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4.1 Introduction

Neural translations are not neutral. On the contrary, as a new dilemma for
neural machine translation as neural machine translation systems have
learned to recognize patterns in lexical and semantic units in human lan-
guages (Johnson et al., 2017; Pope et al., 2020; Grechishnikova, 2021) to
translate more fluently, increasing cultural bias in the target language has
emerged. Given that language use is heavily influenced by the culture of the
host country and carries with it deeply ingrained perceptions, beliefs, and
attitudes (Downes, 1998; Fishman, 2019; Thomas and Wareing, 1999;
Montgomery, 1995), increasingly fluent translations can increasingly convey
those cultural aspects, and sometimes bring cultural biases along with them.
In this respect, machine biases induced by translation are inevitable conse-
quences of algorithms designed to achieve near-native level linguistic natur-
alness and communicative fluency in automatic translation outputs (Weng
et al., 2020; Feng et al., 2020; Martindale et al., 2019; Koehn, 2020;Wu et al.,
2016). And in fact, University of Cambridge researchers have indeed dis-
covered gender bias in machine translations of English into German, Spanish,
and Hebrew, chosen for their distinct linguistic and cultural properties
(Saunders and Byrne, 2020). Their studies revealed that, in MToutput, gender
bias in particular was an inevitable consequence of language use in training
datasets that included genres such as news reports and speeches. Similarly,
several studies of machine translation quality assessment revealed wide-
spread racial, as well as gender, bias (Tomalin et al., 2021; Font and Costa-
jussà, 2019; Salles et al., 2018; Best, 2017). In the machine translations of job
titles in the U.S. Bureau of Labor Statistics, Prates et al. (2019) showed
a strong tendency toward male defaults in as many as twelve languages
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(Hungarian, Chinese, Japanese, Basque, Yoruba, Turkish, Malay, Armenian,
Swahili, Estonian, Bengali, Finnish)1.

While commendable progress has been made in developing scalable
approaches to reducing such bias in machine translations, the problem persists.
Significant human effort is still required to revise MT training data, and the
resulting MT datasets still do not address all forms of social discrimination
inherited from target-language datasets. In our current study, we will speak of
this issue as inevitably arising from the social and cultural constraints of
artificial intelligence. Since human thoughts and behaviors do have social
and cultural contexts, sexist, racial, class, and other types of bias are inevitable
in MT output; and artificial intelligence, as our brainchild, will inevitably
amplify these tendencies. Nevertheless, they are predictable and preventable.
We argue that MT quality assessment should incorporate social, ethical, and
cultural sensitivity, rather than focusing solely on linguistic accuracy and
fluency. And specifically, for materials generated by neural translation, it is
necessary to develop mechanisms to support decision-making concerning the
trade-offs involving linguistic fluency and cultural biases. Special attention is
needed in specialized domains. One such, multicultural mental healthcare,
provides the focus of our study.

Globally, anxiety disorders are the largest burden onmental health (3.76 percent
in 2017). Countries with the highest prevalence of anxiety disorders (5 percent–
6 percent) are some of the most advanced economies in their regions (Argentina,
Brazil, Chile, Uruguay) and worldwide (U.S., Canada, UK, Germany, Australia,
Sweden, Spain, France, Italy, Norway, New Zealand, Denmark, Ireland), as well
as a few countries in the Middle East and Africa (Algeria, Iran). In Asia, only
a few countries ranked within this range (5–6 percent), even though anxiety
disorders are traditionally prevalent in countries like Japan, South Korea, and,
more recently, India and China. Developing Latin American countries, too, have
a tradition of anxiety. However, we can ask whether mental disorders are openly
treated in different countries, and whether differences in openness might affect
these statistics. The use of medical and mental healthcare can be subject to
discrimination and stigma. And in fact, we do find that, in some rapidly develop-
ing countries, mental health issues are underrepresented, even though their
populations are exposed to environmental, social, and economic stressors. This
underrepresentation might be a result of traditional cultural beliefs stigmatizing
people with mental illnesses, and perhaps from a related lack of access to mental
healthcare support.

1 Some of the language choices have been criticized, however. Chinese and Japanese are not
gender neural languages, for example.
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We would expect such negative social sentiments or attitudes. Thus, to
test our hypothesis, we gathered and generated translations into Chinese,
Hindi, and Spanish of public health materials on anxiety disorders
developed by health-promotion organizations in English-speaking coun-
tries. The back-translations from these three languages were paired with
their original English health materials, and the distribution of negative
emotion words in each pair was statistically analyzed (Figure 4.1).

4.2 Data Collection

We developed a set of quality control criteria based on five considerations for
searching English public health materials on anxiety disorders. In gathering our
training data, we screened online mental health information on this topic
according to these criteria. Our intent has been to ensure the usefulness of the
machine learning classifiers we have developed for health organizations and
their wide applicability in research and clinical settings for effective, positive
cross-lingual health communication concerning mental health disorders among
multicultural populations.

• Topic Relevance: Our study focuses on anxiety disorders, due to their high
prevalence

• Information accessibility: The materials we selected were written in an
accessible, familiar style. Materials of this type are more likely to be trans-
lated by Google into language that the general public, as opposed to health
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Figure 4.1 Ratios of machine translations of statistically increased negative
emotions
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professionals, can understand. As the linguistic difficulty of English material
increases, training data will be restricted to professional-oriented health
resources. These will be less suitable for learning about the common lan-
guage in a given country and the social attitudes toward mental disorders
conveyed in its language.

• Information credibility: The English health materials selected were devel-
oped by national or charitable health-promotion organizations to ensure
credibility (see Appendix 4).

• Understandability: Online health information materials may be
intended for professionals or for patients. We chose English materials
intended for the public, since their translations can be better understood
by machine translation users from diverse cultural and linguistic back-
grounds and thus can impact their opinions on mental health conditions.
This criterion was significant because an important objective of our
research was to develop machine learning classifiers that would improve
translation quality – that is, that would help to produce less biased
machine translations that could contribute to more positive understand-
ing of anxiety disorders. With this goal in mind, we developed classi-
fiers to process English health materials in an accessible and
understandable manner.

• User relevance: While understudied, relevance to specific users is another
key indicator of mental health resource quality. The causes, symptoms, and
treatment of mental disorders vary considerably among people of varying
demographic characteristics – people of different ages, genders, socioeco-
nomic classes, and so on. We assume that health information can be signifi-
cantly improved by tailoring it to specific user groups, and accordingly
collected online English materials concerning anxiety disorders developed
for children, teens, young adults, the elderly, men, women, and transgender
people.

