimental measurements of three-dimensional helical particle trajectories. Finally, we
investigate the effect of the ratio of corrugation wavelength to channel height for varying
positions along the channel height on the lateral drift of tracer particles in the flow.

2. Hydrodynamic model

We consider three-dimensional, low-Reynolds-number, pressure-driven flow between two
plates, where the lower surface has a given shape z = εL H(x, y), with shape function
H(x, y), as indicated in figure 1. Here, L denotes the distance between the upper surface
and the reference surface S0, and we denote by ε a dimensionless roughness parameter.
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z

x
y

L

Sw

z = εL H (x, y) S0

Fluid

Figure 1. Sketch of pressure-driven flow between the lower corrugated surface Sw and the upper planar wall
(side view). Here, L denotes the distance between the upper surface and a reference surface S0 at z = 0, H(x, y)
is the shape function, and ε is the surface roughness.

The velocity and pressure fields, u(x, y, z) and p(x, y, z), respectively, obey the Stokes and
continuity equations,

μ ∇2u = ∇p and ∇ · u = 0, (2.1a,b)

where μ denotes the fluid viscosity. We have no-slip boundary conditions on the lower
and upper surfaces: u(x, y, z = εL H(x, y)) = 0 and u(x, y, z = L) = 0. Subsequently, we
consider small surface corrugations, corresponding to ε � 1, and expand the flow field up
to third order in the small parameter ε:

u = u(0) + εu(1) + ε2u(2) + O(ε3). (2.2)

An average pressure gradient is applied along the direction of the flow, 〈dp/dx〉 = −G,
hence we rescale by

u = GL2

2μ
U, p = GLP, x = LX, y = LY, z = LZ. (2.3a–e)

By using the method of domain perturbation (Kamrin, Bazant & Stone 2010; Kurzthaler
et al. 2020), we obtain the boundary conditions for the components of the expansion:

U (0) = 0, U (1) = −H(X, Y)
∂U (0)

∂Z

∣∣∣∣∣
Z=0

, (2.4a)

U (2) = −H(X, Y)
∂U (1)

∂Z

∣∣∣∣∣
Z=0

− 1
2

H(X, Y)2 ∂2U (0)

∂Z2

∣∣∣∣∣
Z=0

on Z = 0, (2.4b)

U (0) = 0, U (1) = 0, U (2) = 0 on Z = 1. (2.4c)

We note that the zeroth-order flow field is pressure-driven flow between parallel
plates, U (0) = Z(1 − Z)eX , and the pressure is P(0) = −XeX . Thus the boundary
conditions (2.4a–2.4b) on Z = 0 simplify to U (1)(X, Y, Z = 0) = −H(X, Y) eX and
U (2)(X, Y, Z = 0) = −H(X, Y) ∂U (1)/∂Z|Z=0 + H(X, Y)2 eX .
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Generally, one can calculate the first-order perturbation U (1) by applying a Fourier
transform to the X- and Y-components,

Ũ(KX, KY , Z) = 1
2π

∫
R2

exp(−i(KXX + KYY)) U(X, Y, Z) dX dY; (2.5)

the inverse transform is U(X, Y, Z) = (2π)−1 ∫
R2 exp(i(KXX + KYY)) Ũ(KX, KY , Z) dKX

dKY . The Stokes and continuity equations (2.1a,b) then simplify to(
d2

dZ2 − K2

)
Ũ (1) =

(
iK + eZ

d
dZ

)
P̃(1), (2.6a)

iK · Ũ (1) + dW̃(1)

dZ
= 0, (2.6b)

where we have used Ũ (1) = [Ũ(1), Ṽ(1), W̃(1)]T, K = [KX, KY , 0]T and K = |K |.
Rearranging (2.6a)–(2.6b) provides an equation for the pressure field,(

d2

dZ2 − K2

)
P̃(1) = 0, (2.7)

which can be solved by P̃(1) = p0(K) exp(−KZ) + p1(K) exp(KZ).
Using this form as input for (2.6a)–(2.6b), we can calculate the velocity field U (1) and

determine the coefficients p0 and p1 by enforcing the boundary conditions (2.4a) and
(2.4c), which depend on the surface shape H(X, Y). Knowledge of the first-order flow field
U (1) then allows us to compute iteratively the second-order flow field U (2) with boundary
conditions in (2.4b)–(2.4c). The velocity fields obtained via the domain-perturbation
approach have been validated with numerical simulations of the full hydrodynamic flows
(assuming a shear flow scenario) by Roggeveen, Stone & Kurzthaler (2023). In particular,
the error of the perturbative approach remained small for small surface roughness and
moderate for large wavelengths λ/L � 2.

