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Measurement Models for Time Series Analysis:
Estimating Dynamic Linear Errors-in-Variables
Models

Gregory E. McAvoy

Abstract

This article uses state space modeling and Kalman filtering to estimate
a dynamic linear errors-in-variables model with random measurement
error in both the dependent and independent variables. I begin with a
general description of the dynamic errors-in-variables model, translate it
into state space form, and show how it can be estimated via the Kalman
filter. I report the results of a simulation in which the amount of random
measurement error is varied, to demonstrate the importance of estimat-
ing measurement error models and the superiority that Kalman filtering
has over regression. I use the model in a substantive example to examine
the effects of public opinion regarding nuclear power on the enforcement
decisions of the Nuclear Regulatory Commission. I then estimate a dy-
namic linear errors-in-variables model using multiple indicators for the
latent variables and compare simulations of this model to the single in-
dicator model. Finally, I provide substantive examples which examine
the effect of people’s economic expectations on their approval of the
president and their approval of government more generally.

Earlier versions of this article were presented at the 1995 Annual Meeting of
the American Political Science Association, Chicago, Illinois, and the 1996 Annual
Political Methodology Summer Conference, Ann Arbor, Michigan. I would like to
thank the following people for helpful comments and/or conversations: Susan Bick-
ford, Suzanna DeBoef, Donald Green, Jim Stimson, George Rabinowitz, and Renée
Smith.
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Introduction

The topic of measurement errors in time series analysis periodically cap-
tures the attention of economists and statisticians, but such attention is
rarely sustained. This episodic history is explained by analysts' concern
for other problems in time series analysis (like the detection and correc-
tion of problems in the disturbance term) and the difficulty of identifying
and estimating those measurement models that have been proposed (e.g.,
Geweke 1977; Maravall and Aigner 1977; Aigner, Hsiao, Kapteyn and
Wansbeek 1984). Political scientists, however, do not have the luxury of
ignoring measurement error since many of our important and interesting
concepts are not directly observable or their measures are contaminated
with random error. The tendency to ignore measurement issues in time
series analysis appears to be diminishing as the methods to conduct this
type of analysis—state space modeling and Kalman filtering—become
more prevalent and computer software and hardware make estimation
easier.!

Within political science, those addressing measurement issues in
time series have focused on the estimation of models with error in the
dependent variable. Beck (1990) describes state space modeling and
Kalman filtering and demonstrates the utility of these tools for the esti-
mation of random measurement error and dynamic factor analytic mod-
els. Kellstedt, McAvoy and Stimson (1996) show the efficiency gains
from estimating a measurement model for the dependent variable and
the precision of Kalman filter estimates in the face of autocorrelation.
These measurement techniques have been applied to a variety of sub-
stantive problems, including dynamic representation, racial inequality,
monetary policy, public entrepreneurship, and arms races.?

Measurement error is not limited to the dependent variables, how-
ever. The consequences of measurement error in the independent vari-
ables are of equal, if not greater, importance. As we know from any
textbook treatment of measurement error, random error in the indepen-
dent variables produces biased and inconsistent ordinary least squares
(OLS) estimates.

This paper uses state space modeling and Kalman filtering to es-

1The simulations in this article were run on a UNIX platform using Rats 4.1.
The substantive applications were run on a PC using GAUSS 3.2 and the maximum
likelihood module, vergsion 4.0. The programs to produce the tables in this article
are available via the Internet at http://www.uncg.edu/~gemcavoy.

?Williams and McGinnis (1992) conduct a dynamic factor analysis to estimate
superpower rivalry. They use spectral techniques to estimate their models, rather
than Kalman filtering as used by Beck (1990) and Kellstedt, McAvoy and Stimson
(1996).
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timate a dynamic linear errors-in-variables model with random mea-
surement error in both the dependent and independent variables. I be-
gin with a general description of the dynamic errors-in-variables model,
translate it into state space form, and show how it can be estimated
using the Kalman filter. Then I report the results of a simulation in
which the amount of random measurement error is varied and, thus,
demonstrate the importance of estimating measurement error models
and the superiority that Kalman filtering has over regression. Next I
use the model in a substantive example to examine the effects of public
opinion regarding nuclear power on the enforcement decisions of the Nu-
clear Regulatory Commission. I then estimate a dynamic linear errors-
in-variables model using multiple indicators for the latent variables and
compare simulations of this model to the single indicator model. Finally,
I provide substantive examples that examine the effect of people’s eco-
nomic expectations on their approval of the president and their approval
of government more generally.