As part of the quality control process, we identified websites of national,
charitable health-promotion organizations and selected original English health
materials that met the above criteria. There were 557 original English health
materials. There are three sets of natural language features annotated on the
original English and back-translation health materials: multiple semantic cat-
egories using the university of Lancaster Semantic Annotation System
(USAS); word frequency bands (WFB); and lexical dispersion rates (LDR),
with the last two based on the British National Corpus. The total number of
annotation classes was 153 including semantic classes (115), WFB (18), and
LDR (20) (see Appendix 2).
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4.3 Development of Machine Learning Classifiers

We collected 557 original English health materials regarding anxiety disorders that
met all our search criteria. We generated their machine translations into Chinese,
Hindi, and Spanish using theGoogle Translate API.We then compared the original
Englishwith theirmatching back-translations from the three languages and used the
Linguistic Inquiry andWordCount System (LIWC) (University of Texas atAustin)
to find the distribution of words expressing negative emotions in both sets of
English materials, original and back-translation. A Wilkson signed-rank test
found back-translations from the target languages showed a statistically significant
increase (p*0.05) in expressions of negative emotions when compared to their
original English texts.

The original English texts were chosen since they yielded back-translations
showing statistically increased sentiment negativity concerning anxiety disorders.
Since our goal was to develop neural programs that could distinguish texts
relatively likely to produce biased translations, we then manually developed
training corpora as follows. We classified the original English texts into risky (1)
versus safe (0) classes: risky English texts were associated with back-translations
of increased negativity in at least one language of Chinese, Hindi, or Spanish; and
safe texts were associated with back-translations in which negativity increase was
statistically insignificant (p>=0.05) in all three test languages. Of the 557 texts
collected to train and test machine learning classifiers, 428 texts were classified as
safe (class 0) and 129 texts as risky (class 1).

Again, our goal was to distinguish texts that were safe, or unlikely to contain
biased language, from those that were risky, or like to contain such language. We
faced some analytical problems, however, in that (1) the languages we studied
differed in their respective degrees of negativity and (2) our corpus contained
many more safe than risky texts. The most negative translations were found in
Chinese (13.26 percent), followed by Hindi (8.24 percent) and Spanish (9.68 per-
cent); and within the three target languages, the ratio of English materials associ-
ated with increased negativity in machine translations and those without any
negative machine translations was 3:10.

In other words, in statistical terms, our data was imbalanced – as would be the
case, for example, if we attempted to distinguish legitimate credit card transac-
tions from fraudulent ones, since the former will greatly outnumber the latter in
any corpus. Fortunately, various techniques have been developed for handling
such data imbalance. Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002) in Python was applied to improve the balance between the
two classes of machine translation output in terms of negative emotion words.We
divided the whole dataset, after oversampling, into training (70 percent) and
testing datasets, and performed five-fold cross-validation on the training dataset
(see Table 4.1).
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4.4 Feature Optimization

Table 4.1 Training and testing datasets

Training/Testing Classifiers Class 0 Class 1

Before Oversampling Before total 428 129
After oversampling Training (70%) 303 296

Testing (30%) 125 132
Total 428 428
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Figure 4.2 Recursive Feature Elimination with Automatic Feature Selection as
the Base Estimator
Cross-validation classification error (CVCE)

(a) automatic optimization of English lexical dispersion features (from 20 to 9 feature,
CVCE= 0.333)
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4.5 Separate and Combined Feature Optimization

The dataset has 153 features, including 115 semantic classes, 18 WFB, and 20
LDR. By reducing high-dimensional feature sets, machine learning classifiers
can be made more efficient and interpretable. Accordingly, support vector
machine (SVM) methodology was used as the base estimator (RVM_SVM)
in recursive feature elimination.

Figure 4.2 (a) shows the automatic optimization of English lexical dis-
persion rate features. After reduction of the LDR from 20 to 9, the cross-
validation classification error reached its minimum (0.333). English lexis
dispersion rates range from 0 to 1, with higher dispersion rates indicating
wider distribution of the words across different textual genres, and thus
indicating whether the relevant language is general or specialized. Both
spoken and written dispersion rates were optimized: for very specialized
words in spoken English (DiSp1:0.0–0.1, DiSp3:0.2–0.3); for general words
in spoken English (DiSp6:0.5–0.6, DiSp9:0.8–0.9, DiSp10:0.9–1.0); and for
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(d) automatic optimization of all features (a, b, c) (from 153 to 119 features,
CVCE=0.245)
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medium-to-very-general words in written English (DiWr4:0.3–0.4,
DiWr6:0.5–0.6, DiWr8:0.7–0.9, DiWr10:0.9).

In a comparable way, Figure 4.4 (b) shows the automatic optimization of
English lexical frequency band features. When the number of features was
reduced from 18 to 7, the minimal cross-validation classification error was
obtained (0.333). In the British National Corpus (BNC), frequency bands refer
to the ordinal ranges of word occurrence frequencies. For written materials, we
listed nine frequency bands: FrWr1:0–500, FrWr2:500–1000, FrWr3:1000–
1500, FrWr4:1500–2000, FrWr5:2000–2500, FrWr6:2500–3000, FrWr7:3000–
3500, FrWr8:3500–4000, and FrWr9:4000–64420. The words that appear most
frequently in the BNC corpus are those in the higher bands. For example, only 30
English words in the FrWr9 band occur more than 4,000 times in the entire
database. Generally, the smaller the frequency bands, the less frequent or familiar
the words are to the public. We also provided nine frequency bands for spoken
materials: FrSp1:0–500, FrSp2:500–1000, FrSp3:1000–1500, FrSp4:1500–
2000, FrSp5:2000–2500, FrSp6:2500–3000, FrSp7:3000–3500, FrSp8:3500–
4000, and FrSp9:4000–57010. Again, higher frequencies indicate greater famil-
iarity with words. We note that optimization of frequency band features reduced
the original number of bands from 18 to 7: FrSp1:0–500, FrSp5:2000–2500,
FrSp9:4000–57010, FrWr4:1500–2000, FrWr7:3000–3500, FrWr8:3500–4000,
and FrWr9:4000–64420.

Finally, the automatic optimization of English semantic features is shown in
Figure 4.4 (c). There were in total 115 semantic features covering as many as 21
semantic categories: general and abstract terms (A1-A15, 15 features); the body
and the individual (B1-B5, 5 features); arts and crafts (C1); emotion (E1-E6, 6
features); food and farming (F1-F4, 4 features); government and public (G1-G3,
3 features); architecture, housing and the home (H1-H5, 5 features); money and
commerce in industry (I1-I4, 4 features); entertainment, sports and games (K1-
K6, 6 features); life and living things (L1-L3, 3 features); movement, location,
travel and transport (M1-M8, 8 features); measurements (N1-N6, 6 features);
substances, materials, objects and equipment (O1-O4, 4 features); education
(P1), language communication (Q1-Q4, 4 features); social actions, states, pro-
cesses (S1-S9, 9 features); time (T1-T4, 4 features); environment (W1-W5, 5
features); psychological actions, states and processes (X1-X9, 9 features); sci-
ence and technology (Y1-Y2, 2 features); and names and grammar (Z0-Z9, Z99,
11 features).