It is worth emphasizing that the theory is, in principle, valid for arbitrary surface
shapes. However, analytical progress is limited by whether the surface shape function
H(X, Y) and powers of it (e.g. H(X, Y)2 is required for the second-order flow field)
have an analytically tractable Fourier transform. Furthermore, one may need to perform a
numerical backtransform of the pressure and flow fields to real space. For cosine and sine
functions, the calculations can be done analytically. Consequently, for every shape function
that can be expanded in terms of a Fourier series (i.e. periodic, piecewise continuous, and
integrable over the period), our approach allows calculation (semi-)analytically of the flow
fields.

At this point, we want to mention that the stream function for two-dimensional shear
flow near a periodic surface has been addressed recently (Assoudi, Lamzoud & Chaoui
2018). Also, analytical work on the three-dimensional streamlines over sinusoidal surface
grooves, tilted with respect to the principal flow direction, has provided a prediction for
the helicity of the flow (Stroock et al. 2002a). The same authors later calculated the flow
over herringbone structures in a channel of finite width in terms of a Fourier expansion
by approximating the surface grooves with an effective slip velocity (Stroock & McGraw
2004). The focus of the latter study, however, was on the impact of the corrugated surfaces
on the mixing of particulate suspensions.
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Figure 2. Experiments. (a) The channel used in the experimental system is cast polydimethylsiloxane (PDMS)
with corrugations on the upper wall. (b) A cross-sectional view of the channel visualized with fluorescent dye.
Here, the wavelength is λ = 600 μm, the height is L = 320 μm, and the amplitude is εL = 30 μm. (c) Flow
field visualization of pressure-driven flow in the corrugated channel from a time stack of 200 experimental
images taken at frame rate 7.4 fps with 1 μm diameter fluorescent particles. (d) Visualization of the trajectory
of a 5 μm diameter particle in pressure-driven flow in the corrugated channel.

3. Experimental methods

We fabricate two channels, both with corrugations of wavelength λ on the top wall,
but with different channel heights L, therefore varying the ratio of λ/L. We 3-D print
moulds of the negative of each channel (Formlabs Form 2), and cast a clear channel
from polydimethylsiloxane (PDMS). We punch inlet and outlet holes, and bond the
PDMS channel to a glass slide (figure 2a). One channel has height L = 320 μm and
surface amplitude εL = 30 μm. The second channel has height L = 615 μm and surface
amplitude εL = 60 μm. The wavelength of the surface corrugations for both channels
is λ = 600 μm, and the aspect ratio (width to height) of both channels is 10. The
channel height and corrugation wavelength and amplitude were measured by filling the
channel with a fluorescent dye and taking xz images using a confocal microscope (Leica)
(figure 2b).

To measure the flow field in the channel, we use a syringe pump, with prescribed flow
rates 2.5 and 10 μl min−1, respectively, for the L = 320 and 615 μm channels, to flow a
suspension of neutrally buoyant fluorescent 1 μm diameter tracer particles through the
channel. We use a confocal microscope (Leica) to image a 916 μm × 916 μm section in
xy at frame rate 7.4 fps and capture 200 frames. Using PIV Lab (Stamhuis & Thielicke
2014; Thielicke & Sonntag 2021) in MATLAB (MathWorks), we perform particle image
velocimetry of the steady flow field to measure the axial and transverse components of the
velocity. We image at 40 different z-positions along the channel height. A stack of 200
time series images at z = 120 μm is shown in figure 2(c), where the oscillations of the
streamlines are visible as bright streaks.

In addition to measuring the flow field in the xy-plane, we can measure the
three-dimensional trajectories of individual tracer particles. For the same channels, we
flow a dilute suspension of neutrally buoyant fluorescent tracer particles with diameter
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Figure 3. Surface structure and roughness-induced pressure. (a) Contour plot of the surface structure H(X, Y).
The grey shaded areas indicate the height profile of the underlying surface, where dark areas correspond to
grooves, and white areas to ridges, respectively. The arrow indicates the direction of the applied pressure
gradient. (b) Contour plot of the roughness-induced components of the pressure field P − P(0) = εP(1) +
ε2P(2) at the centre of the channel Z = 0.2. Here, the black dashed lines correspond to the maxima of the
surface structure. (c) Roughness-induced pressure along X at Y = 0 for varying Z. The black dashed line
corresponds to H(X, Y). The wavelength in (b,c) is λ/L = 2. The applied pressure gradient is in the X-direction.