The Dynamic Linear Errors-in-Variables Model

The dynamic linear errors-in-variables model with a single indicator for
each latent variable is a useful starting point from which to investigate
dynamic latent variables. The single indicator model has been described
as a dynamic shock-error model. The general model as described in
Aigner, Hsiao, Kapteyn and Wansbeek (1984) and Ghosh (1989) is

T = P1ze-1 + BaTe—a + - + BpTi—p

(1)
+ Yous + 1Ue—2 + -+ YgUt—q + €,

where p is the lag of the endogenous variable, and ¢ is the lag of the
exogenous variable. This is a single-equation model with lagged endoge-
nous and exogenous variables, which are assumed to be stationary. The
equation disturbance term, ¢;, constitutes the “shock” in this model.
The variables z; and u; are not directly observable due to random mea-
surement errors. The measurement equations for these variables are

I: =TI+ Vg

u{:ug-i—uug,

where z7 and u; are the observed variables, and v;; and v,; are random
measurement errors. The error terms, v;; and vy, and the shock, ¢, are
assumed to be normally distributed, mutually independent, white noise
processes. OLS estimation of equation (1) using the observed variables
leads to biased and inconsistent estimates due to the measurement error
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in the independent variable. The bias is the result of contemporaneous
carrelation between the regressor and the error term, the classic errors-
in-variables problem.

In order to overcome the errors-in-variables problem, these equations
must be estimated simultaneously. Therefore, one must be sure that the
specified model is identified. Maravall (1979) provides proofs for the
identification of a number of variants of the dynamic shock-error model,
including the ones used here. Recently some economists have developed
counting rules for identification, ones that are similar to the rank and
order conditions used to check for identification in simultaneous equation
models (e.g., Solo 1986; Nowak 1993).3

I will work with a simplified version of the model described above,

Ze = PiTe—1 + Yous + € , 2
but one that imposes some structure on the exogenous variable
ug = AU + e . (3)

This additional equation helps insure that the model is identified and
makes sense substantively for many issues. It is not necessary to include
this additional equation for identification of the system, but without it,
we must have p > 2 and ¢ > 1 or p > 1 and ¢ > 2 (Ghosh 1989).

Estimation of this model requires writing the four equations in state
space form, specifying the appropriate Kalman filtering equations, and
maximizing the likelihood function. The dynamic errors-in-variables
model proposed here differs slightly from other political science applica-
tions (Beck 1990; Kellstedt, McAvoy and Stimson 1996) because there
are two state vectors, each with its own measurement equation. To put
equations (2) and (3) into state space form requires some algebraic ma-
nipulation to insure that only lagged values of the state vector appear
on the right hand side of the transition equations. Substituting equation
(3) into equation (2) and then representing the two equations in matrix
notation yields the “state” or transition equations

[;:]=[$;A1 gl][::i]"[}mg”ﬂ- (4)

The measurement equations can also be written in matrix notation,

[’;:1]=[‘;:]+[';::]- (5)

3For additional information on the identification of dynamic linear errors-in-
variables, see Nowak (1993) and Scherrer, Deistler, Kopel and Reitgruber (1991).
For more information on the estimation of these models, see Aoki (1990) and Lomba
(1990).
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With the measurement and transition vectors in state space form,
the dynamic linear errors-in-variables model can easily be incorporated
into the Kalman filter for estimation. The Kalman filter is a recursive
process that uses information from the previous time period to form a
conditional forecast of the state vectors and calculates the prediction
error from the measurement equations. The complete set of Kalman
equations for this analysis is described in the Appendix. The critical
calculations derived recursively from the filter are the estimates of the
state vector (X;), a vector of prediction errors or innovations at t (n,),
and the covariance matrix of innovations conditional on information at
t— 1 (H;). With this information, the log-likelihood function for the
dynamic linear errors-in-variables model can be calculated:

T T
L(’\rﬂ)'y;e’etvu)vz) = —'2]: EIOgdeth - %Zn:H:lnt .

t=1 t=1
Because it depends on conditional innovations at time ¢, this specifica-
tion is often described as the prediction error decomposition form of the
likelihood (Harvey 1989; Ghosh 1989). The likelihood function can be
maximized with respect to the transition and measurement parameters
(A, 8,7, €, €, vy, vz) to get the maximum likelihood estimates.*

Random Measurement Error Simulation

Simulated data are useful for this comparison of OLS and dynamic lin-
ear errors-in-variables because the true parameter estimates are known,
but more importantly, because the amount of random error can be ma-
nipulated. I constructed data sets based on three different scenarios,
each with a different amount of error in the observed variables. Each
scenario was simulated 100 times and the model estimated by OLS and
the Kalman filter. The average of the parameter estimates for each sce-
nario provides the basis for a meaningful comparison between OLS and
the maximum likelihood estimates of the Kalman filter.
The true parameters for the simulation are

/\1 = 88, ﬁl = .65, Yo = .27, m= .52.