The minimal classification error (0.260) was reached when the original
semantic feature sets was reduced by almost half from 115 to 66: A12 (easy/
difficult); A13 (degree, extent); A15 (safety/danger); A7 (probability); B1
(anatomy, physiology); B2 (health and disease); B3 (medicines, medical
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treatment); E2 (liking); E3 (calm/violent/angry); E4 (happiness, contentment);
E5 (bravery, fear); E6 (worry, confidence); G2 (crime, law); I1 (money); I3
(employment); O4 (physical attributes); Q1 (linguistic actions, states, pro-
cesses); S1 (social actions, states, processes); S2 (people); S8 (helping/hinder-
ing); S9 (religion); W1 (environment); W3 (geographical terms); X1
(psychological actions, states, processes); X3 (sensory); X4 (mental object);
X5 (attention); X6 (Deciding); X7 (wanting, planning); X8 (trying); X9
(Ability); Z6 (negative); Z8 (pronouns); and so on. Figure 4.4 (d) shows the
automatic optimization of the three sets of natural language features combined.
The minimal classification error (0.245) was reached when the full feature set
(153 features) was reduced to 119.

4.6 Classifier Training and Development

Relevance vector machine (RVM) methodology was used to develop Bayesian
machine learning classifiers in Table 4.2. Different RVM models were com-
pared using paired optimized and unoptimized feature sets, as well as their
normalized versions, using three different techniques for feature normalization:
min-maximal normalization (MMN), L2 normalization (L2 N), and Z-score
normalization (ZSN). On the testing data, optimized feature sets of English
LDR (Disp_9) achieved a higher area under the receiver operator characteristic
(area under curve (AUC)=0.7023) than its matching unoptimized feature set
(Disp_20) (AUC=0.7013). Feature normalization increased AUC of optimized
and non-optimized feature sets to varying degrees. Optimization did not
improve the performance of the feature set of WFB, since the AUC of
Freq_7 on the testing data set (0.6626) was lower than Freq_18 (0.6784). By
contrast, optimization did enhance the performance of RVMs using semantic
features, as USAS_66 (0.7894) had a higher AUC than USAS_115 (0.773).
With min-max normalization as the best technique, the AUC of the optimized
model USAS_66 also increased.

The results of the separate optimizations of the English feature sets are
shown in Table 4.2. Table 4.3 shows the results of combining the three
feature sets. Although the optimized full feature set (F119) (AUC=0.778)
did not achieve a higher AUC than the unoptimized full feature set (F153)
(AUC=0.830), feature normalization significantly increased the AUC of
classifier F119. The most effective normalization technique was min-max
normalization, which increased the AUC of classifier F119 from 0.778 to
0.896, very similar to that of classifier F153 after the same normalization
process (0.897).
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Table 4.2 Comparison of RVMs with full vs. separately optimized features sets

RVM

Training data Testing data

Mean
AUC (STD) AUC Accuracy Sensitivity Specificity

Macro-
F1

Full Feature Set (English LDR: Disp)

Disp_20 0.6738
(0.0389)

0.7013 0.6381 0.6818 0.592 0.6367

Disp_20 (Min-
Max normaliza-
tion: MMN)

0.7943
(0.0329)

0.8147 0.7315 0.7121 0.752 0.7315

Disp_20 (L2 nor-
malization: L2 N)

0.6632
(0.038)

0.7049 0.6304 0.7652 0.488 0.6212

Disp_20 (Z-score
normalization:
ZSN)

0.7899
(0.0275)

0.859 0.7899 0.7803 0.8 0.7899

Automatically Optimized Feature Set (English LDR: Disp)

Disp_9 0.6709
(0.0409)

0.7024 0.6148 0.6742 0.552 0.6124

Disp_9 (MMN) 0.792
(0.0294)

0.8014 0.7588 0.7576 0.76 0.7587

Disp_9 (L2 N) 0.6666
(0.0417)

0.7062 0.6459 0.7424 0.544 0.641

Disp_9 (ZSN) 0.8134
(0.0082)

0.8254 0.7626 0.7348 0.792 0.7626

Full Feature Set (English Lexical Frequency Bands: Freq)

Freq _18 0.6906
(0.0429)

0.6784 0.6615 0.7652 0.552 0.6561

Freq_18 (MMN) 0.7911
(0.046)

0.8334 0.7626 0.8106 0.712 0.7615

Freq_ 18 (L2 N) 0.6673
(0.0503)

0.652 0.6381 0.75 0.52 0.6317

Freq_18 (ZSN) 0.8052
(0.0326)

0.8343 0.786 0.8788 0.688 0.783

Automatically Optimized Feature Set (English Lexical Frequency Bands: Freq)

Freq_7 0.6808
(0.0185)

0.6626 0.6381 0.7424 0.528 0.6324

Freq_7 (MMN) 0.6905
(0.0334)

0.6908 0.6148 0.6288 0.6 0.6144

Freq_7 (L2 N) 0.6668
(0.0246)

0.6378 0.6226 0.7197 0.52 0.6174

Freq_7 (ZSN) 0.7163
(0.0277)

0.7905 0.7198 0.7348 0.704 0.7195
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Table 4.2 (cont.)

RVM

Training data Testing data

Mean
AUC (STD) AUC Accuracy Sensitivity Specificity

Macro-
F1

Full Feature Set (English Semantic Classes: USAS)

USAS_115 0.7893
(0.0202)

0.773 0.7043 0.7045 0.704 0.7042

USAS_115
(MMN)

0.8623
(0.0302)

0.9219 0.856 0.8485 0.864 0.856

USAS_115
(L2 N)

0.7767
(0.0413)

0.8092 0.751 0.7803 0.72 0.7503

USAS_115
(ZSN)

0.8652
(0.0302)

0.9092 0.856 0.8258 0.888 0.856

Automatically Optimized Feature Set (English Semantic Classes: USAS)

USAS_66 0.8464
(0.0221)

0.7894 0.751 0.8106 0.688 0.7493

USAS_66
(MMN)

0.8814
(0.0347)

0.9053 0.8366 0.8182 0.856 0.8366

USAS_66 (L2 N) 0.842
(0.0286)

0.8539 0.786 0.8485 0.72 0.7844

USAS_66 (ZSN) 0.8728
(0.0325)

0.8885 0.8249 0.8182 0.832 0.8249

Table 4.3 Comparison of RVMs with full vs. jointly optimized features sets

Relevance Vector
Machine (RVM)

Training data Testing data

Mean
AUC (STD) AUC Accuracy Sensitivity Specificity

Full Feature Set (including Disp, Freq and USAS)