5 μm through the channel at a constant flow rate using a syringe pump. We take xyzt
images using a confocal microscope (Leica). The xy image is 916 μm by 230 μm, and
we image 27 sections in z with step size 2.365 μm at frame rate 18 fps, acquiring the xyz
volume in 1.5 seconds. For every time step, we find the (x, y) location of the particle using
the circle detection algorithm in MATLAB (Mathworks). We determine the z-position
of the particle at each time step by first cropping the image around the particle location
and calculating G(z) = ∑

I(x, y), where I(x, y) is the image intensity, for each image in
the z-stack. The image with max(G) is determined to be the z-position of the particle.
We iterate this process for each time step to find the particle trajectory (x(t), y(t), z(t)).
A sample trajectory, projected to the xy-plane, is shown as the superposition of the frames
of the determined best z-position for each time step in figure 2(d).

Our experiments have Stokes number Stk ≈ 10−9, where the Stokes number is defined
by Stk = ρpd2

pU/18μD. Here, ρp is the particle density, dp is the particle diameter, U is
the characteristic fluid velocity, μ is the fluid viscosity, and D is the hydraulic diameter of
the channel.

4. Results and discussion

While the theory presented in § 2 is valid for arbitrary surface shapes, here we study the
aspect of parallel corrugations, reminiscent of the pattern used widely in microfluidic
devices (Stroock et al. 2002b; Choi & Park 2007; Hsu et al. 2008; Choi et al.
2011; Qasaimeh et al. 2017). We consider a surface shape H(X, Y) = cos(K0(X + Y))

characterized by the wavenumber k0 = K0/L, corresponding to a wavelength λ = 2π/k0.
We note that the surface corrugations are at angle π/4 to the direction of the applied
pressure gradient (see figure 3a). In what follows, we refer to fluid transport along
corrugations when a fluid particle moves on a path in the positive X-direction but with
displacement in the negative Y-direction, and across corrugations when the flow path is
instead in the positive Y-direction.

To compute the pressure and flow fields, we follow the general approach
outlined in § 2. Therefore, we use the Fourier transform of the surface shape
H̃(KX, KY) = π[δ(K0 + KX) δ(K0 + KY) + δ(K0 − KX) δ(K0 − KY)], where δ(·) denotes
the delta function, as input to calculate the pressure P̃(1) and the velocity field Ũ (1)
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in Fourier space and transform back to real space analytically. We repeat this for the
second-order flow field U (2), where the Fourier backtransform is still doable but becomes
tedious. An alternative way to compute the flow fields, which relies on the sinusoidal form
of the surface shape, is outlined by Roggeveen et al. (2023).

4.1. Roughness-induced pressure fields
We find that the surface corrugations lead to the generation of a pressure field P that varies
with position. In particular, the zeroth-order pressure field is P(0) = −X, and the first-order
pressure field evaluates to

P(1)(X, Y, Z) = sin(K0(X + Y))
K0 exp(−K0

√
2(2 + Z))

1 + 4K2
0 − cosh(2

√
2K0)

× [exp(2
√

2K0Z) + exp(4
√

2K0) + (2
√

2K0 − 1)

× exp(2
√

2K0(Z + 1)) − exp(2
√

2K0) (2
√

2K0 + 1)]. (4.1)

Higher-order terms are lengthy and not presented here. For a corrugated surface H(X, Y) =
cos (K0(X + Y)) (see figure 3a), the roughness-induced contributions to the pressure field
at Z = 0.2 are shown in figure 3(b). Plotting the roughness-induced contributions to P
along X at Y = 0 for varying Z-positions (figure 3c), we see that the pressure builds up in
front of the surface ridges and decreases in front of the surface grooves, where the surface
shape is depicted by the black dashed line.

In particular, the first-order contribution to the pressure, which can be abbreviated by
P(1) = sin(K0(X + Y)) P̄(1)(Z) (see (4.1)), has its extrema at the inflection points of the
surface, i.e. at points of vanishing curvature, cos(K0(X + Y)) = 0. The extrema are at
X + Y = (2n + 1)π/(2K0) = (2n + 1)λ/(4L) for n ∈ Z, with minima at X + Y = (4n +
1)λ/(4L) and maxima at X + Y = (4n − 1)λ/(4L). The inflection points are modified by
the second-order contribution P(2).

We find that the magnitude of the roughness-induced contributions to the pressure
decrease as Z increases, moving towards the flat upper wall (figure 3). Finally, we note
that the pressure field generated by the corrugated surface is anisotropic relative to the
direction of the applied pressure gradient, along X (figure 3b), and can therefore induce,
in addition to flows along the Z-direction, transverse flows (in the XY-plane).

