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On the Convergence of a Class of
Nearly Alternating Series

J. H. Foster and Monika Serbinowska

Abstract. Let C be the class of convex sequences of real numbers. The quadratic irrational numbers

can be partitioned into two types as follows. If α is of the first type and (ck) ∈ C , then
∑

(−1)⌊kα⌋ck

converges if and only if ck log k → 0. If α is of the second type and (ck) ∈ C , then
∑

(−1)⌊kα⌋ck

converges if and only if
∑

ck/k converges. An example of a quadratic irrational of the first type is√
2, and an example of the second type is

√
3. The analysis of this problem relies heavily on the

representation of α as a simple continued fraction and on properties of the sequences of partial sums

S(n) =
∑

n

k=1
(−1)⌊kα⌋ and double partial sums T(n) =

∑

n

k=1
S(k).

1 Introduction

The goal of this paper is to provide necessary and sufficient conditions on the convex
sequence (ck, k ≥ 1) of real numbers for the convergence of the series

(1.1)
∑

(−1)⌊kα⌋ck,

where α is a (real) quadratic irrational and ⌊x⌋ denotes the largest integer not ex-
ceeding x. Series of type (1.1) for arbitrary irrational α are sometimes described

as “almost alternating” or “nearly alternating” because the signs “balance out in the
long run” in the sense that the ratio of the number of positive signs to the number of
negative signs in the first n terms approaches unity. It will turn out that there are two
classes of quadratic irrational numbers α, with the condition on the sequence (ck) for

convergence of (1.1) for the second class being more stringent than that for the first
class. To which of the classes a given α belongs is determined by whether a certain
functional of the periodic part of the continued fraction of α vanishes. The precise
statement is Theorem 6.1.

It is instructive to look first at the same question for rational α. The analysis starts

with a summation by parts:

(1.2)

n
∑

k=1

(−1)⌊kα⌋ck =

n−1
∑

k=1

S(k)∆ck + S(n)cn

where
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S(n) =

n
∑

k=1

(−1)⌊kα⌋ and ∆ck = ck − ck+1.

If α = p/q with gcd(p, q) = 1, then the sequence S(n) has period 2q if p is

odd and is unbounded (with order of growth n) if p is even (the details are worked
out in [10, Lemma 4]). It is then an easy exercise, using (1.2), to show that the
rationals divide into two classes: if p is odd (respectively, even), then S(n) is bounded
(respectively, unbounded) and for a monotone sequence (ck), (1.1) converges if and

only if ck → 0 (respectively,
∑

ck converges). We note that the classical alternating
series theorem is the subcase p odd, q = 1.

For irrational α the sums S(n) behave in a much less regular way, and we have to
proceed to the second sums T(n) =

∑n
k=1 S(k). This necessitates a second summa-

tion by parts:

(1.3)

n
∑

k=1

(−1)⌊kα⌋ck =

n−2
∑

k=1

T(k)∆2ck + T(n − 1)∆cn−1 + S(n)cn,

and the appearance of the second differences ∆
2ck in this formula suggests that the

convexity of (ck) will play the role that monotonicity played when α was rational. If
we now assume that α is a quadratic irrational, we can exploit the periodicity of the
continued fraction of α to show that T(n)/n is either bounded or has order of growth

log n. We will then be able to show that for a convex sequence (ck), (1.1) converges in
the first case if and only if ck log k → 0, and in the second case if and only if

∑

ck/k

converges. This result and the determination of which α belong to which of the two
cases is the main result of this paper, as stated in Theorem 6.1.

The parallelism of the two situations is noteworthy. Periodicity of the base repre-
sentation of α leads to enough regularity in S(n) to get a nice theorem for rationals,

and periodicity of the continued fraction representation of α leads to enough regu-
larity in T(n) to get a nice corresponding theorem for quadratic irrationals.

The convergence of (1.1) in the special case α =
√

2, ck = 1/k was proposed as

a problem to the American Mathematical Monthly by H. Ruderman [9] and solved
by D. Borwein and others [1]. D. Borwein and W. Gawronski [2] then proved con-
vergence for α = 1 − c +

√
c2 + 1 (c a positive integer) and ck = 1/k, obtained

good estimates for the sum, and investigated convergence under various summabil-

ity methods. (Their convergence result is a special case of our Theorem 6.1. Exam-
ple 7.1 elaborates on this.) P. Bundschuh [3] gave conditions on the sequence (ck)
for the convergence of (1.1) when the continued fraction of α has bounded partial
quotients. Since he used bounds of S(n) obtained from the theory of the discrepancy

of sequences, he was able to give sufficient conditions only. More recently, series of
the type (1.1) with ck = 1/k but with the signs chosen in a different way have been
discussed by C. Feist and R. Naimi [4].

Section 2 of this paper is devoted to establishing notation and listing for reference
the properties of continued fractions that are used in the sequel. In Sections 3 and 4
we develop the properties of the sequences S(n) and T(n). These results generalize
those of [2] to all quadratic irrationals and are, we believe, of independent interest.
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Section 5 contains some elementary lemmas on convex sequences in preparation for
the theorem of Section 6. In Section 7 we provide some examples.

Since rational numbers have terminating continued fraction expansions, many of
the statements that follow, and their proofs, would have to contain exceptions for
rational α. In order to avoid this complication, for the rest of this paper α will always
denote an irrational number.

2 Continued Fractions

In this section we collect the properties of continued fraction expansions that will be
used in the remaining sections. Every irrational number α has an infinite continued
fraction expansion α0 + 1/(α1 + 1/(α2 + . . .)), which is denoted by [α0, α1, α2, . . . ],

and we write α = [α0, α1, α2, . . . ]. The integers αi are the partial quotients and
satisfy αi ≥ 1 if i ≥ 1. The sequence of partial quotients is periodic if and only if
α is a quadratic irrational. (We shall follow the terminology of [7] in saying that a
sequence (αi) is periodic if there exists n such that αi+n = αi for i sufficiently large,

and purely periodic if αi+n = αi for all i.) For m ≥ 0, the m-th convergent is defined
by pm/qm = [α0, α1, α2, . . . , αm] and gcd(pm, qm) = 1. For the proofs of (2.1)–(2.6)
below, see for example [6, 7]. A reference for (2.9) is [5].

pm+1 = αm+1 pm + pm−1, p−2 = 0, p−1 = 1,

qm+1 = αm+1qm + qm−1, q−2 = 1, q−1 = 0.

(2.1)

pm+1qm − pmqm+1 = (−1)m, m ≥ −2.(2.2)

gcd(pm, pm+1) = gcd(qm, qm+1) = 1, m ≥ −2.(2.3)

gcd(pm, qm) = 1, m ≥ −2.(2.4)

∣

∣

∣
α − pm

qm

∣

∣

∣
<

1

qmqm+1

, m ≥ 0.(2.5)

p2m

q2m

< α <
p2m+1

q2m+1

, m ≥ 0.(2.6)

qm ≥ 2⌊m/2⌋, m ≥ 0.(2.7)

For the proof of (2.7), use (2.1) to write qm ≥ qm−1 + qm−2 ≥ 2qm−2 and then use
induction together with q0 = 1 and q1 = α1 ≥ 1.