Disp_20 + Freq _18 +
USAS_115 = F153

0.780 (0.021) 0.830 0.755 0.765 0.744

F153 (MMN) 0.833 (0.045) 0.897 0.825 0.849 0.800
F153 (L2 N) 0.774 (0.033) 0.780 0.697 0.735 0.656
F153 (ZSN) 0.863 (0.053) 0.878 0.809 0.788 0.832

Automatically Optimized Full Feature Set (including Disp, Freq and USAS)

F119 0.776 (0.033) 0.778 0.689 0.674 0.704
F119 (MMN) 0.844 (0.058) 0.896 0.844 0.864 0.824
F119 (L2 N) 0.788 (0.018) 0.803 0.735 0.765 0.704
F119 (ZSN) 0.846 (0.045) 0.893 0.817 0.803 0.832

Combinations of separately optimized feature Sets

Freq_7 + Disp_9 +
USAS_66 = F82

0.792 (0.013) 0.794 0.724 0.750 0.696

F82 (MMN) 0.853 (0.025) 0.906 0.837 0.841 0.832
F82 (L2 N) 0.790 (0.025) 0.774 0.700 0.742 0.656
F82 (ZSN) 0.879 (0.023) 0.891 0.813 0.788 0.840
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Pairwise comparisons were conducted of any two optimized feature sets to
determine the best combination of features. The results show that the combin-
ation of optimized dispersion rates (Disp_9) and optimized semantic features
(USAS_66) yielded the highest AUC on the testing data: F75 (AUC=0.919,
sensitivity=0.803, specificity=0.896, accuracy=0.848), followed by the combin-
ation of all three optimized feature sets: F82 (AUC=0.906, sensitivity=0.841,
specificity=0.832, accuracy=0.837). F75 thus emerged as the best model.

4.7 Statistical Refinement of the Optimized Classifier

In order to further improve the performance of the optimized classifier F75, we
performed statistical analyses of the dispersion rate features and semantic fea-
tures in the two sets of English mental health materials: labeled as 0, indicating
no back-translation associated with statistically increased negative emotions, and
labeled as 1, indicating back-translations with strong negative connotations in
one or more of the three languages – Chinese, Hindi, and Spanish (Table 4.4).
Appendix 3 shows the results of theMannWhitneyU test between the two sets of
original English texts. As compared to “safe” original English materials, five
features yielded statistically different distributions with respect to their respect-
ive probabilities of being translated into Chinese, Hindi, or Spanish with strong
negativity: DiSp9:0.8–0.9 (p<0.001), DiSp10:0.9–1.0 (p<0.001), DiWr6:0.5–0.6

Table 4.3 (cont.)

Relevance Vector
Machine (RVM)

Training data Testing data

Mean
AUC (STD) AUC Accuracy Sensitivity Specificity

Freq_ 7 + USAS_ 66
= F73

0.815 (0.022) 0.803 0.763 0.826 0.696

F73 (MMN) 0.856 (0.031) 0.903 0.825 0.856 0.792
F73 (L2 N) 0.832 (0.032) 0.834 0.770 0.796 0.744
F73 (ZSN) 0.874 (0.014) 0.880 0.809 0.841 0.776
Disp_ 9 + USAS_ 66
= F75

0.811 (0.016) 0.805 0.739 0.765 0.712

F75 (MMN) 0.877 (0.039) 0.919 0.848 0.803 0.896
F75 (L2 N) 0.803 (0.034) 0.783 0.732 0.780 0.680
F75 (ZSN) 0.878 (0.031) 0.890 0.837 0.833 0.840
Freq_ 7 + Disp_ 9 = F16 0.676 (0.03) 0.707 0.646 0.712 0.576
F16 (MMN) 0.768 (0.035) 0.793 0.728 0.735 0.720
F16 (L2 N) 0.677 (0.029) 0.689 0.634 0.720 0.544
F16 (ZSN) 0.765 (0.030) 0.822 0.732 0.735 0.728
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(p=0.045), DiWr8:0.7–0.9 (p<0.001), and DiWr10:0.9–1.0 (p<0.001). The auto-
matically selected features of LDR were reduced from 9 to 5. Similarly, the
number of semantic features was reduced from 66 in the automatic feature
selection (RVM_SVM) to 59. The classifier was subsequently fine-tuned by
comparing four combinations of optimized LDR with optimized semantic fea-
tures (USAS_59). (For details on the different dispersion rates used, see
Appendix 2.) With ZSN, F (best 64) emerged as the best-performing classifier
(AUC=0.893, accuracy=0.852, sensitivity=0.864, specificity=0.84).

RVM classifiers with different feature sets are compared in Tables 4.5 and 4.6.
The comparison was to determine whether the sensitivity and specificity of the
best-performing model were significantly higher than those of other classifiers.

Table 4.4 Comparison of RVMs with full vs. combined, separately optimized
features sets

Relevance Vector
Machine (RVM)

Training data Testing data

Mean
AUC (STD) AUC Accuracy Sensitivity Specificity

Statistically Refined Feature Set based on the Automatic Optimization

Disp_ 5 + USAS_66 = F71 0.817 (0.012) 0.807 0.755 0.796 0.712
F71 (L2 N) 0.798 (0.029) 0.783 0.732 0.78 0.68
F71 (MMN) 0.884 (0.036) 0.865 0.829 0.849 0.808
F71 (ZSN) 0.867 (0.028) 0.886 0.856 0.856 0.856
Disp_ 9 + USAS_ 59 = F68 0.818 (0.018) 0.805 0.774 0.841 0.704
F68 (L2 N) 0.805 (0.030) 0.766 0.728 0.803 0.648
F68 (MMN) 0.863 (0.034) 0.911 0.833 0.841 0.824
F68 (ZSN) 0.863 (0.035) 0.883 0.825 0.856 0.792
Disp_ 6 + USAS_ 59 = F65 0.815 (0.013) 0.806 0.751 0.788 0.712
F65 (L2 N) 0.801 (0.028) 0.77 0.712 0.788 0.632
F65 (MMN) 0.866 (0.030) 0.881 0.848 0.856 0.84
F65 (ZSN) 0.867 (0.023) 0.885 0.833 0.841 0.824
Disp_5 + USAS_59 = F64 0.816 (0.017) 0.806 0.759 0.818 0.696
F64 (L2 N) 0.804 (0.031) 0.767 0.716 0.796 0.632
F64 (MMN) 0.867 (0.039) 0.883 0.841 0.841 0.84
F64 (ZSM) 0.865 (0.021) 0.885 0.829 0.841 0.816
Disp 4 + USAS_59 = F63 0.822 (0.023) 0.799 0.743 0.773 0.712
F63 (L2 N) 0.802 (0.036) 0.77 0.712 0.788 0.632
F63 (MMN) 0.866 (0.038) 0.885 0.825 0.826 0.824
F63 (ZSN) 0.868 (0.021) 0.887 0.829 0.841 0.816
Disp best 5 + USAS_59 =
F best 64

0.817 (0.015) 0.805 0.77 0.826 0.712

F_ best 64 (L2 N) 0.792 (0.045) 0.77 0.712 0.773 0.648
F_ best 64 (MMN) 0.870 (0.025) 0.886 0.848 0.849 0.848
F_ best 64 (ZSN) 0.865 (0.023) 0.893 0.852 0.864 0.84
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To control for any false discovery rate, we applied the Benjamini–Hochberg
correction procedure.