4.2. Roughness-induced flow fields
The streamlines along the channel (XZ-plane), shown in figure 4(a), display oscillations
over the surface corrugations, which vanish near the flat upper wall. Furthermore, we
find a non-vanishing lateral velocity field in the YZ-plane (figure 4b), which is generated
solely by the corrugated surface. In particular, the flow moves in opposite Y-directions over
surface ridges compared to grooves. This response leads to flow patterns, which alternate
their direction depending on the underlying surface structure.

The streamlines (XY-plane) are oscillatory in the transverse (Y) direction, transporting
fluid along the direction of the corrugations above surface grooves and across the
corrugations above ridges; see figures 4(c,d) for Z = 0.20 and Z = 0.35, respectively.
The grey shaded background depicts the height of the underlying surface with height
map corresponding to figure 3(a). The oscillations are a result of the pressure field and
consequently the pressure gradients generated due to the corrugated surface structure
(figures 3b,c). The pressure gradient over the grooves has dP/dY > 0, which generates
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Figure 4. Theoretical and experimental velocity fields. (a,b) Streamlines of the theoretical velocity field in
(a) the XZ-plane, [U(0) + εU(1) + ε2U(2), W(0) + εW(1) + ε2W(2)]T, and (b) the YZ-plane, [V(0) + εV(1) +
ε2V(2), W(0) + εW(1) + ε2W(2)]T. The grey areas indicate the surface shape from the side. (c,d) Streamlines of
the theoretical velocity field in the XY-plane, [U(0) + εU(1) + ε2U(2), V(0) + εV(1) + ε2V(2)]T, at (c) Z = 0.20
and (d) Z = 0.35. The grey shaded areas indicate the height profile of the underlying surface, where dark areas
correspond to grooves and white areas to ridges, respectively (see colour map in figure 3a). (e, f ) Streamlines of
the experimental velocity field in the XY-plane at (e) Z = 0.20 and ( f ) Z = 0.35. In all plots, the wavelength is
λ/L = 1.87 and the surface roughness is ε = 0.094. Furthermore, the colour map corresponds to the magnitude
of the velocity in a particular plane. Note that for the experimental velocities, the magnitude includes only the
X- and Y-components of the velocity, since the Z-component is not measured.

flow along the corrugations, in the negative Y-direction. Flow moves across the
corrugations (positive Y-direction) over the ridges, where dP/dY < 0. As expected, the
oscillatory flow becomes weaker for increasing Z. We also observe that near the surface,
the flow along the surface grooves is faster than above the surface ridges. To compare
our experimental measurements to theoretical predictions, we rescale the experimental
measurements using (2.3a–e), where G is determined for pressure-driven flow in a
rectangular channel with prescribed flow rate Q, and channel height and width L and
w, respectively. Therefore, G = (12μQ/wL3)(1 − (6L/w)

∑∞
n=0 Λ−5

n tanh (Λn(w/L)))−1,
with Λn = (2n + 1)π/2. Comparing experimental results with the theoretical predictions
(figures 4c,d), we find qualitatively similar behaviour, where fluid is transported along
the grooves and across the ridges. Additionally, both theory and experiments show that
the magnitude of the velocity is larger over the grooves than over the ridges. However,
the magnitudes of the velocity differences, |Ugroove − Uridge| and |Vgroove − Vridge|, of
our experimental measurements are smaller than the theory predicts; in particular, for
Z = 0.35 (figure 4 f ), we see very little variation in the velocity between the ridges and
the grooves. We believe that the discrepancy between theory and experiments is twofold.
While small spatial fluctuations in the velocity field result from the fabrication of our
corrugated channels, the overall difference in velocity differences, |Ugroove − Uridge| and
|Vgroove − Vridge|, results from the absence of channel side walls in our theory. We consider
this aspect later in more detail and show that the average velocities are better described by
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Figure 5. Theoretical and experimental velocities for varying λ/L. The measured experimental and theoretical
X and Y velocities, U and V , along Y = 0 for (a,b) λ/L = 1.87 and (c,d) λ/L = 0.98 for varying Z-positions.
The symbols indicate the experimental data, and the solid lines are the theoretical prediction. The grey areas
indicate the surface shape at the position along X.

the theory of Stroock et al. (2002b), which accounts for the side walls of the channel
(figure 6).

We compare quantitatively the theoretical and experimental U and V velocities along
X at Y = 0 for varying Z-positions for pressure-driven flow over a surface with λ/L =
1.87 (figures 5a,b). As expected, both the experimental measurements (symbols) and
theoretical predictions (solid lines) show that the magnitude of the velocity differences,
for both U and V , is largest for Z-positions closest to the corrugated surface. Furthermore,
we find that the axial velocity U is slower over the surface ridges and faster over the
surface grooves. The magnitude of the velocity differences is larger for the transverse
velocity V than for the axial velocity U for both the experimental measurements and
theoretical predictions. We find that above the surface ridges, the transverse velocity V
is positive, leading to transport across the corrugations (in the positive Y-direction), while
in the grooves, the velocity is negative, inducing transport along the corrugations (in the
negative Y-direction). Furthermore, the magnitude of the transverse velocity V is larger
over the grooves than the ridges, for the Z-positions shown here.