If αi ≤ K for all i, then

(2.8) qm ≤ (K + 1)m, m ≥ 0.

For the proof of (2.8), use (2.1) to write qm ≤ Kqm−1 + qm−2 < (K + 1)qm−1 and
proceed by induction.
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For a given α, every integer n ≥ 0 has a unique representation

(2.9)

n =

m
∑

i=0

biqi,

bm 6= 0, 0 ≤ bi ≤ αi+1 for i ≥ 1, 0 ≤ b0 < α1;

bi = αi+1 =⇒ bi−1 = 0 for i ≥ 1,

with coefficients bi determined by the following division algorithm:

n = bmqm + nm, 0 ≤ nm < qm

nm = bm−1qm−1 + nm−1, 0 ≤ nm−1 < qm−1

...

n2 = b1q1 + n1, 0 ≤ n1 < q1

n1 = b0q0.

3 The Sequence S(n)

In this section we develop the properties of the sequence S(n) =
∑n

k=1(−1)⌊kα⌋ that
will be needed in Section 6. Theorem 3.3 follows from a standard result of discrep-

ancy theory, but we include a proof to keep this paper self-contained. However,
the lower bounds of discrepancy theory do not imply Theorem 3.14. (In general,
max{|S(k)|, 1 ≤ k ≤ n} can grow arbitrarily slowly; see [8, §1].)

The proof of the first lemma is a simple exercise in modular arithmetic.

Lemma 3.1 Let p/q be a reduced rational and let k run through the integers

1, 2, . . . , 2q.

(a) If p is odd, then kp/q mod 2 assumes the values 0, 1/q, . . . (q − 1)/q, 1,
(q + 1)/q, . . . , (2q − 1)/q, each once.

(b) If p is even, then kp/q mod 2 assumes the values 0, 2/q, . . . (q − 1)/q, (q + 1)/q,
. . . , (2q − 2)/q, each twice.

Lemma 3.2 If pm/qm is a convergent of the continued fraction of α, then

∣

∣

∣

2qm
∑

k=1

(−1)⌊(t+k)α⌋
∣

∣

∣
≤ 6

for any real number t.

Proof From (2.5) we can write α − pm/qm = θ/qmqm+1, |θ| < 1, from which we
get (t + k)α = tα + kpm/qm + kθ/qmqm+1 with |kθ/qmqm+1| ≤ 2/qm+1 < 2/qm for
1 ≤ k ≤ qm. Let M denote the multiset {(tα + kpm/qm) mod 2, 1 ≤ k ≤ 2qm} .
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If pm is odd, then from Lemma 3.1(a) M consists of 2qm distinct values with equal
spacing 1/qm, and each of the intervals [0, 1), [1, 2) contains qm of these values.

Adding kθ/qmqm+1 to the k-th element of M moves all of these values to the right,
or all of them to the left, according to the sign of θ, by amounts which are less than
twice the spacing. So at most two of the original values leave [0, 1) and at most two

leave [1, 2). It follows that |∑2qm

k=1
(−1)⌊(t+k)α⌋| ≤ 4 in this case.

If pm is even, M contains qm distinct values (each repeated twice) with equal spac-
ing 2/qm. Counting repetitions, qm − 1 of these values are in one of the intervals
[0, 1), [1, 2) and qm + 1 of them are in the other. Adding kθ/qmqm+1 to the k-th ele-
ment of M causes at most two values, counting repetitions, to move out of [0, 1) and

at most two of them to move out of [1, 2). In this case |
∑2qm

k=1
(−1)⌊(t+k)α⌋| ≤ 6.

Theorem 3.3 If α is a quadratic irrational, then S(n) = O(log n).

Proof It will suffice to show the result for n restricted to the even integers, since
|S(n + 1) − S(n)| = 1. Assuming n to be even, write n/2 =

∑m
i=0 diqi in the repre-

sentation (2.9), so that n =
∑m

i=0 di(2qi). Partition the integers from 1 to n into di

blocks of consecutive integers of length 2qi, 0 ≤ i ≤ m. By Lemma 3.2, the sum of
(−1)⌊kα⌋, where k runs over a block of length 2qi , has absolute value at most 6. Thus
|Sn| ≤

∑m
i=0 6di ≤ 6K(m + 1), where K is an upper bound of {αk+1, k ≥ 0}. Since

dm 6= 0, it follows from (2.7) that n ≥ 2qm ≥ 2m/2 and thus log n ≥ (m log 2)/2. We
then have |S(n)| ≤ 6K(2 log n/ log 2 + 1).

Lemma 3.4 For m ≥ 0, ⌊kpm/qm⌋ − ⌊kα⌋ is equal to

(a) 0 if m is even and k ∈ {0, 1, . . . , qm+1} or if m is odd and k ∈ {0, 1, . . . , qm+1} \
{qm, 2qm, . . . , αm+1qm};

(b) 1 if m is odd and k ∈ {qm, 2qm, . . . , αm+1qm}.

Proof For 0 ≤ k ≤ qm+1 it follows from (2.5) that |kα − kpm/qm| < 1/qm. Thus
⌊kpm/qm⌋ and ⌊kα⌋ can differ by at most 1 and, using in addition (2.4), there is no

integer strictly between kα and kpm/qm. If

k ∈ {0, 1, . . . , qm+1} \ {qm, 2qm, . . . , αm+1qm},

then kpm/qm is not an integer and thus ⌊kpm/qm⌋ = ⌊kα⌋. If k ∈ {qm, 2qm, . . . ,
αm+1qm} and m is even, then by (2.6) kα− kpm/qm > 0 and thus ⌊kpm/qm⌋ = ⌊kα⌋.
If k ∈ {qm, 2qm, . . . , αm+1qm} and m is odd, then by (2.6) kpm/qm − kα > 0 and
thus ⌊kα⌋ = ⌊kpm/qm⌋ − 1.

Lemma 3.5 For n having the representation (2.9),

S(n) = S(bmqm) + (−1)bm pm S(nm).
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Proof Applying Lemma 3.4 and observing that n < (bm + 1)qm,

S(n) − S(bmqm) =

n
∑

k=bmqm+1

(−1)⌊kα⌋
=

nm
∑

k=1

(−1)⌊(k+bmqm)α⌋

=

nm
∑

k=1

(−1)⌊(k+bmqm)pm/qm⌋ = (−1)bm pm

nm
∑

k=1

(−1)⌊kpm/qm⌋

= (−1)bm pm

nm
∑

k=1

(−1)⌊kα⌋
= (−1)bm pm S(nm).

Lemma 3.6 For 1 ≤ bm ≤ αm+1,

S(bmqm) = S(qm)

bm−1
∑

ν=0

(−1)νpm .

Proof Applying Lemma 3.5 with n = bmqm − 1 = (bm − 1)qm + (qm − 1),

S(bmqm) = S(bmqm − 1) + (−1)⌊bmqmα⌋

= S((bm − 1)qm) + (−1)(bm−1)pm S(qm − 1) + (−1)⌊bmqmα⌋

= S((bm − 1)qm) + (−1)(bm−1)pm (S(qm) − (−1)⌊qmα⌋) + (−1)⌊bmqmα⌋

= S((bm − 1)qm) + (−1)(bm−1)pm S(qm) − (−1)(bm−1)pm+⌊qmα⌋

+ (−1)⌊bmqmα⌋.