With respect to sensitivity, the results show that F (best 64) yielded statistic-
ally higher sensitivity than the other seven high-performing classifiers selected
from the 72 classifiers we developed. There was no statistically significant
difference between F (best 64) and F119 (jointly optimized features and
normalized using min- max optimization). However, F (best 64) was much
less complex with only 64 features.

With respect to specificity, F (best 64) gave statistically greater specificity
than five high-performing classifiers (F63, F153, F68, F119, and F82), while
F (best 64) gave statistically similar specificity to classifiers F64 and F65. The
specificity of F (best 64) was statistically lower than that of F75 (MMN) and
F71 (ZSM), but the sensitivity of F (best 64) was statistically higher than F75
(MMN) and F71 (ZSM).

As the primary aim of our study is to detect English texts that are more likely
to be translated with strong negative connotations in the target languages,
model sensitivity is more important than specificity. Therefore, F (best 64)
was chosen as the best-performing classifier.

Table 4.5 Paired sample t test of the difference in sensitivity between the best
model with other models

No. Pairs of RVMs
Mean
Difference S.D.

95%
Confidence
Interval
of Difference

P value Rank (i/m)Q Sig.Lower Upper

1 F best 64 (ZSN)
vs. F75 (MMN)

0.0606 0.0093 0.0375 0.0837 0.0078 1 0.0056 **

2 F best 64 (ZSN)
vs. F63 (ZSN)

0.0227 0.0039 0.0131 0.0323 0.0095 2 0.0111 **

3 F best 64 (ZSN)
vs. F64 (MMN)

0.0227 0.0039 0.0131 0.0323 0.0095 3 0.0167 **

4 F best 64 (ZSN)
vs. F68 (MMN)

0.0227 0.0039 0.0131 0.0323 0.0095 4 0.0222 **

5 F best 64 (ZSN)
vs. F82 (MMN)

0.0227 0.0039 0.0131 0.0323 0.0095 5 0.0278 **

6 F best 64 (ZSN)
vs. F153 (MMN)

0.0151 0.0026 0.0086 0.0216 0.0098 6 0.0333 **

7 F best 64 (ZSN)
vs. F65 (MMN)

0.0075 0.0013 0.0042 0.0109 0.0103 7 0.0389 **

8 F best 64 (ZSN)
vs. F71 (ZSM)

0.0075 0.0013 0.0042 0.0109 0.0103 8 0.0444 **

9 F best 64 (ZSN)
vs. F119 (MMN)

0 0 0 0 1 9 0.0500
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4.8 Model Stability

On the testing data set, Figure 4.3 shows how AUC varies when the size of
the training data was adjusted from 150 to 550 on 100 intervals. The RVMs
show themselves unlikely to have overfitting issues, unlike other classifiers
such as extreme gradient boosting trees, random forests, and neural net-
works that require hyperparameter tuning. The RVM classifiers all demon-
strated stability and scalability, as their performance (AUC) increased
gradually as we increased the training dataset size. F (best 64) outper-
formed other classifiers when the size of training data exceeded that of
testing data. Figure 4.4 shows the mean AUC of RVM classifiers on test
data and Table 4.7 shows the paired sample t test of the AUC of these
classifiers. Even though F (best 64) employed the smallest number of
features, its mean AUC was comparable to that of other high-dimensional
classifiers.

To review, then, we have succeeded in developing a high-performing rele-
vance vector machine (RVM) classifier to predict the likelihood of a certain
English health text being translated by Google as having statistically increased
negative connotations when compared to the original English text.

Table 4.6 Paired sample t test of the difference in specificity between the best
model with other models

No Pairs of RVMs
Mean
Difference S.D.

95% Confidence
Interval
of Difference

P value Rank (i/m)Q Sig.Lower Upper

1 F best 64 (ZSN)
vs. F63 (ZSN)

0.0240 0.0037 0.0149 0.0331 0.0077 1 0.006 **

2 F best 64 (ZSN)
vs. F153 (MMN)

0.0400 0.0059 0.0255 0.0545 0.0071 2 0.011 **

3 F best 64 (ZSN)
vs. F68 (MMN)

0.0160 0.0025 0.0098 0.0222 0.0080 3 0.017 **

4 F best 64 (ZSN)
vs. F119 (MMN)

0.0160 0.0025 0.0098 0.0222 0.0080 4 0.022 **

5 F best 64 (ZSN)
vs. F82 (MMN)

0.0080 0.0013 0.0048 0.0112 0.0083 5 0.028 **

6 F best 64 (ZSN)
vs. F71 (ZSM)

−0.0160 0.0027 −0.0228 −0.0092 0.0095 6 0.033 **

7 F best 64 (ZSN)
vs. F75 (MMN)

−0.0560 0.0108 −0.0827 −0.0293 0.0121 7 0.039 **

8 F best 64 (ZSN)
vs. F64 (MMN)

0.0000 0.0000 0.0000 0.0000 1.0000 8 0.044

9 F best 64 (ZSN)
vs. F65 (MMN)

0.0000 0.0000 0.0000 0.0000 1.0000 9 0.050
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ROC curve (train=150)
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Figure 4.3 AUCs of RVMs on testing data using different training dataset sizes
(150, 250, 350, 450, 550).

116 Translation Technology in Health Communication

https://doi.org/10.1017/9781108938976.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938976.005


Mean ROC curve of RVM using different features
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Figure 4.4 Mean AUC of RVMs on testing data using different training dataset
size (150, 250, 350, 450, 550).

Table 4.7 Paired sample t test of AUC of the best-performing classifier with
other high-performing classifiers

Paired Mean
Differences

Std. Error
Mean

95% Confidence
Interval of the
Difference

Sig. (2-tailed)Lower Upper

Pair 1 Fbest 64 – F75 −0.0021 0.0053 −0.0167 0.0124 0.7039
Pair 2 Fbest 64 – F82 0.0201 0.0110 −0.0103 0.0506 0.1404
Pair 3 Fbest 64 – F64 0.0093 0.0047 −0.0037 0.0223 0.1176
Pair 4 Fbest 64 – F119 0.0043 0.0099 −0.0231 0.0318 0.6848
Pair 5 Fbest 64 – F153 0.0076 0.0156 −0.0357 0.0508 0.6526
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Among the three languages we studied, the negative emotions and attitudes
toward mental health – specifically, toward anxiety disorders – introduced by
automatic translation were widespread. To understand the reasons, we carefully
read the original English health texts in our database and their corresponding
back-translations from the target languages. We found some illuminating
examples, collected in Appendix 1. In some cases, mental health disorders
have been translated by Google into Chinese as mental health diseases; people
with anxiety disorders are describe in translation as mental illness patients; in
Spanish, mental health conditions are translated as mental illnesses; in Hindi,
shyness is translated as general shame, and panic is translated as nervousness. In
Chinese, there is a subtle difference in word connotation: neural verbs such as
“have a mental disorder” are replaced by “suffer from a mental disease.” As
discussed above, neural machine translation emphasizes naturalness and fluency
of translations, as compared with the more literal translations characteristic of
statistical machine translation. The overall translation does improve significantly
in terms of readability, fluency, and grammar; however, the accuracy of local
translations may be compromised at the lexical and lexico-grammatical levels.