In general, we find that the discrepancy between the experimental measurements of the
axial velocity compared to the theoretical predictions is larger for the λ/L = 0.98 surface
than for the λ/L = 1.87 surface (figures 5c,d). In this short-wavelength regime, it has been
shown numerically that the domain perturbation method for calculating the flow velocities
becomes less accurate (Roggeveen et al. 2023). Thus including higher orders in our
small-roughness expansion could capture the experimental observations better. We note
that the theoretical prediction of the axial velocity for Z = 0.36 is slower above the grooves
and faster above the ridges, which is the opposite of the theoretical prediction at Z = 0.36
for the λ/L = 1.87 surface. We also find that for the transverse velocity V , the experimental
measurements are more positive than the theoretical predictions. In fact, the theoretical
predictions for V are almost entirely negative, along the surface corrugations. We also
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Figure 6. Mean velocities along the channel height for varying λ/L: (a) 〈U〉 and (b) 〈V〉 averaged over 1.5λ
in the X- and Y-directions for various Z-positions in the channel. (c) The ratio of 〈V〉/〈U〉 is an approximation
for the drift of a particle in the transverse direction. Large negative values near the corrugated surface indicate
drift along the direction of the corrugations. Experimental data are indicated by the symbols. The dashed lines
indicate the theory presented in this work for pressure-driven flow between two parallel plates. The solid lines
are the theory from Stroock et al. (2002a) for a channel with confining lateral walls (see (A1a)–(A1b)).

find, both experimentally and theoretically, that the axial velocity differences are larger
for λ/L = 1.87 than for λ/L = 0.98, and the transverse velocity differences are smaller
for λ/L = 1.87 than for λ/L = 0.98. This finding illustrates that there is a non-trivial
relationship between the surface structure and the magnitude of the roughness-induced
velocities.

In addition to not satisfying λ/L > 1 for the short-wavelength surface λ/L = 0.98,
some of the error between the theoretical model and experimental measurements shown in
figures 4 and 5 can be understood by considering the difference in geometry between the
theory presented in this work and our experiments. The theory presented here considers
pressure-driven flow between two parallel plates, without side walls, while the experiment
is a channel that has confining lateral walls. The implication of this difference is that the
model allows for a net flux in the transverse direction, while in the experiment, the net flux
must be zero in the transverse direction. The lateral confining walls induce a helicoidal
flow, where fluid is transported in the negative Y-direction near the corrugated wall, and
in the positive Y-direction near the upper flat wall, as described by Stroock et al. (2002a).

To understand the effects of lateral confining walls, we measure the mean velocities 〈U〉
and 〈V〉 over 1.5λ in the X- and Y-directions for varying Z, and compare our experimental
measurements to the theory presented in this work with no lateral walls, and to the theory
of Stroock et al. (2002a), which includes effects of lateral walls. Figure 6(a) shows that
our experimental measurements (symbols) agree reasonably well with both the model of
Stroock et al. (2002a) (solid lines) and the model presented in this work (dashed lines).
Additionally, we are able to measure experimentally the 〈U〉 velocity for Z < 0, and we
do not observe any recirculating flow within the corrugations, which would be indicated
by 〈U〉 < 0. The mean transverse velocities are shown in figure 6(b). Without confining
lateral walls, the theory presented here (dashed lines) shows that the mean transverse
velocity will always transport fluid along the direction of the corrugations, 〈V〉 < 0, and
becomes larger in magnitude close to the corrugations. The confining lateral walls impose
the constraint that the net flux in the transverse direction is zero, requiring that near the
upper wall, the mean transverse velocity is 〈V〉 > 0. There is a turning point in the lower
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Figure 7. Three-dimensional experimental helical trajectories of tracer particles. (a) Three-dimensional
particle trajectories over 1.5λ for λ/L = 1.87 and 0.98 (see experimental methods in § 3). (b) Projection of
of the three-dimensional trajectories onto the XY-plane. (b) Projection of the three-dimensional trajectories
onto the XZ-plane.

half of the channel where 〈V〉 < 0. We find good agreement between the model from
Stroock et al. (2002a) and our experimental measurements, which indicates that although
we do not satisfy λ/L > 1, the theory still captures the behaviour well for λ/L = 0.98.
We note that inside the corrugations, Z � 0.1, the experimental measurements of |〈V〉|
decrease because they are averaged over the entire cross-section, where a portion is the
solid corrugated surface.