Here, 7, is the coefficient of an exogenous variable measured without
error. The error variances for the transition equations were set at 5.0.

4Ghosh (1989) and Watson and Engle (1983) use the EM algorithm to maximize
the function because the EM equations are calculated to insure positive estimates
of the error variances. However, it i3 a much more cumbersome to estimate the
likelihood function using the EM method. Here, I use the generalized maximum
likelihood estimator procedures in GAUSS and RATS and did not encounter any
problems with negative variances.
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TABLE 1. Summary Estimates for Simulations with Measurement

Error Varied
Error Case 1 Case 2 Case 3
Opl = Op2 = 1.0 5.0 15.00

Maximum Likelihood Estimates

Mean SD Mean SD Mean SD
A 0.885 0016 0.870 0.025 0.876 0.034
B 0.658 0020 0.658 0.034 0.640 0.049
40 0.278 0020 0271 0.036 0.302 0.068
S 0.520 0.029 0.531 0.048 0.550 0.079

Regression Estimates

Mean SD Mean SD Mean SD
Y 0.845 0.015 0.721 0.040 0.545 0.066
b 0.631 0.018 0.552 0.042 0.467 0.056
%o 0.278 0.019 0.274 0.040 0.237 0.061
ﬁn 0.570 0.025 0.681 0.059 0.935 0.099

Theoretical values: \; = .88, 8; = .65, y0 = .27, 71 = .52.
N =100

These parameters remained the same for each of the three scenarios.
The measurement error variances, o2, and o2;, were manipulated in
the three scenarios: 1.0 for Case 1; 5.0 for Case 2; and 15.0 for Case 3.
We would expect the differences between OLS estimates and the Kalman
filter estimates to increase as more measurement error is introduced into
the observed variables.

The results from the three simulations are in Table 1. For Case
1, the differences between the two estimation methods show that even
when random error is quite small, OLS estimates are biased, while the
maximum likelihood estimates closely match the true parameters. In
particular, the #4; estimate (.57) deviates from the true parameter in
the regression model (.52). The direction of the bias in the independent
variable measured without error depends on the correlation between it
and the variable measured with error. Once a moderate amount of error
is introduced into the observed variables (Case 2), the advantages of
estimating, rather than ignoring, the error become even clearer. The
bias in 4, increases even further and the estimates for 8; and A; move
further away from the true values. The Kalman filter estimates are very
close to the true parameter estimates for all the variables.

Case 3 most dramatically demonstrates the virtues of the Kalman fil-
ter. All the estimated coefficients for OLS begin to deviate considerably
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from the true parameter estimates, while the Kalman filter estimates re-
main close to the true value. The ability to estimate and control for the
noise in a dynamic model allows the Kalman filter to produce unbiased
estimates of the true parameters.

Application 1: The Impact of Opinion about Nuclear Power on NRC En-
forcement

Within American politics, there is growing interest in the relationship
between public opinion and public policy (see Jacobs and Shapiro 1994
and Page 1994 for extended reviews). Often, in looking at the relation-
ship between policy and opinion, researchers rely on single indicators of
these two concepts, but for many issue areas, policy and opinion are not
likely to be perfectly measured. For example, survey marginals of public
opinion regarding policy issues are likely to contain measurement error
due to sampling procedures. If these survey marginals are used as inde-
pendent variables to explain policy, coefficient estimates are likely to be
biased. Because the dynamic linear errors-in-variables models include
measurement equations, sampling error can be incorporated into the
analysis as measurement error. In order to show how the dynamic linear
errors-in-variables method can address these measurement problems, I
will examine the link between citizens’ attitudes towards nuclear power
during the 1980’s (OpposeNP) and the impact of these attitudes on reg-
ulatory enforcement by the Nuclear Regulatory Commission (Enforce).
The model for this analysis is

OpposeNP, = A\, OpposeNP,_, + ¢,
Enforce, = 8 Enforce,_, + 70 OpposeNP, + € ,

where time t indexes quarters. The measurement equations are

OpposeNP; = OpposeNP, + vy
Enforce; = Enforce, + vz .