As Way noted in the following text:

[Neural] MT output can be deceptively fluent; sometimes perfect target-language
sentences are output, and less thorough translators and proofreaders may be seduced
into accepting such translations, despite the fact that such translations may not be an
actual translation of the source sentence at hand at all!

As we have seen, a direct result of the target-language-oriented approach to
neural MT in mental health translation has been unintentional increased nega-
tivity and discrimination in the translation output, even though such connota-
tions were absent in the original English mental health materials. And as
discussed, we have developed machine learning classifiers mitigate this
undesirable effect by detecting English mental health information that might
lead to biased translation in the three languages.

Our RVM classifier reached its statistically highest sensitivity (mean=0.864,
95 percent C.I.: 0.805, 0.922) and specificity (mean=0.832, 95 percent C.I.:
0.766, 0.898) when the probability threshold was set at 0.5. However, the
default threshold of 0.5 can be adjusted further to fine-tune the classifier.
When the threshold of the classifier was increased, sensitivity decreased,
while specificity increased; conversely, when the threshold was decreased,
sensitivity increased, and specificity decreased. Thus, one can select the best
sensitivity and specificity pairing according to the practical circumstances.

For example, high-sensitivity classifiers can be useful for screening purposes –
to identify mental health materials in English which cannot be adequately
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translated by full, unverified automatic machine translation, due to their height-
ened likelihood of biased or discriminatory translations. By contrast, a low-
sensitivity classifier is relatively unlikely to identify potentially problematic
original English mental health information – that is, to screen out any materials
that are not safe and suitable for neural machine translation. Thus, any social
biases or discrimination against mental disorders still present in the target
language would unfortunately be reinforced in machine-translated mental health
resources, even if indirectly or unintentionally – clearly not the intent of global
mental health promotion.

As for classifiers with high specificity, they are more suitable for identifying
original English mental health texts which are suitable for neural machine
translation, at least for the three languages we studied, Chinese, Hindi, and
Spanish. On the other hand, when a classifier with a low specificity is used,
there is a raised likelihood of false positive predictions: that is, even safe and
suitable original English mental health information may be erroneously con-
sidered unsuitable for neural MT. While subsequent human post-evaluation
could correct such inaccurate predictions, logistical burdens and staff costs
would increase. This extra effort might well be impractical or prohibitive in
low-resource healthcare service scenarios, often subject to tight budget con-
straints or lacking bilingual workers with sufficient knowledge of the relevant
languages.

4.9 Conclusion

In comparison with earlier statistical machine learning models, current neural
machine translation technologies exhibit greater linguistic fluency. However,
as noted, while improving linguistic fluency, neural machine translation also
learns, inevitably if unconsciously, to reflect the sentiments, attitudes, and
biases of the target cultures, societies, and communities. Since the design
favors the most natural sequence of translated words and phrases in the target
language – its natural lexical and syntactic patterns – its results inevitably
convey the social and cultural connotations of the cultures from which the
languages sprang.

In many countries and cultures, mental disorders are still stigmatized and
subject to discrimination. In associated languages, this deeply rooted sentiment
comes to be reflected in conventional lexical and semantic units. Consequently,
the neural machine translation of mental health information too often entails the
transmission of negative social sentiments in the output, even when social
prejudice against mental disorders is actually absent from the original
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English materials. Our study has examined this understudied tendency in
neural machine translation. We argue that this examination is appropriate and
necessary as human communication technologies move rapidly toward more
human-centric AI. Accordingly, we have developed Bayesian machine learning
classifiers to assist with the probabilistic detection and prediction of socially
biased neural machine translation outputs, using computational modeling and
pairwise comparisons of original English and back-translations of neural
machine translation outputs on anxiety disorders in Chinese, Hindi, and
Spanish.

Via Google’s Translate API, we collected and compared original English
documents on anxiety disorders from U.S., UK, Canadian, and Australian
health authorities and their back-translations from Chinese, Hindi, and
Spanish. Through automatic, statistically informed feature optimization,
RVM classifiers were developed. These models provided informative probabil-
istic predictions of the likelihood that an English text on anxiety disorders
would be translated by Google into one of the three languages with subtle but
strong negative connotations – again, because neural machine translation
favors natural language translations.

The best-performing RVM (RVM_ best 64) contained 64 English linguistic
features: 59 (semantic features) and 5 (LDR: DiSp9:0.8–0.9, DiSp10:0.9–1.0,
DiWr8:0.7–0.9, DiWr9:0.8–0.9, DiWr10:0.9–1.0). This result suggests that, in
spoken and written English words belonging to certain semantic classes, words
with high dispersion of meaning are relatively likely to produce negative neural
machine translation results for anxiety disorders. The best-performing RVM
(both optimized and normalized) achieved a mean AUC of receiver operator
characteristic (0.893), accuracy (0.892), sensitivity (0.864), and specificity
(0.84). Its sensitivity (SE) and specificity (SP) were statistically higher than
those of unoptimized, normalized classifiers RVM_153 (min-max normalized
MMN) (SE: p=0.0098, SP: p=0.007); of automatically optimized and normal-
ized classifiers: RVM_82 (MMN) (SE: p=0.0095, SP: p=0.0083), RVM_75
(SE: p=0.0078, SP: p=0.0121); and of an automatically optimized and statis-
tically refined classifier: RVM_71 (MMN) (SE: p=0.0103, SP; p=0.0095);
RVM_68 (MMN) (SE: p=0.0095, SP: p=0.0080); RMV_63 (ZSM) (SE:
p=0.0095, SP: p=0.0077). The stability of RVM_ best 64 appeared in its
mean AUC (0.82, SD=0.05) when the training data sizes were reduced from
600 to 150.

Content analysis indicates that negative neural machine translations of
anxiety disorders were primarily associated with increased linguistic fluency
and communicative naturalness in the target Chinese, Hindi, and Spanish texts.
However, once again, these stylistically enhanced phrasal patterns reflect
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persistent social attitudes toward mental health disorders in the relevant lan-
guages and cultures. And again, this bias is to be expected: as in any form of
artificial intelligence, neural machine translation is designed to accommodate
and understand human wants, needs, and thinking patterns.