From Lemma 3.4,

(bm − 1)pm + ⌊qmα⌋ − ⌊bmqmα⌋ = (bm − 1)pm + ⌊qm pm/qm⌋ − ⌊bmqm pm/qm⌋
= (bm − 1)pm + pm − bm pm = 0.

Thus

S(bmqm) = S((bm − 1)qm) + (−1)(bm−1)pm S(qm).

Replacing bm by ν in the last equation and summing,

S(bmqm) = S(qm) +

bm
∑

ν=2

(−1)(ν−1)pm S(qm) =

bm−1
∑

ν=0

(−1)νpm S(qm).

Lemma 3.7 For n having the representation (2.9),

S(n) = S(qm)

bm−1
∑

ν=0

(−1)νpm + S(nm)(−1)bm pm .
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Proof Put the formula of Lemma 3.6 into Lemma 3.5.

Lemma 3.8 S(qm) = S(qm − 1) + (−1)m+pm .

Proof S(qm) − S(qm − 1) = (−1)⌊qmα⌋. From Lemma 3.4, m even implies

(−1)⌊qmα⌋
= (−1)⌊qm pm/qm⌋ = (−1)pm = (−1)m+pm

and m odd implies

(−1)⌊qmα⌋
= (−1)⌊qm pm/qm⌋−1

= (−1)pm−1
= (−1)m+pm .

Lemma 3.9 If pm is even, then S(qm − 1) = 0 and S(qm) = (−1)m.

Proof By Lemma 3.4, k ∈ {1, . . . , qm − 1} implies

(−1)⌊(qm−k)α⌋
= (−1)⌊(qm−k)pm/qm⌋ = (−1)pm+⌊−kpm/qm⌋

= (−1)pm−1−⌊kpm/qm⌋ = (−1)pm−1(−1)⌊kα⌋,

where we have used the fact that ⌊−x⌋ = −⌊x⌋ − 1 for nonintegral x. Summing on
k, S(qm − 1) = (−1)pm−1S(qm − 1), which gives S(qm − 1) = 0 for pm even. Then

Lemma 3.8 gives S(qm) = (−1)m for pm even.

Lemma 3.10 For m ≥ 1,

(3.1) S(qm+1) = βmS(qm) + γmS(qm−1),

where

(3.2) βm =

αm+1−1
∑

ν=0

(−1)νpm , γm = (−1)αm+1 pm .

Proof Replacing n by qm+1 − 1 = αm+1qm + (qm−1 − 1) in Lemma 3.7,

S(qm+1 − 1) = βmS(qm) + γmS(qm−1 − 1),

which by Lemma 3.8 implies

S(qm+1) − (−1)m+1+pm+1 = βmS(qm) + γmS(qm−1) − (−1)αm+1 pm+m−1+pm−1 .

Applying (2.1), we get (3.1).

Lemma 3.11 If for some integer m1 ≥ 0 the sequence (αm+1 mod 2, m ≥ m1) is

purely periodic with period πα, then the sequence (pm mod 2, m ≥ m1) is purely peri-

odic with period πp which is at most 3πα.
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Proof Write the first formula of (2.1) in matrix notation as

(pm+1, pm) = (pm, pm−1)

(

αm+1. 1
1 0

)

.

Working modulo 2 and iterating this relation, we have for k ≥ 0,

(pm1+(k+1)πα
, pm1+(k+1)πα−1) = (pm1+kπα

, pm1+kπα−1)P,

where P mod 2 is independent of k by periodicity of (αm+1 mod 2, m ≥ m1) and
is the product of πα matrices, each of which is

(

0 1
1 0

)

or
(

1 1
1 0

)

. These two matrices

generate the group

G =

{(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

1 1
1 0

)

,

(

1 1
0 1

)

,

(

1 0
1 1

)

,

(

0 1
1 1

)}

under matrix multiplication modulo 2, each of whose elements has order not exceed-
ing 3. Let l be the order of P. Since P is in G, it follows that l ≤ 3 and that

(pm1+lπα
, pm1+lπα−1) = (pm1

, pm1−1) Pl
= (pm1

, pm1−1).

The lemma is then proved by observing that (continuing to work modulo 2)

(pm1+lπα+ j , pm1+lπα+ j−1) = (pm1+lπα
, pm1+lπα−1)

j
∏

i=1

(

αm1+lπα+i 1
1 0

)

= (pm1
, pm1−1)

j
∏

i=1

(

αm1+i 1
1 0

)

= (pm1+ j , pm1+ j−1),

so that lπα is a period of (pm mod 2, m ≥ m1).

Lemma 3.11 and the periodicity of the partial quotients of a quadratic irrational jus-
tify the following definition.

Definition 3.12 For a quadratic irrational α, let π denote the least common even

multiple of the periods of (αm+1, m ≥ m1) and (pm mod 2, m ≥ m1), where m1 ≥ 0
is such that (αm+1, m ≥ m1) is purely periodic. (Note that π is independent of the
choice of m1.)

It will become clear in the proof of Lemma 3.15 why in this definition we require π
to be even. Also, we want to have some flexibility in choosing m1. In case of infinitely
many pm even, we will have to choose m1 such that pm1

is even in order for Lemma
3.16 to be correct.
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Lemma 3.13 For a quadratic irrational α, let maxm = max{S(n), 0 ≤ n < qm}
and minm = min{S(n), 0 ≤ n < qm}. If (αm+1, m ≥ m1) is purely periodic, then for

m ≥ m1, either maxm+π > maxm or minm+π < minm.

Proof If infinitely many pm are even, then for m ≥ m1, there exists j ∈ {m, m +

1, . . . , m+π−1} such that p j is even. For any n such that q j ≤ n < q j+1, Lemmas 3.7
and 3.9 imply that S(n) = (−1) jb j +S(n j), where b j > 0 and n j ≤ q j if α j+1 ≥ 2 and
n j < q j−1 if α j+1 = 1. If j is even, this implies that max j+1 ≥ b j +max j−1 > max j−1,
and if j is odd, that min j+1 ≤ −b j + min j−1 < min j−1 . Since π ≥ 2, the result of

the lemma then follows in this case.
Now assume only finitely many pm are even. Recalling that p−2 = 0, let m0 ≥ −2

be the largest value of m such that pm is even. Then from (2.1) we conclude that αm

must be even for m ≥ m0 + 3 because pm, pm−1 and pm−2 are all odd, and that αm0+2

must be odd because pm0+2 and pm0+1 are odd and pm0
is even. Now qm0

must be odd
because pm0

is even and gcd(qm0
, pm0

) = 1. If qm0+1 is even, we have from (2.1) that
qm0+2 must be odd, and if qm0+1 is odd, we have similarly that qm0+2 must be even.

Thus qm0+1 and qm0+2 have opposite parity. From the evenness of αm for m ≥ m0 + 3
it then follows by induction that qm and qm+1 have opposite parity for m > m0.