The specification of the first transition equation for opinion about nu-
clear power is consistent with the general view that public opinion follows
an autoregressive process (Page and Shapiro 1992, 61-62). The second
transition equation is specified so that the level of enforcement by the
NRC is influenced by public opinion.

The enforcement budget variable is the quarterly expenditures by
the NRC on inspections of nuclear power plants and enforcement of
regulations through hearings and fines. Although budgeting for the En-
forcement Division of the NRC is not done quarterly, we can still expect
covariation between spending and opinion since the NRC can increase
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its visibility at nuclear power plants and in the press by more vigilantly
enforcing regulations when it senses growing public concern about nu-
clear safety. In other words, the NRC has some discretion over how and
when it spends its budget. The enforcement budget data were collected
from the Monthly Treasury Bulletin.

Data on attitudes towards nuclear power were collected quarterly
by Cambridge Reports Inc. for most of the 1980s. The question used as
an indicator of attitudes towards nuclear power was: “I’m going to read
you a list of proposals for dealing with the energy crisis, and I’d like you
to tell me whether you generally favor or oppose each one. ... building
more nuclear power plants.” The analysis was run using quarterly data
from the first quarter of 1981 to the third quarter of 1988, when CRI
stopped collecting these data.® In this analysis, the percent opposing
nuclear power was used to measure quarterly attitudes. Therefore, more
opposition to nuclear power should result in stricter enforcement by the
NRC as it tries to prevent accidents that might further erode public
confidence in the safety of nuclear power.® The data used in the analysis
are mean centered.”

The OLS analysis of the two transition equations is shown in Table
2. Opinion regarding nuclear power is influenced by past attitudes, as
indicated by the .701 coefficient on the lagged value of opposition to nu-
clear power. In the second transition equation in which the relationship
between policy and opinion i8 modeled, opinion has a positive, significant
impact of .286 on the enforcement budget. However, this coefficient is
likely to be biased downward because of sampling error in the quarterly
surveys.

With the Kalman filter the size of this random error due to sampling
could be estimated. Since the proportions opposing expansion of nuclear

5The data collected by Cambridge Reports Inc. were reprinted in Rosa and Dunlap
1994.

SWith survey marginals, it is possible that missing data create a bias problem
in estimation. In this case, the missing data (or don’t knows) could be negatively
correlated with dramatic events (e.g., Chernobyl) since people are probably less likely
to choose these options when dramatic events occur. This could create an omitted
variables problem and biased coefficient estimates. Since the missing data are not
reported by Cambridge Reports, we do not know if missing data pose a problem in
this case.

TThe two series used in this analysis—enforcement and opposition to nuclear
power—were tested for unit roots. For each series, the null of a unit root could not
be rejected. However, the enforcement variable had a unit root with no drift, while
the opposition to nuclear power variable had a unit root with drift. Therefore, it is
unlikely that these series could be co-integrated. This was confirmed by conducting
a Engle-Granger test for co-integration which indicated that the series were not co-
integrated. It is therefore not necessary to specify an error correction model.


https://doi.org/10.1093/pan/7.1.165

https://doi.org/10.1093/pan/7.1.165 Published online by Cambridge University Press

Measurement Models for Time Series Analysis 173

TABLE 2. Ordinary Least Squares Estimates for
Opinion about Nuclear Power and the NRC's
Enforcement Budget

Dependent Variable: Oppose Nuclear Power

Variable Coeff SE
OpposeNP,_, 0.701« 0.104
Adj. R? = 0.62

SE of Estimate = 3.367

Dependent Variable: NRC’s Enforcement Budget

Variable Coeff SE
Enforce,_, 0.385+ 0.159
OpposeNP, 0.286« 0.142
Adj. R? = 0.69

SE of Estimate = 4.52

Quarterly data from 1981:01 to 1988:03
*p<.05

power and the sample size of the surveys are known, however, sampling
error can be calculated and simply added to the model as error variance
in the indicators and need not be estimated. Beck (1990) uses the same
technique in an analysis of presidential approval survey marginals. The
formula for estimating the sampling error is X;(100 — X;)/N, where X;
is the percentage of respondents holding a particular point of view and
N is the sample size.?