This study demonstrates that phrasal patterning in target cultures does indeed
yield increased negativity toward mental disorders as a consequence of greater
translation naturalness. In compensation, however, we demonstrate that
machine learning tools for the promotion of mental health translation can
indeed detect instances of the automatic generation and dissemination of
negative, discriminatory translation. In this way, neural tools can also promote
positive and supportive social understanding and acceptance of mental dis-
orders. This study confirms that, while neural machine translation technology is
inevitably and increasingly culturally skewed, it can nevertheless be harnessed
to foster more tolerant global health cultures.
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Appendix 1 Examples of Back-Translations with Negative
Connotations

Original
Back-Translation(from Chinese, Hindi,
Spanish)

EN
Those younger than 25 should be
carefully watched for increased
depression, agitation, irritability, sui-
cidality, and unusual changes in
behavior, especially at the beginning
of treatment or when doses are
changed.

CH
People under 25 years of age should
be carefully observed for depression,
agitation, irritability, suicide, and
abnormal behavior changes, espe-
cially at the beginning of treatment or
when the dose is changed.
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(cont.)

Original
Back-Translation(from Chinese, Hindi,
Spanish)

EN
People with Social Anxiety Disorder
may feel very uneasy when talking
with others, asking questions, going
into a store, or ordering food in
a restaurant.

CH
People with social anxiety disorder
may feel very upset when talking to
others, asking questions, entering
a store, or ordering food in
a restaurant.

EN
People with this disorder are afraid
that others will judge them in
a negative way and will lead to
extreme embarrassment or rejection.

CH
People with this disease are afraid
that others will judge them in
a negative way leading to extreme
embarrassment or rejection.

EN
Both males and females can have
Social Anxiety Disorder.

CH
Both men and women may suffer
from social anxiety disorder.

EN
Panic attacks are frequently mistaken
for a medical event such as a heart
attack.

CH
Panic attacks are frequently mistaken
for medical events such as a heart
disease.

EN
Family and other sources of social
support can have a significant impact
on the recovery process for people
with panic disorder.

CH
Family and other sources of social
support can have a significant impact
on the recovery process of patients
with panic disorder.

EN
Rather than denying their (people
with social anxiety disorder) feelings,
take the following steps to allow the
person to feel seen and heard:
Remain supportive

CH
Rather than deny their (people with
social anxiety disorder) feelings, take
the following steps to make them feel
seen and heard:
Stay supported

EN CH
The National Alliance on Mental
Illness (NAMI) can help people with
panic disorder and family members
normalize the experience and help the
individual know and realize, that they
are not alone.

The National League for Mental
Illness (NAMI) can help panic suf-
ferers and family members normalize
their experiences and help individuals
understand and realize that they are
not alone.
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Appendix 2 Description of Different Feature Sets

Feature Set
Description Abbrev. Description of Items Removed Added

BNC Frequency
Lists

Freq (20) FrSp1:0–500, FrSp2:500–1000,
FrSp3:1000–1500, FrSp4:1500–
2000, FrSp5:2000–2500,
FrSp6:2500–3000, FrSp7:3000–
3500, FrSp8:3500–4000,
FrSp9:4000–57010,

(cont.)

Original
Back-Translation(from Chinese, Hindi,
Spanish)

EN
For a person with panic disorder,
social relationships can be an import-
ant way to cope with the symptoms of
the condition.

SP
For a person with panic disorder,
social relationships can be an import-
ant way of coping with the symptoms
of the illness.

EN
A panic attack can be upsetting. It can
sometimes be a challenging situation
to deal with, but it is important to
avoid seeming judgmental or upset.

SP
A panic attack can be upsetting. It can
sometimes be a difficult situation to
deal with at times, but it is important
to avoid coming across critical or
upset.

EN
The fear of Social Anxiety Disorder is
extreme and is not the same ordinary
shyness that many people sometimes
feel.

Hindi
The fear of Social Anxiety Disorder is
extreme and is not the same general
shame that many people sometimes
feel.

EN
Here are some possible symptoms of
Social Anxiety Disorder: Anxiety or
panic when interacting with others in
social situation

Hindi
Here are some possible symptoms of
Social Anxiety Disorder:
Anxiety or nervousness when inter-
acting with others in social situation
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(cont.)

Feature Set
Description Abbrev. Description of Items Removed Added

FrWr1:0–500, FrWr2:500–1000,
FrWr3:1000–1500, FrWr4:1500–
2000, FrWr5:2000–2500,
FrWr6:2500–3000, FrWr7:3000–
3500, FrWr8:3500–4000,
FrWr9:4000–64420

BNC Dispersion
Lists

Disp (18) DiSp1:0.0–0.1, DiSp2:0.1–0.2,
DiSp3:0.2–0.3, DiSp4:0.3–0.4,
DiSp5:0.4–0.5, DiSp6:0.5–0.6,
DiSp7:0.6–0.7, DiSp8:0.7–0.8,
DiSp9:0.8–0.9, DiSp10:0.9–1.0
DiWr1:0.0–0.1, DiWr2:0.1–0.2,
DiWr3:0.2–0.3, DiWr4:0.3–0.4,
DiWr5:0.4–0.5, DiWr6:0.5–0.6,
DiWr7:0.6–0.7, DiWr8:0.7–0.9,
DiWr9:0.8–0.9, DiWr10:0.9–1.0

Original USAS
List

USAS (115) A1, A10, A11, A12, A13, A14, A15,
A2, A3, A4, A5, A6, A7, A8, A9, B1,
B2, B3, B4, B5, C1, E1, E2, E3, E4,
E5, E6, F1, F2, F3, F4, G1, G2, G3,
H1, H2, H3, H4, H5, I1, I2, I3, I4,
K1, K2, K3, K4, K5, K6, L1, L2, L3,
M1, M2, M3, M4, M5, M6, M7, M8,
N1, N2, N3, N4, N5, N6, O1, O2,
O3, O4, P1, Q1, Q2, Q3, Q4, S1, S2,
S3, S4, S5, S6, S7, S8, S9, T1, T2,
T3, T4, W1, W2, W3, W4, W5, X1,
X2, X3, X4, X5, X6, X7, X8, X9,
Y1, Y2, Z0, Z1, Z2, Z3, Z4, Z5, Z6,
Z7, Z8, Z9, Z99

Automatic
selection
RFE_SVM

Disp (9) DiSp1:0.0–0.1, DiSp3:0.2–0.3,
DiSp6:0.5–0.6, DiSp9:0.8–0.9,
DiSp10:0.9–1.0, DiWr4:0.3–0.4,
DiWr6:0.5–0.6, DiWr8:0.7–0.9,
DiWr10:0.9–1.0

Automatic
selection
RFE_SVM

Freq (7) FrSp1:0–500, FrSp5:2000–2500,
FrSp9:4000–57010,
FrWr4:1500–2000, FrWr7:3000–
3500, FrWr8:3500–4000,
FrWr9:4000–64420

Automatic
selection
RFE_SVM

USAS (66) A12, A13, A14, A15, A3, A7, B1,
B2, B3, B4, B5, E2, E3, E4, E5, E6,
G2, H1, H2, H3, H4, H5, I1, I2, I3,
K4, K5, K6, L1, L2, M2, M3, M5,
M6, M8, N2, O1, O3, O4, Q1, Q2,
Q3, Q4, S1, S2, S8, S9, T1, T3, T4,
W1, W3, X1, X3, X4, X5, X6, X7,
X8, X9, Z3, Z4, Z6, Z7, Z8, Z99
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(cont.)