If we apply Lemma 3.7 with both pm and bm odd, 1 ≤ bm < αm+1, we get

S(n) = S(qm) − S(nm), and if we apply it with pm odd and bm even, we get
S(n) = S(nm). So if αm+1 ≥ 2, maxm+1 = max{maxm, S(qm) − minm} and
minm+1 = min{minm, S(qm) − maxm}. In order to have both maxm+1 = maxm

and minm+1 = minm when αm+1 ≥ 2, we would need S(qm) − minm ≤ maxm and

S(qm) − maxm ≥ minm, which together imply that S(qm) = maxm + minm. If in
addition maxm+2 = maxm+1 and minm+2 = minm+1 when αm+1 ≥ 2, we would have
to have S(qm+1) = maxm+1 + minm+1 = maxm + minm = S(qm). This is impossible if
qm and qm+1 have opposite parity, because the parity of S(n) is the same as that of n.

Thus for m ≥ m0 + 3, either maxm+2 > maxm or minm+2 < minm. Since π ≥ 2, the
result of the lemma follows also in the case of only finitely many pm even.

Theorem 3.14 If α is a quadratic irrational, then there exists a constant C > 1 and a

sequence of positive integers ik such that ik ≤ Ck and |S(ik)| ≥ k/2.

Proof In the notation of Lemma 3.13, maxm1+kπ −minm1+kπ ≥ k, from which we

have max{|S(n)|, 0 ≤ n ≤ qm1+kπ} ≥ k/2. Thus there exists a sequence of integers ik

such that qm1+(k−1)π < ik ≤ qm1+kπ and |S(ik)| ≥ k/2. If K is an upper bound of the
partial quotients αm of α, we then have from (2.8) that ik ≤ (K + 1)m1+kπ ≤ Ck, for
some constant C > 1.

In preparation for the next lemma, we write (3.1) in the matrix form

(3.3) (S(qm+1), S(qm)) = (S(qm), S(qm−1)) Bm, where Bm =

(

βm 1
γm 0

)

.

For a quadratic irrational α, we again let m1 denote any nonnegative integer such that
the sequence (αm+1, m ≥ m1) is purely periodic. Applying (3.3) kπ + j times starting
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with m = m1 and using the periodicity of Bm, we get

(3.4) (S(qkπ+m1+ j), S(qkπ+m1+ j−1)) = (S(qm1
), S(qm1−1)) Bk

m1+ j−1
∏

i=m1

Bi,

where

(3.5) B =

m1+π−1
∏

i=m1

Bi.

Lemma 3.15 If α is a quadratic irrational with only finitely many pm even, then B is

the identity matrix, and hence S(qm+π) = S(qm) for m ≥ m1.

Proof For m ≥ m1, pm is odd. Then (2.1) implies that αm+1 is even for m ≥ m1 + 1.
By the periodicity of (αm+1, m ≥ m1) it must also be true that αm+1 is even for

m = m1. Then by (3.3) and (3.4), Bm =
(

0 1
1 0

)

for all m ≥ m1 and B =
(

0 1
1 0

)π
=

(

1 0
0 1

)

since π is even.

Lemma 3.15 says that the sequence (S(qm)) is eventually periodic if only finitely many
pm are even. This result will not be true in general if infinitely many pm are even, and
the determination of the behavior of (S(qm)) in that case requires a more detailed
investigation, which we now begin.

If infinitely many pm are even, we shall impose the additional requirement on m1

that pm1
be even. By (2.2), gcd(pm, pm+1) = 1, so no two consecutive pm’s can be

even. We can therefore partition the sequence (pm, m1 ≤ m ≤ m1 + π − 1) into

one or more blocks of consecutive terms, each block consisting of an even integer
followed by one or more odd integers. Suppose there are r such blocks starting at
positions m1 < m2 < · · · < mr. Let jk denote the length of the k-th block, so that
jk = mk+1 − mk(1 ≤ j ≤ r − 1), jr = m1 + π − mr, and j1 + · · · + jr = π. Define

(3.6) α ′
mk+1 =

{

αmk+1 jk even,

αmk+1 − 1 jk odd,

and let

(3.7) Ai =

i
∑

k=1

(−1)mkα ′
mk+1, 0 ≤ i ≤ r

with the usual convention that A0 = 0. Notice that although Ai in general depends
on our choice of m1 (that is, where we choose to begin the period), Ar is independent
of m1 because the sum that defines it extends over all blocks within an entire (even)
period.
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Lemma 3.16 If α is a quadratic irrational with infinitely many pm even, then B =
(

1 (−1)m1 Ar

0 1

)

and hence Bk
=

(

1 (−1)m1 kAr

0 1

)

.

Proof We first investigate the product of the matrices Bi over the k-th block. If
jk = 2, then pmk

is even, and pmk+2 = pmk+1
is even. This implies by (2.1) that αmk+2

is even and hence by (3.2) that

(3.8)

jk−1
∏

i=0

Bmk+i = Bmk
Bmk+1 =

(

αmk+1 1
1 0

) (

0 1
1 0

)

=

(

1 αmk+1

0 1

)

, jk = 2.

If jk ≥ 3, then pmk
is even, pmk+i is odd for 1 ≤ i < jk, and pmk+ jk

= pmk+1
is even,

implying by (2.1) that αmk+2 is odd, αmk+i is even for 3 ≤ i < jk, and αmk+ jk
= αmk+1

is odd. Thus

(3.9)

jk−1
∏

i=0

Bmk+i =

(

αmk+1 1

1 0

) (

1 1

−1 0

) (

0 1

1 0

) jk−3 (

1 1

−1 0

)

, jk ≥ 3.

For jk odd, the right-hand side of (3.9) reduces to

(

αmk+1 1
1 0

) (

1 1
−1 0

) (

1 1
−1 0

)

=

(

−1 αmk+1 − 1
0 1

)

,

and for jk even it reduces to

(

αmk+1 1
1 0

)(

1 1
−1 0

) (

0 1
1 0

) (

1 1
−1 0

)

=

(

1 αmk+1

0 1

)

.

So (3.8) and (3.9) can be combined into

(3.10)

jk−1
∏

i=0

Bmk+i =

(

(−1) jk α ′
mk+1

0 1

)

.

Now we take the product of (3.10) over the r blocks to get

B =

r
∏

k=1

(

(−1) jk α
′

mk+1

0 1

)

=

(

(−1) j1+...+ jr α ′
m1+1 + (−1) j1α ′

m2+1 + · · · + (−1) j1+···+ jr−1α ′
mr+1

0 1

)

=

(

(−1)π (−1)m1

[

(−1)m1α ′
m1+1 + (−1)m2α ′

m2+1 + · · · + (−1)mr α ′
mr +1

]

0 1

)

=

(

1 (−1)m1 Ar

0 1

)

,

which proves the lemma.
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Lemma 3.17 If α is a quadratic irrational and infinitely many pm are even, then for

k ≥ 0, 0 ≤ j < ji, 1 ≤ i ≤ r we have

S(qkπ+mi + j) =



















(−1)mi if j = 0,

kAr + Ai−1 + (−1)mi αmi +1 + S(qm1−1) if j is odd,

kAr + Ai−1 + (−1)mi αmi +1 + S(qm1−1) − (−1)mi if j is even
and j > 0,

where Ai is given by (3.7).