The results of the maximum likelihood estimates of the dynamic
linear errors-in-variables model are reported in Table 3. The estimate
of the effect of the lagged indicator for opposition to nuclear power ex-
pansion is virtually the same as the regression estimate. The differences
between the maximum likelihood and regression point estimates for the
second transition equation are larger. The coefficient for the lagged en-
forcement latent variable is .476 as compared to .385 in the regression

8This is the correct formula for calculating the sampling error if the survey is based
on a simple random sample. Cambridge Reports, like most polling organizations, did
not rely on a simple random sample. The formula for the simple random sample is
likely to underestimate the true sampling error. The correct sampling error could
be calculated, albeit with great difficulty. Such a calculation would require precise
knowledge of the degree of stratification and clustering in each sample.
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TABLE 3. Maximum Likefihood Estimates for
Opinion about Nuclear Power and the NRC's
Enforcement Budget

Transition Equation 1: Oppose Nuclear Power

Variable Coeff SE

OpposeNP,_, 0.718+ 0.127

Transition Equation 2: NRC’s Enforcement Budget

Variable Coeff SE
Enforce, 0.476+ 0.237
OpposeNP, 0.342#» 0.196

Error Variance for Transition Equations

o3 4.589+ 0.404
o? 3.467« 1.721

Quarterly data from 1981:01 to 1988:03
*p<.05*p<.1

analysis.® The regression estimate for the coefficient for the opposi-
tion to expansion of nuclear power is .286 while the estimate from the
maximum likelihood model is .342. Despite the fact that the regres-
sion estimates consistently deviate from the maximum likelihood point
estimates, the confidence intervals around the maximum likelihood esti-
mates contain the regression estimates. The observed differences in the
parameter point estimates are not statistically significant in this case.

Muttiple Indicators

The dynamic errors-in-variables model described above demonstrates
how single indicators are used to measure latent concepts. The analysis
can be extended to include multiple indicators in the measurement model
for the state vectors. The advantages of the multiple indicator approach
are more efficient parameter estimates and the means to examine more
systematically our measurement of theoretical concepts.

The extension from the single indicator model described above to

I checked the residuals for signs of heteroskedasticity and did not detect a prob-
lem. Based on some simulations in which I introduced heteroskedastic errors, the
effect of heteroskedasticity in the dynamic linear errors-in-variables setup is to in-
flate the standard errors, but not to introduced bias.
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a multiple indicator measurement model is fairly simple. If we return
to the general model described in matrix form in equations (4) and (5),
the transition model remains the same. The measurement model must
be extended to include additional measures of the latent state variable.
In the case of a three-indicator model for each of the state vectors, the
new measurement model is

Fuf, 1 [ we ] [ viee ]
ug, e 7371 V2ut
u§, = | osue | | vsu (6)
Tt I Uizt
I3, o032 Vozt
_Isg_ _ﬂSzt_ | U3zt |

The coeflicient of one of the indicators must be set equal to one in order
to provide a metric for the state variable. In equation (6) I have set
a; = £, = 1. The addition of these indicators requires additional pa-
rameters to estimate, but estimation of the parameters via the Kalman
filter proceeds exactly as described above. The dimensions of the in-
novations matrix change, but the log likelihood is identical to the one
described in the appendix.

Comparing Mutltiple Indicator and Single Indicator Models

Using simulated data, it is possible to see the advantages that a multiple
indicator model can have over one with single indicators of the latent
variables. Since both models can estimate the random error in the inde-
pendent variables, both methods should produce unbiased estimates of
the true parameters. However, because a model with multiple indicators
contains more information, it should provide more efficient estimates of
the model parameters.

For this simulation, I estimate a model with two latent variables,
each of which is measured with three indicators. The true parameters
for the transition equations are the same as in the preceding simulation
for the single indicator model: A; = .88,8, = .65,70 = 27,71 = .52. In
this simulation, there are 100 cases and the model was estimated 100
times. The results of this simulation are then compared to a model in
which each latent variable is measured with a single indicator, in Table
4.

As expected, both models provide unbiased estimates. The errors
around these estimates increase as the amount of measurement error
increases. For example, the standard deviation for <y; rises from .009 to
.025 as the measurement error increases from 1.0 to 15.0. For each of
the parameters, the standard deviation for the estimate is smaller for
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TABLE 4. Summary Estimates for Simulations of Latent
Variables with Multiple Indicators and Single Indicators

Error: Case 1 Case 2 Case 3
Oyl = Oy2 1.0 5.0 15.00
Multiple Indicator Dynamic Linear Errors-in-Variables

Mean SD Mean SD Mean SD

i 0.883 0.009 0.881 0.018 0.876 0.025
b 0.651 0.012 0.655 0.024 0.651 0.032
Yo 0.272 0.014 0.275 0.029 0.277 0.041
1 0.524 0.018 0.524 0.040 0.533 0.053

Single Indicator Dynamic Linear Errors-in-Variables
Mean SD Mean SD Mean SD

A 0.885 0.016 0870 0.025 0.876 0.034
A 0.658 0.020 0.658 0.034 0.640 0.049
Yo 0.278 0.020 0.271 0.036 0.302 0.068
n 0.520 0.029 0.531 0.048 0.550 0.079

Theoretical values: \; = .88, 8; = .65, 79 = .27, 71 = .52.
N =100

the multiple indicator model, demonstrating the efficiency gains it can
provide.