Feature Set
Description Abbrev. Description of Items Removed Added

Statistical &
Automatic
selection
RFE_SVM

USAS (59) A12, A13, A14, A15, A3, A7, B1,
B2, B3, B4, B5, E2, E3, E4, E5, E6,
G2, H1, H2, H4, H5, I1, I2, I3, K4,
K6, L1, M2, M3, M5, M6, M8, N2,
O1, O4, Q1, Q2, Q3, Q4, S1, S2, S8,
S9, T1, T3, T4, X3, X4, X5, X6, X7,
X8, X9, Z3, Z4, Z6, Z7, Z8, Z99

H3,K5,L2, O3,
W1,W3,X1

Statistical &
Automatic
selection
RFE_SVM

Disp (5) DiSp9:0.8–0.9, DiSp10:0.9–1.0,
DiWr6:0.5–0.6, DiWr8:0.7–0.9,
DiWr10:0.9–1.0

DiSp1:0.0–0.1,
DiSp3:0.2–0.3,
DiSp6:0.5–0.6,
DiWr4:0.3–0.4

Statistical &
Automatic
selection
RFE_SVM

Disp (4) DiSp9:0.8–0.9, DiSp10:0.9–1.0,
DiWr8:0.7–0.9, DiWr10:0.9–1.0

DiWr6:0.5–0.6

Statistical &
Automatic
selection
RFE_SVM

Disp (6) DiSp9:0.8–0.9, DiSp10:0.9–1.0,
DiWr6:0.5–0.6, DiWr8:0.7–0.9,
DiWr9:0.8–0.9, DiWr10:0.9–1.0

DiWr9:0.8–
0.9

Statistical &
Automatic
selection
RFE_SVM

Disp (best 5) DiSp9:0.8–0.9, DiSp10:0.9–1.0,
DiWr8:0.7–0.9, DiWr9:0.8–0.9,
DiWr10:0.9–1.0

DiWr6:0.5–0.6 DiWr9:0.8–
0.9

Appendix 3 Mann Whitney U Test of English Original
and English Back-Translations of Chinese, Hindi,

and Spanish Health Texts

Mann Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)

DiSp1:0.0–0.1 89648 181454 −0.78 0.435
DiSp2:0.1–0.2 91592 183398 0 1
DiSp3:0.2–0.3 90508 182314 −0.394 0.694
DiSp4:0.3–0.4 91592 183398 0 1
DiSp5:0.4–0.5 87469 179275 −2.233 0.026 **
DiSp6:0.5–0.6 88593 180399 −1.136 0.256 **
DiSp7:0.6–0.7 70673 162479 −5.817 0 **
DiSp8:0.7–0.8 58353.5 150159.5 −9.191 0 **
DiSp9:0.8–0.9 69068 160874 −6.228 0 **
DiSp10:0.9–1.0 76650 168456 −4.131 0 **
DiWr1:0.0–0.1 91592 183398 0 1
DiWr2:0.1–0.2 91592 183398 0 1
DiWr3:0.2–0.3 91592 183398 0 1
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(cont.)

Mann Whitney U Wilcoxon W Z Asymp. Sig. (2-tailed)

DiWr4:0.3–0.4 90524.5 182330.5 −1.892 0.058
DiWr5:0.4–0.5 91592 183398 0 1
DiWr6:0.5–0.6 90736 182542 −2.004 0.045 *
DiWr7:0.6–0.7 91378 183184 −1 0.317
DiWr8:0.7–0.9 83319 175125 −2.829 0.005 **
DiWr9:0.8–0.9 77904.5 169710.5 −3.792 0 **
DiWr10:0.9–1.0 66993 158799 −6.801 0 **

FrSp1:0–500 63116.5 154922.5 −7.873 0 **
FrSp2:500–1000 76380.5 168186.5 −4.207 0 **
FrSp3:1000–1500 72000.5 163806.5 −5.424 0 **
FrSp4:1500–2000 73940.5 165746.5 −4.892 0 **
FrSp5:2000–2500 82849 174655 −2.425 0.015 **
FrSp6:2500–3000 84883 176689 −1.87 0.061
FrSp7:3000–3500 82505 174311 −2.54 0.011 **
FrSp8:3500–4000 87808 179614 −1.07 0.285
FrSp9:4000–57010 80821.5 172627.5 −2.982 0.003 **
FrWr1:0–500 66228 158034 −7.013 0 **
FrWr2:500–1000 69789.5 161595.5 −6.029 0 **
FrWr3:1000–1500 71272.5 163078.5 −5.621 0 **
FrWr4:1500–2000 76411.5 168217.5 −4.207 0 **
FrWr5:2000–2500 76381 168187 −4.304 0 **
FrWr6:2500–3000 77464.5 169270.5 −3.997 0 **
FrWr7:3000–3500 85839.5 177645.5 −1.628 0.104
FrWr8:3500–4000 86366.5 178172.5 −1.59 0.112
FrWr9:4000–64420 80821.5 172627.5 −2.982 0.003 **

Appendix 4 List of English Health Information Websites

https://au.reachout.com
https://familydoctor.org
https://foundrybc.ca
https://headspace.org.au
https://healthyfamilies.beyondblue.org.au
https://kidshealth.org
https://kidshelpphone.ca
https://medlineplus.gov
https://mindyourmind.ca
https://my.clevelandclinic.org
https://patient.info
https://psychcentral.com
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https://riseabove.org.uk
www.anxietycanada.com
www.apa.org
www.betterhealth.vic.gov.au
www.beyondblue.org.au
www.blackdoginstitute.org.au
www.camh.ca
www.childline.org.uk
www.emedicinehealth.com
www.healthline.com
www.healthychildren.org
www.independentage.org
www.mayoclinic.org
www.medicinenet.com
www.menshealthforum.org.uk
www.mentalhealth.org.uk
www.msdmanuals.com/home
www.nami.org
www.papyrus-uk.org
www.postpartum.net
www.verywellmind.com
www.webmd.com
www.womenshealth.gov
https://youngmenshealthsite.org
https://youngminds.org.uk
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