Taking 〈V〉/〈U〉, we obtain the ratio of the net flux in the transverse direction compared
to the axial direction, or the direction of the applied pressure gradient. In particular,
〈V〉/〈U〉 = −1 indicates that the the flow direction is parallel to the grooves, at angle π/4.
We find that near the corrugations and for a given Z, the ratio of 〈V〉/〈U〉 is more negative
for λ/L = 0.98 than for λ/L = 1.87, indicating that shorter wavelengths produce a larger
flux in the transverse direction. This observation is found for both the theory presented in
this work and that of Stroock et al. (2002a) and for the experimental measurements. We
note that this observation is for tracer particles. For larger particles (λ/a = O(1)), Chase
et al. (2022) shows that transverse displacement depends non-trivially on the interaction
between the particle size and surface corrugation wavelength.

4.3. Helical motion of neutrally buoyant tracer particles
We plot the experimental three-dimensional trajectories of tracer particles for λ/L = 1.87
and 0.98 in figure 7(a). The three-dimensional motion is helical, where the pitch of the
helix is the wavelength of the corrugated surface. This helical trajectory is distinct from
the helical streamlines described by Stroock et al. (2002a,b), where the pitch of the helix
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spans several wavelengths and the diameter is the width of the channel. The mechanism for
both of these helical trajectories is due to the corrugated surface; however, the helix that we
measure is due to the changes in pressure over one wavelength, while the helix measured
by Stroock et al. (2002a,b) is due to the confining lateral walls driving flow along the
corrugations near the corrugated wall and in the opposite direction near the flat upper
wall. Stroock et al. (2002a,b) emphasize that the helicoidal flow field is useful for mixing
in low-Reynolds-number flows in channels. The smaller-scale helical trajectories that we
observe near the corrugated surface are independent of the background helicoidal flow and
could have implications for mixing near a contaminated rough surface or transporting the
species perpendicular to the rough wall. Furthermore, this mixing occurs independent of
the confining lateral channel walls, and therefore is generic to flow over rough surfaces in
any geometry.

Projecting the three-dimensional helical motion to the XY-plane, as shown in figure 7(b),
we see that the lateral displacement is larger for the smaller λ/L surface. In addition to
the two-dimensional measurements that we reported earlier, here we have experimental
measurements of the particle’s trajectory in the Z-direction (figure 7c). We find that the
oscillations in the Z-direction are larger for the longer wavelength surface, λ/L = 1.87,
despite the smaller lateral displacement.

Our theoretical model allows us to explore further the full ramifications of the
three-dimensional flow and the potential effect of mixing due to the corrugations. We
explore the effect of wavelength on the trajectories of tracer particles following the
streamlines in pressure-driven flow in a channel with one corrugated surface and one
planar surface, without confining lateral walls.

We denote by r(t) = [x(t), y(t), z(t)]T the position of a particle at time t. Rescaling
length scales by L, time scales by L/U, and velocities by GL2/2μ, the equation of motion
(neglecting hydrodynamic interactions, i.e. point-like particles) obeys

dR
dT

= Z(1 − Z)eX + εU (1)(R) + ε2U (2)(R), (4.2)

where capital letters represent the rescaled variables. For a pressure-driven flow between
two planar walls (corresponding to U (1) = U (2) = 0), the particle displacements are
�X(T) = T Z(0)(1 − Z(0)) and �Y(T) = �Z(T) = 0, where Z(0) denotes the initial
position at time T = 0. The particle trajectory near a corrugated wall is obtained by
evaluating (4.2) numerically.

In figure 8(a), we show helical trajectories for λ/L = 2, 4 and 10, starting at
position Z(0) = 0.3. We find that the theoretical predictions agree qualitatively with
our experimental measurements in that the shortest-wavelength surfaces produce the
largest drift (figure 8b), while having the smallest changes in Z (figure 8a). Quantitative
comparison between experimental and theoretical three-dimensional trajectories will be
influenced by the confining lateral walls in our experiments. Additionally, to compare
the net drift of our experimental three-dimensional trajectories with the theoretical
predictions, longer experimental trajectories will provide more robust measurements of
the net drift, which we leave to future work.