Proof Recalling (Lemma 3.9) that S(qm) = (−1)m for pm even, applying (3.3) kπ +
mi + j − m1 times, and using Lemma 3.16,

(3.11)
(

S(qkπ+mi + j), S(qkπ+mi + j−1)
)

=
(

(−1)m1 , S(qm1−1)
)

(

1 (−1)m1 kAr

0 1

) mi−1
∏

ν=m1

Bν

mi + j−1
∏

ν=mi

Bν .

By (3.10) and (3.7),

mi−1
∏

ν=m1

Bν =

i−1
∏

k=1

(

(−1) jk α ′
mk+1

0 1

)

=

(

(−1) j1+···+ ji−1 (−1)m1 Ai−1

0 1

)

,

from which we get

((−1)m1 ,S(qm1−1))

(

1 (−1)m1 kAr

0 1

) mi−1
∏

ν=m1

Bν

= ((−1)m1 , S(qm1−1))

(

(−1) j1+···+ ji−1 (−1)m1 Ai−1 + (−1)m1 kAr

0 1

)

= ((−1)m1+ j1+···+ ji−1 , Ai−1 + kAr + S(qm1−1))

= ((−1)mi , Ai−1 + kAr + S(qm1−1)).

Putting this result into (3.11), we now have

(3.12) (S(qkπ+mi + j), S(qkπ+mi + j−1)) = ((−1)mi , Ai−1 + kAr + S(qm1−1))

mi + j−1
∏

ν=mi

Bν .

For j = 0,
∏mi + j−1

ν=mi
Bν is an empty product, which evaluates to the identity matrix.

In this case we get S(qkπ+mi + j) = (−1)mi from (3.12) by equating first components.
This proves the first formula of the lemma.
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For j = 1, by (3.2) and (3.3),

mi + j−1
∏

ν=mi

Bν = Bmi
=

(

αmi +1 1

1 0

)

,

while for j ≥ 2,

mi + j−1
∏

ν=mi

Bν = Bmi
=

(

αmi +1 1
1 0

) (

1 1
−1 0

) (

0 1
1 0

) j−2

,

which reduces to
(

αmi +1 1
1 0

) (

1 1
−1 0

)

=

(

αmi +1 − 1 αmi +1

1 1

)

if j is even and to

(

αmi +1 1
1 0

) (

1 1
0 −1

)

=

(

αmi +1 αmi +1 − 1
1 1

)

if j is odd. So for j ≥ 1 we get from (3.12) by equating first components that
(qkπ+mi + j) = (−1)mi (αmi+1

− 1) + Ai−1 + kAr + S(qm1−1) if j is even, j ≥ 2, and
S(qkπ+mi + j) = (−1)mi αmi+1

+ Ai−1 + kAr + S(qm1−1) if j is odd.

If we replace kπ + mi + j by m in Lemma 3.17, we can rephrase the lemma in this way:
If infinitely many pm are even, then

(3.13) S(qm) =

{

(−1)m if pm is even,

(Ar/π)m + cm if pm is odd,

where cm+π = cm for m ≥ m1. In view of Lemmas 3.9 and 3.15, (3.13) remains true

in the case of only finitely many pm even if we replace Ar/π by 0. This motivates the
following definition.

Definition 3.18 For a quadratic irrational α, we define A = A(α) by

(i) A = 0 if only finitely many pm are even, and

(ii) A = Ar/π =
1

π

m1+π−1
∑

m=m1

pm even

(−1)mα ′
m+1 if infinitely many pm are even,

where α ′
m+1 is given by (3.6) and π and m1 are given by Definition 3.12 with the

additional stipulation that pm1
be even.

It should be noted that A can be equal to 0 even in case (ii) of Definition 3.18, as
Example 7.2 will show.

From the remarks immediately preceding Definition 3.18, we then have the fol-
lowing theorem.
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Theorem 3.19 If α is a quadratic irrational, then

S(qm) =

{

(−1)m if pm is even,

Am + cm if pm is odd,

where cm+π = cm for m sufficiently large and A is given by Definition 3.18.

Definition 3.18 allows us to classify all quadratic irrationals according to the follow-
ing simple scheme:

Class I: A = 0, in which case (S(qm)) is a bounded sequence.

Class II: A 6= 0, in which case (S(qm)) is unbounded.

It is this classification that determines the convergence behavior of (1.1), as we shall
see in Section 6.

4 The Sequence T(n)

We now return to the double sums T(n) defined in the Introduction.

Lemma 4.1 For n ≥ 0,

T(n) = T(bmqm) + (−1)bm pm T(nm) + nmDmS(qm),

where m, bm and nm are defined by the representation (2.9) and

(4.1) Dm =

bm−1
∑

ν=0

(−1)νpm .

Proof T(n)−T(bmqm) =
∑bmqm+nm

k=bmqm+1
S(k) =

∑nm

k=1 S(bmqm +k). By Lemma 3.5, the

last sum is equal to
∑nm

k=1(S(bmqm) + (−1)bm pm S(k)) = nmS(bmqm) + (−1)bm pm T(nm),

and by Lemma 3.6, nmS(bmqm) = nmDmS(qm).

Lemma 4.2 For m ≥ 0, and bm ∈ {1, 2, . . . , αm+1}

T(bmqm) = DmT(qm) + qmCmS(qm)

where Dm is given by (4.1) and

(4.2) Cm = (−1)(bm−1)pm

bm−1
∑

ν=0

ν(−1)νpm .

Proof We begin by writing

(4.3) T(bmqm) = T(bmqm − 1) + S(bmqm) = T((bm − 1)qm + qm − 1) + S(bmqm).
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By Lemma 4.1

(4.4) T((bm − 1)qm + qm − 1) = T((bm − 1)qm) + (−1)(bm−1)pm T(qm − 1)

+ (qm − 1)S(qm)

bm−2
∑

ν=0

(−1)νpm

and by Lemma 3.6,

(4.5) S(bmqm) = S(qm)

bm−1
∑

ν=0

(−1)νpm .

Putting (4.4) and (4.5) into (4.3),

T(bmqm) = T((bm − 1)qm) + (−1)(bm−1)pm (T(qm) − S(qm))

+ (qm − 1)S(qm)

bm−2
∑

ν=0

(−1)νpm + S(qm)

bm−1
∑

ν=0

(−1)νpm ,

which simplifies to

(4.6) T(bmqm) = T((bm − 1)qm) + (−1)(bm−1)pm T(qm) + qmS(qm)

bm−2
∑

ν=0

(−1)νpm .

Now replace bm by µ in (4.6) and sum µ from 1 to bm :

T(bmqm) = T(0) + T(qm)

bm
∑

µ=1

(−1)(µ−1)pm + qmS(qm)

bm
∑

µ=1

µ−2
∑

ν=0

(−1)νpm

= T(qm)

bm−1
∑

ν=0

(−1)νpm + qmS(qm)

bm
∑

µ=1

µ−2
∑

ν=0

(−1)νpm .

To complete the proof, we reverse the order of summation in the double sum:

bm
∑

µ=1

µ−2
∑

ν=0

(−1)νpm =

bm
∑

µ=2

µ−2
∑

ν=0

(−1)νpm =

bm−2
∑

ν=0

bm
∑

µ=ν+2

(−1)νpm

=

bm−2
∑

ν=0

(bm − ν − 1)(−1)νpm =

bm−1
∑

ν=0

ν(−1)(bm−1−ν)pm

= (−1)(bm−1)pm

bm−1
∑

ν=0

ν(−1)νpm = Cm.
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Lemma 4.3 For n ≥ 0 having the representation (2.9),

T(n) = DmT(qm) + (−1)bm pm T(nm) + qmCmS(qm) + nmDmS(qm).

Proof Put Lemma 4.2 into Lemma 4.1.

Lemma 4.4 For n ≥ 0,

T(qm+1) = βmT(qm) + γmT(qm−1) +
(

δmqm + βmqm−1

)

S(qm),

where βm, γm, are given by (3.2) and where

δm = (−1)(αm+1−1)pm

αm+1−1
∑

ν=0

ν(−1)νpm .

Proof Write T(qm+1) = T(qm+1 − 1) + S(qm+1) = T(αm+1qm + qm−1 − 1) + S(qm+1)

and apply Lemma 4.3 with n = αm+1qm + qm−1 − 1, bm = αm+1, nm = qm−1 − 1.
Next, rewrite T(qm−1 − 1) as T(qm−1) − S(qm−1) and use the definition of βm, γm

together with (3.1).

Lemma 4.5 For m ≥ 0, qmS(qm − 1) = (1 − (−1)pm ) T(qm − 1).

Proof Take k ∈ {0, 1, . . . , qm − 1}. Using Lemma 3.4,

S(qm − 1) − S(k) =

qm−1
∑

j=k+1

(−1)⌊ jα⌋
=

qm−k−1
∑

j=1

(−1)⌊(qm− j)pm/qm⌋

=

qm−k−1
∑

j=1

(−1)pm−1−⌊ j pm/qm⌋ = −(−1)pm S(qm − 1 − k),

where we have used the fact that ⌊−x⌋ = −⌊x⌋− 1 for nonintegral x. Summing over
k, qmS(qm − 1) − T(qm − 1) = −(−1)pm T(qm − 1).

Lemma 4.6 For m ≥ 1,

2T(qm) =

{

(qm + 2)S(qm) + (−1)mqm if pm is odd,

qmS(qm−1) + (−1)m−1qm−1 + 2(−1)m if pm is even.

Proof If pm is odd, qmS(qm − 1) = 2T(qm − 1) from Lemma 4.5. Applying
Lemma 3.8 we then have qm(S(qm)+(−1)m) = 2(T(qm)−S(qm)), which is equivalent
to the first formula of the lemma. If pm is even, we write the formula of Lemma 4.4

in the form

2βmT(qm) = 2T(qm+1) − 2γmT(qm−1) − 2
(

δmqm + βmqm−1

)

S(qm).
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From (3.3) we compute βm = αm+1, γm = 1, δm = αm+1(αm+1 − 1)/2 and we use
Lemma 3.9 to replace S(qm) by (−1)m:

2αm+1T(qm) = 2T(qm+1) − 2T(qm−1)

− (−1)m
(

2αm+1qm−1 + αm+1(αm+1 − 1)qm

)

.

The evenness of pm implies by (2.3) that pm−1 and pm+1 are both odd, so we can

apply the first formula of this lemma to the first two terms of the right side of the last
equation:

2αm+1T(qm) = (qm+1 + 2)S(qm+1) + (−1)m+1qm+1

− (qm−1 + 2)S(qm−1) − (−1)m−1qm−1

− (−1)m
(

2αm+1qm−1 + (αm+1(αm+1 − 1)qm

)

.

We then replace qm+1 by αm+1qm + qm−1 according to (2.1), and using Lemma 3.10,
replace S(qm+1) by αm+1S(qm)+S(qm−1), which by Lemma 3.9 is equal to αm+1(−1)m+

S(qm−1), to get

2αm+1T(qm) =
(

αm+1qm + qm−1 + 2
) (

αm+1(−1)m + S(qm−1)
)

− (−1)m(αm+1qm + qm−1) − (qm−1 + 2)S(qm−1)

+ (−1)mqm−1 − (−1)m
(

2αm+1qm−1 + (αm+1(αm+1 − 1)qm

)

,

which simplifies algebraically to

2αm+1T(qm) = αm+1qmS(qm−1) + αm+1(−1)mqm−1 + 2αm+1(−1)m.

Dividing by αm+1 then produces the second formula of the lemma.

In preparation for Lemma 4.7, we use Lemma 4.3 and the representation (2.9) to
write

(4.7) T(n) − nq−1
m T(qm) = (−1)bm pm

(

T(nm) − nmq−1
m−1T(qm−1)

)

+ R(n)

where

(4.8) R(n) =
(

Dm − nq−1
m

)

T(qm) + (−1)bm pm nmq−1
m−1T(qm−1)

+
(

qmCm + nmDm

)

S(qm)

and where Dm, Cm are given by (4.1) and (4.2).
From (4.7) we then have

(4.9)
∣

∣T(n) − nq−1
m T(qm)

∣

∣ ≤
∣

∣T(nm) − nmq−1
m−1T(qm−1)

∣

∣ + |R(n)| .

In Theorem 4.8 we shall apply (4.9) recursively to bound
∣

∣T(n) − nq−1
m T(qm)

∣

∣, but
we first need to get the following bound for R(n).
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Lemma 4.7 If α is a quadratic irrational, there exists a constant K1 such that |R(n)| ≤
K1qm for all m ≥ 0.

Proof From Theorem 3.19 and Lemma 4.6 we have

(4.10) T(qm) =
1

2
Amqm + dm

where |dm| ≤ K2qm for m ≥ 0 and for some constant K2. From (4.8) and (4.10),

R(n) =
(

Dm − nq−1
m

) 1

2
Amqm + (−1)bm pm nmq−1

m−1

1

2
Amqm−1

+
(

qmCm + nmDm

)

S(qm) + em

=
1

2
Am

(

Dmqm − n + nm(−1)bm pm

)

+
(

qmCm + nmDm

)

S(qm) + em,

where |em| ≤ K3qm for m ≥ 0 and some constant K3.

If pm is even, then Dmqm − n + nm(−1)bm pm = bmqm − n + nm = 0 and S(qm) =

(−1)m. It follows that |R(n)| ≤ K4qm for m ≥ 0 and for some constant K4.

If pm is odd, we have from Theorem 3.19 that

R(n) =
1

2
Am

(

Dmqm − n + nm(−1)bm pm + 2qmCm + 2nmDm

)

+ fm,

where | fm| ≤ K5qm for m ≥ 0 and for some constant K5. For pm odd and bm odd,

Dmqm − n + nm(−1)bm pm + 2qmCm + 2nmDm = qm − n − nm + qm(bm − 1)) + 2nm

= −n + qmbm + nm = 0,

For pm odd and bm even,

Dmqm − n + nm(−1)bm pm + 2qmCm + 2nmDm = −n + nm + bmqm = 0.

Thus for pm odd, R(n) = fm and so |R(n)| ≤ K5qm for m ≥ 0.