4.4. Hydrodynamically induced drift
Most importantly, we find that the particle trajectories are oscillatory and display an overall
hydrodynamically induced drift along the surface corrugations. To quantify this behaviour
further, we have performed simulations for various initial positions Z(0) and wavelengths
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Figure 8. Three-dimensional theoretical helical trajectories of neutrally buoyant point-particles.
(a) Three-dimensional particle trajectories over 6λ for λ/L = 2, 4 and 10. (b) Projection of of the
three-dimensional trajectories to the XY-plane. Here, Z(0) = 0.3 for all trajectories.
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Figure 9. Trajectories of tracer particles near corrugated surfaces. (a,b) Particle trajectories in (a) the XY-plane
and (b) the XZ-plane, for a surface with wavelength λ/L = 2 and roughness ε = 0.1, and different initial
particle–surface distances Z(0). The grey shaded areas in (a) indicate the height of the underlying surface (see
colour map in figure 3a). Grey areas in (b) indicate the surface from the side. (c) Slope of the particle drift in the
XY-plane as a function of wavelength λ/L and for different initial particle–surface distances Z(0). The symbols
indicate the slopes of the trajectories starting at (X = 0, Y = 0, Z = Z(0)). The dotted lines correspond to the
theoretical prediction of the slope (4.3) by using Z = Z(0) and the solid lines are the predictions using the
average distance 〈Z〉 as input for (4.3).

λ/L and extracted the slope α of the trajectories; see figure 9. Our results indicate that the
slope of the trajectories, irrespective of Z(0) or λ/L, is negative, hence the particles have
a net displacement along the surface grooves. This qualitative behaviour is in agreement
with experiments of colloidal particles near surface corrugations, e.g. Choi & Park (2007),
Hsu et al. (2008) and Choi et al. (2011). The magnitude of the slope becomes smaller
for increasing wavelength λ/L and particle–surface distance Z(0) (figure 9c). We further
approximate the slope α of the trajectories by integrating the velocities U and V over one
wavelength and taking the ratio:

α ≈
∫ λ/L

0 V(X, Y, Z) dX∫ λ/L
0 U(X, Y, Z) dX

= ε2(1 − Z)V̄(2)
0

Z(1 − Z) + ε2(1 − Z)Ū(2)
0

, (4.3)
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where Ū(2)
0 and V̄(2)

0 are constants. The slope α depends on the dimensionless wavenumber
K0, the roughness ε, and the vertical coordinate Z. We find that the displacement is largest
near the corrugations and that the effect is strongest for short-wavelength surfaces. For
long-wavelength surfaces, the transport in the simulated trajectories becomes independent
of the Z-position. The prediction for the slope α with Z = Z(0) explains fairly well the
drift of particles for small λ/L obtained from our simulations; however, it deviates from
the data for larger λ/L (figure 9c). We note that the vertical motion of the particle varies
along its trajectory, which affects the overall drift (figure 9b). Therefore, we replace Z by
its distance 〈Z〉 averaged over the surface wavelength λ/L in (4.3), which allows for a better
description of the slope α.

Finally, we again stress that the presented theory is valid for channels of infinite width,
so that we do not observe circulating flows in our theoretical results (Stroock et al.
2002a,b; Stroock & McGraw 2004). In channels with lateral side walls, the experimental
near-surface helical flows reported in this work are in addition to the circulating flows
along the channel length. In our experiments, we estimate that the pitch of the helix of
the channel-scale helicoidal flow is ≈20 cm, or ≈300λ, compared to the pitch of the
near-surface helical flows, λ = 600 μm (see Appendix A).

5. Conclusions

We have shown, theoretically and experimentally, that low-Reynolds-number pressure-
driven flow between a flat wall and a parallel corrugated wall, whose corrugations are tilted
with respect to the applied pressure gradient, leads to three-dimensional helical streamlines
near the corrugated surface. Using a perturbation approach for small surface amplitude,
our results reveal that on the scale of each corrugation, the pressure gradients generated by
the surface corrugations drive transverse flows generating the helical streamlines. These
near-surface flows are in addition to the helicoidal recirculating flows studied previously
that are generated by the lateral confining walls of microfluidic channels (Stroock et al.
2002a,b; Stroock & McGraw 2004).

We find that the roughness-induced pressure builds up approaching a surface ridge,
and drops in front of a surface groove. These oscillations in the pressure field induce an
oscillatory velocity along the flow direction that is faster above the surface grooves than
the surface ridges. The velocity in the transverse direction is directed across the ridges and
along the grooves and is largest near the surface. We find good qualitative agreement
between our theory focusing on the scale of one corrugation and our experimental
velocity measurements obtained by particle image velocimetry. Furthermore, we find good
quantitative agreement between the mean velocities measured in our experiments and
those reported by Stroock et al. (2002a), which account for confining lateral walls. Both
our theory and the theory of Stroock et al. (2002a) find that short wavelength surfaces
induce larger transverse flows near the corrugated surface, which our experiments confirm.