Theorem 4.8 Let α be a quadratic irrational, and let A be given by Definition 3.18.

(a) If A = 0, then T(n) = O(n).

(b) If A 6= 0, there exists a positive constant K6 such that for n ≥ 2,
T(n) ≥ K6n log n if A > 0 and T(n) ≤ −K6n log n if A < 0.

Proof From (4.9) and Lemma 4.7,

(4.11)
∣

∣T(n) − nq−1
m T(qm)

∣

∣ ≤
∣

∣T(nm) − nmq−1
m−1T(qm−1)

∣

∣ + K1qm.
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We then apply (4.11) recursively, first with n replaced by nm and nm replaced by
nm−1 = nm − bm−1qm−1, then with nm replaced by nm−1 and nm−1 replaced by

nm−2 = nm−1 − bm−2qm−2, etc. and add the results to get

(4.12)
∣

∣T(n) − nq−1
m T(qm)

∣

∣ ≤ K1

m
∑

i=0

qi.

From (2.1) we have qi ≥ qi−1 + qi−2. If we sum this inequality on i from 0 to m and
subtract

∑m−1

i=0 qi from both sides, we get qm ≥ ∑m−2

i=0 qi + 2q−1 + q−2 ≥ ∑m−2

i=0 qi.
Then 3qm ≥ 2qm + qm−1 ≥

∑m
i=0 qi . If then follows from (4.12) that

T(n) − nq−1
m T(qm) = O(qm),

which, in view of (4.10) and the fact that qm ≤ n, implies that

(4.13) T(n) =
1

2
Amn + O(n).

If A = 0, (4.13) becomes part (a) of the theorem. Now assume A 6= 0. We have from
(2.8) that qm ≤ (K + 1)m. Since n < qm+1, this implies that log n < (m + 1) log(K + 1)
and hence that m ≥ K6 log n for some positive K6. Putting the last inequality into
(4.13) then proves part (b) of the theorem.

5 Convex Sequences

In this section we collect the properties of convex sequences (ck, k ≥ 1) that will be

needed to prove Theorem 6.1. We shall use the notation of Section 1, ∆ck = ck − ck+1

and ∆
2ck = ∆(∆ck) = ck − 2ck+1 + ck+2, and we shall say that (ck) is decreasing if

∆ck ≥ 0 and convex if ∆
2ck ≥ 0. We begin by listing two familiar properties.

Let (ck) be decreasing. If
∑

ck converges, then kck → 0.(5.1)

Let (ck) be convex. If lim ck is finite, then (ck) is decreasing.(5.2)

Lemma 5.1 Let (ck) be convex. If ck → 0, then

(a) ck ≥ 0 for all k;

(b) k∆ck → 0;

(c)
∑

k∆2ck < ∞.

Proof (a) By (5.2), (ck) is decreasing, so ck ≥ lim ck = 0.
(b) From the convexity of (ck), ∆ck is decreasing. Further,

n
∑

k=1

∆ck = c1 − cn+1 → c1.

So by (5.1), k∆ck → 0.
(c) It is a simple induction to show that

∑n−1

k=1 k∆2ck = c1 − n∆cn − cn+1, which
has limit c1 by (b).
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Lemma 5.2 Let (ck) be convex. If
∑

ck/k converges, then

(a) (ck) is decreasing and ck ≥ 0 for all k;

(b) ck log k → 0 and
∑

(∆ck) log k < ∞;

(c) (∆ck)k log k → 0 and
∑

(∆2ck)k log k < ∞.

Proof (a) By convexity, (ck) converges to ∞,−∞, or a finite number c. If ck → ∞,
then ck ≥ 1 eventually and

∑

ck/k diverges by comparison with
∑

1/k. If ck → −∞
or ck → c 6= 0 then

∑

ck/k diverges similarly. Thus ck → 0. From (5.2) we conclude
that (ck) is decreasing, and from Lemma 5.1 (a) that ck ≥ 0 for all k.

(b) Let hn =
∑n

k=1 1/k and use summation by parts to write

(5.3)

n
∑

k=1

ck/k =

n−1
∑

k=1

hk∆ck + hncn.

From (a) we know that hncn ≥ 0 and that ∆cn ≥ 0, so from (5.3) and the con-
vergence of

∑

ck/k we get the convergence of
∑

hk∆ck. Using hk ∼ log k we then

have
∑

(∆ck) log k < ∞. Applying (5.3) again, we get that lim hncn = l exists, from
which it follows that cn log n → l. If l > 0,

∑

ck/k would diverge by comparison with
∑

1/(k log k). So l = 0 and cn log n → 0.
(c) Let Hn =

∑n
k=1 hk and perform a second summation by parts to write

(5.4)

n
∑

k=1

ck/k =

n−2
∑

k=1

Hk∆
2ck + Hn−1∆cn−1 + hncn.

By (a), Hn−1∆cn−1 ≥ 0 and hncn ≥ 0. The convergence of
∑

ck/k then implies that
of

∑

Hk∆
2ck and, in view of Hn ∼ n log n, that of

∑

(∆2ck)k log k. In the proof of
part (b), we saw that hncn → 0, which together with (5.4) and the convergence of
∑

ck/k, implies lim Hn−1∆cn−1 = l exists. Thus lim(∆cn)n log n = l. If l 6= 0, we
would have

∑

(∆ck) log k = ∞, contradicting (b). Thus (∆cn)n log n → 0.

Example 5.3 Let ck = 1/(log k log log k), k ≥ 3. Then (ck) is convex and ck log k →
0 but

∑

ck/k = ∞. So for convex sequences, the convergence of
∑

ck/k is stronger
than the condition ck log k → 0.

6 The Convergence Theorem

We now present the main theorem of this paper.

Theorem 6.1 Let α be a quadratic irrational, let A be defined by Definition 3.18, let

(ck, k ≥ 1) be a convex sequence, and let S denote the series
∑

(−1)⌊kα⌋ck.

(a) If A = 0, then S converges if and only if ck log k → 0.

(b) If A 6= 0, then S converges if and only if
∑

ck/k converges.

We shall prove this theorem in a sequence of lemmas. For the remainder of this
section, α will be a quadratic irrational and (ck) will be convex.
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Lemma 6.2 If A = 0 and ck log k → 0, then S converges.

Proof By Theorem 3.3, ck log k → 0 implies ckS(k) → 0. By Theorem 4.8(a)
and Lemma 5.1(b), T(k − 1)∆ck−1 → 0. By Theorem 4.8(a) and Lemma 5.1(c),
∑

T(k)∆2ck converges. It then follows from (1.3) that S converges.

Lemma 6.3 If A = 0 and S converges, then ck log k → 0.

Proof The convergence of S obviously implies ck → 0, which by (5.2) implies that
(ck) is decreasing and by Lemma 5.1(a) that ck ≥ 0 for all k. By Theorem 4.8(a),
T(n) = O(n). Then by Lemma 5.1(b) and (c) we have T(n − 1)∆cn−1 → 0 and
∑

T(k)∆2ck < ∞. The convergence of S and (1.3) imply that S(n)cn → 0. From
Theorem 3.14, there exists a sequence of positive integers (ik, k ≥ 1) such that ik ≤
Ck and |S(ik)| ≥ k/2. For Ck ≤ n < Ck+1 we have 0 ≤ cn log n ≤ cik

log Ck+1
=

cik
(k + 1) log C ≤ cik

(2|S(ik)| + 1) log C → 0 as k → ∞, and hence cn log n → 0 as

n → ∞.

Lemmas 6.2 and 6.3 together prove part (a) of Theorem 6.1.

Lemma 6.4 Independently of A, the convergence of
∑

ck/k implies the convergence

of S.

Proof Theorem 3.3 and Lemma 5.2(b) imply ckS(k) → 0. Also, Theorem 3.3 im-

plies T(k) = O(k log k) which, together Lemma 5.2(c), implies T(k − 1)∆ck−1 → 0
and

∑

T(k)∆2ck converges. The convergence of S than follows from (1.3).

Lemma 6.5 If A 6= 0, the convergence of S implies the convergence of
∑

ck/k.

Proof The proof for A < 0 is obtained by reversing the inequality signs in the
proof for A > 0, so we shall give only the proof for A > 0. As in Lemma 6.3, the
convergence of S implies that ck → 0, (ck) is decreasing, and ck ≥ 0 for all k. If pm is
even, (1.3) and Lemma 3.9 imply that

n
∑

k=1

(−1)⌊kα⌋ck =

n−2
∑

k=1

T(k)∆2ck + T(n − 1)∆cn, if n = qm − 1 and pm is even.

(6.1)

The condition T(n) ≥ Kn log n for n sufficiently large and for a positive constant
K, from Theorem 4.8(b), together with the convexity of (ck), imply that for n suf-

ficiently large,
∑n−2

k=1 T(k)∆2ck is increasing and T(n − 1)∆cn−1 ≥ 0. The case
A 6= 0 can occur only if infinitely many pm are even, which means that (6.1) holds
for infinitely many n. It then follows from the convergence of S that the partial
sums of

∑

T(k)∆2ck are bounded on an infinite subsequence, and thus bounded

because
∑n−2

k=1 T(k)∆2ck increases. Hence
∑

T(k)∆2ck converges. Using (1.3) again,

https://doi.org/10.4153/CJM-2007-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-004-1


106 J. H. Foster and M. Serbinowska

we get the finiteness of the limit L = lim (T(n − 1)∆cn−1 + S(n)cn) . The condi-
tion T(n) ≥ Kn log n implies that S(n) ≥ (K/2) log n for infinitely many n. Thus

K(n − 1) log(n − 1)∆cn−1 + (K/2) log ncn ≤ L + 1 for infinitely many n. This im-
plies that Hn−1∆cn−1 + hncn ≤ 2(L + 2)/K for infinitely many n, where hn and Hn

were defined in the proof of Lemma 5.2. Also, the convergence of
∑

T(k)∆2ck and
the condition T(n) ≥ Kn log n for n sufficiently large implies the convergence of
∑

Hk∆
2ck. We thus see from (5.4) that there is an infinite sequence of integers n on

which
∑n

k=1 ck/k is bounded. The nonnegativity of (ck) then implies the convergence
of

∑

ck/k.

Part (b) of Theorem 6.1 then follows from Lemmas 6.4 and 6.5.

7 Examples

We conclude by giving four examples of the determination of π and the computa-
tion of A. Recall (Lemma 3.11 and Definition 3.12) that πα is the period of (αm+1

mod 2, m ≥ m1), πp is the period of (pm mod 2, m ≥ m1) and π is the least even
multiple of πp and the period of (αm+1 mod 2, m ≥ m1). Also, in the case of in-

finitely many pm even, m1 is chosen so that pm1
is even. (In the examples below

we always choose the least such m1.) Thus we have to carry out the tables below to
include lcm(3πα, 2) periods of (αm+1, m ≥ m1) to be sure that we see the entire pe-
riod of pm mod 2. For the computation of A, the tables have to be carried out to

m = m1 + π − 1.

Example 7.1 α = 1 − c +
√

c2 + 1 = [1, 2c, 2c, 2c, . . .] = [1, 2c] for c a positive

integer. From (2.1), pm satisfies the recursion pm+1 = 2cpm + pm−1. Noting that
p−1 = 1 and p0 = 1, it follows by induction that pm is odd for m ≥ 0. Thus
A = 0 and case (a) of Theorem 6.1 applies. (Since the sequence (1/k) is convex,
the convergence result of Borwein and Gawronski [2], noted in the Introduction, is

a special case of Theorem 6.1.) This example, of course, contains the special case
α =

√
2 mentioned in the abstract.

Example 7.2 α = (1 +
√

5)/2 = [1]. The recursion is now pm+1 = pm + pm−1.
Since πα = 1 and m1 = 1, we carry the table out to 6 periods of (αm+1 mod 2),

m −1 0 1 2 3 4 5 6
αm+1 1 1 1 1 1 1 1 1

pm mod 2 1 1 0 1 1 0 1 1

from which we see that in fact πp = 3. Thus π = 6. For 1 ≤ m ≤ 6, there are
two values of m with pm even, so there are two blocks of length 3 each, r = 2, m2 =

4, j1 = m2 − m1 = 3, j2 = m1 + π − m2 = 3. Therefore

A =
1

6

(

(−1)1α
′

2 + (−1)4α
′

5

)

=
1

6

(

(−1)1(α2 − 1) + (−1)4(α5 − 1)
)

= 0.

The golden ratio is an example with infinitely many pm even and A = 0.
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Example 7.3 α =
√

3 = [1, 1, 2]. Here, πα = 2 and from the table

m −1 0 1 2 3 4 5
αm+1 1 1 2 1 2 1 2

pm mod 2 1 1 0 1 1 1 0

we obtain m1 = 1, πp = 4, and π = 4. For 1 ≤ m ≤ 4 there is only one pm even and
thus there is only one block of length 4, so r = 1, j1 = 4 and

A =
1

4
(−1)1α

′

2 =
1

4
(−1)1α2 = −1

2
.

So
√

3 is an example with infinitely many pm even and A 6= 0.

Example 7.4 α = (−1 +
√

442)/9 = [2, 4, 2, 4]. In this example, πα = 1, but the
period of (αm, m ≥ m1) is 3. From the below table, m1 = 0, πp = 2 and thus π = 6.

m −1 0 1 2 3 4 5 6
αm+1 2 4 2 4 4 2 4 4

pm mod 2 1 0 1 0 1 0 1 0

For 0 ≤ m ≤ 6, there are three pm even, so there are three blocks, length 2 each.
Thus m2 = 2, m3 = 4 and ji = 2 for i = 1, 2, 3. Finally,

A =
1

6

(

(−1)0α
′

1 + (−1)2α
′

3 + (−1)4α
′

5

)

=
1

6
(α1 + α3 + α5) =

5

3
.

So (−1 +
√

442)/9 is also an example with infinitely many pm even and A 6= 0.

Applying Theorem 6.1 to Examples 7.1 and 7.3 with (ck) the sequence of Example

5.3, we get the interesting concrete result that
∑

(−1)⌊k
√

2⌋/(log k log log k) converges

and
∑

(−1)⌊k
√

3⌋/(log k log log k) diverges.
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