By tracking tracer particles moving near the surface corrugations, we observe
three-dimensional skewed helical trajectories, where the particle drifts along the
corrugations when close to a groove, while it moves across the corrugations in the
presence of a ridge. Overall the particles display a net drift along the surface corrugations,
which depends on surface wavelength and particle-surface distance. Our experimental
measurements of the helical trajectories show that for longer wavelength surfaces, despite
larger oscillations along the channel height, the net drift is smaller than it is for shorter
wavelength surfaces. This observation is in agreement with our theoretical predictions.

982 A31-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.106


C. Kurzthaler, D.L. Chase and H.A. Stone

Our findings rationalize earlier experimental observations on the motion of colloids
(Choi & Park 2007; Hsu et al. 2008; Choi et al. 2011) and biological cells (Qasaimeh
et al. 2017) near corrugated surfaces and demonstrate that particle drift and oscillatory
motion can be generated solely by the presence of the corrugated surface, independent
of the lateral confining walls. Furthermore, these behaviours appear to be generic across
different systems, ranging from pressure-driven flows (Choi & Park 2007; Hsu et al. 2008;
Choi et al. 2011; Qasaimeh et al. 2017) to particle sedimentation (Chase et al. 2022).

The helical flows reported in this work might have implications for near-surface mixing.
Their three-dimensional nature also demonstrates that patterned surfaces influence particle
motion independent of the helicoidal flows generated due to confining walls (Stroock et al.
2002a,b; Stroock & McGraw 2004).

Theory and experiments capturing the finite size of the particles are required to fully
assess the helical nature of particle trajectories in pressure-driven flow. It may also be
interesting to study the effect of different surface shapes, such as e.g. randomly structured
topographies (Charru et al. 2007; Kurzthaler et al. 2020), or particle shapes (Uspal, Eral
& Doyle 2013; Georgiev et al. 2020) on the observed flow patterns and trajectories.
Understanding these aspects could provide novel ways to manipulate flow and thereby
particle motion, which could be useful potentially for future technological and biomedical
applications involving mixing and sorting.
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Appendix A. Transverse flows in corrugated channels with side walls

We consider a closed microfluidic channel of width w and height L that has a corrugated
surface topography on the lower channel wall. The surface corrugations are characterized
by a wavelength λ and tilted at an angle θ relative to the applied pressure drop. The
expressions for the mean axial and transverse velocities in the xy-plane for a thin (w 
 L),
closed channel with shallow grooves (εL � L) (shown in figure 6) are from Stroock et al.
(2002a). The mean axial 〈u〉 and transverse 〈v〉 velocities are given by

〈u〉 = 6Q
Lw

(
1 − 3

2
ε2(1 − K̃)

)(
(L − z)(z − z̃eff )

L2

)
, (A1a)

〈v〉 = ε2 6Q
Lw

(
3
2

z(L − z)
L2 − L − z

2L

)
(K‖ − K⊥) sin θ cos θ, (A1b)
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Surface corrugations induce helical near-surface flows

where K̃ = K⊥ cos2 θ + K‖ sin2 θ and z̃eff = zeff ⊥ cos2 θ + zeff ‖ sin2 θ . The expressions
for K‖, K⊥, zeff ‖ and zeff ⊥ are

K‖ = −1 + 4πL
λ

⎛
⎜⎜⎜⎝

sinh
(

2πL
λ

)
cosh

(
2πL
λ

)
− 2πL
λ

sinh
(

2πL
λ

)2

−
(

2πL
λ

)2

⎞
⎟⎟⎟⎠, (A2a)

K⊥ = −1 + 2πL
λ

cosh
(

2πL
λ

)

sinh
(

2πL
λ

) , (A2b)

zeff ‖ = 1
2 K‖Lε2, (A2c)

zeff ⊥ = 1
2 K⊥Lε2. (A2d)

To compare the near-surface helical flows that we measure in this work with the
helicoidal flow due to lateral confinement, we compute the expression from Stroock et al.
(2002a),

tan Ω = ε2(K‖ − K⊥) cos θ sin θ

1 − ε2(3/2 − K̃)
, (A3)

where Ω is the angle between the axial direction of the flow and the direction of flow just
below the flat top of the channel. The pitch of the helix is then defined as

p = w
tan Ω

. (A4)

The pitch of the helix of the channel-scale helicoidal flow is ≈20 cm for our channels of
widths w = 320 and 615 μm, which is three orders of magnitude larger than the scale of
the near-surface helical flows reported here, which have a pitch on the scale of the surface
wavelength λ = 600 μm.
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