The advantages of the multiple indicator model are not simply tech-
nical. The ability to estimate latent factors allows researchers to better
link important concepts to their indicators when multiple indicators are
available. The applications below illustrate how concepts like economic
expectations and approval of government can be measured and analyzed
by the dynamic linear errors-in-variables model.

Application 2: Presidential Approval and a Multiple-Indicator Model of Eco-
nomic Expectations

Political scientists have spent a good deal of time trying to explain vari-
ation in presidential approval by using aggregate measures of economic
conditions (for a thorough summary of the presidential approval litera-
ture, see Ostrom and Smith 1994) and have had limited success (Norpoth
and Yantek 1983; Yantek 1988). The micro-level assumption behind the
use of measures of aggregate economic conditions is that individuals are
retrospective voters and evaluate presidents based on changes in their
personal economic circumstances. According to this argument, individu-
als respond to changes in unemployment and inflation, and the effects of
personal economic circumstances can be picked up by measures of aggre-
gate economic conditions. Recently, however, this retrospective model
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has been challenged by both cross-sectional and time series analyses
which show that prospective evaluations matter more than retrospec-
tive ones. MacKuen, Erikson and Stimson (1992) argue that, rather
than responding to economic conditions, individuals evaluate the presi-
dent’s performance through their perceptions about the economy, and it
is their expectations about the future state of the economy that matter
most of all. MacKuen, Erikson and Stimson (1992) use the Index of
Consumer Sentiment (ICS) and the components of the index'to demon-
strate that these aggregate measures of perceptions outperform direct
measures of economic conditions in explaining presidential popularity.

This prospective model of presidential approval, which includes both
measures of consumer sentiment and survey marginals for presidential
approval, can easily and usefully be incorporated into the dynamic lin-
ear errors-in-variables setup. Estimation of a measurement model is a
distinct advantage in analyzing a concept like economic expectations.
Without a measurement model for the concept, one is forced to choose
(using uncertain criteria) the “best” of several indicators of economic
expectations.

MacKuen, Erikson and Stimson show that sociotropic rather than
personal expectations about the economy have the greatest impact on
evaluations of the president. Following their approach, I use the indexed
response to two questions as indicators of people’s expectations about
future economic performance: 1) “Now turning to business conditions
in the country as a whole—do you think that during the next 12 months
we’ll have good times financially, or bad times or what?” and 2) “Look-
ing ahead, which would you say is more likely—that in the country as
a whole we'll have continuous good times during the next 5 years or so,
or that we will have periods of widespread unemployment or depression,
or what?” MacKuen, Erikson and Stimson refer to these two questions
as short-term and long-term business expectations. Responses to this
question are compiled by the University of Michigan’s Survey Research
Center in its Survey of Consumers.®

The transition equations for the dynamic linear errors-in-variables
model of presidential approval are

BusEzp, = 1y BusEzp,_, + e
PresApp, = B PresApp,_, + ToBusEzp, + v, Unem; + maInfl, + ¢

10Respondents are also asked about their personal financial expectations in the
Survey of Consumers. I have excluded this measure from the analysis of economic
expectations in order to specify a model that is consistent with MacKuen, Erikson and
Stimson (1992), who argue that sociotropic evaluations matter more than personal.
One could specify a measurement model for the more general concept "economic
expectations” using all three indicators.
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The measurement equations are:

Short-termBusEzp, BusEzp, vy,
Long-termBusEzp; | = | asBusEzp, | + | v, (7
PresApp; PresApp, vs,

The specification of the second transition equation closely follows that
of MacKuen, Erikson and Stimson (1992). Unem, is the change in
the unemployment rate; and Infl, is the inflation rate measured by the
Consumer Price Index. The specification of the transition equation for
BusEzp, helps insure that the model is identified and makes sense the-
oretically. Individuals’ expectations are likely to be a function of past
evaluations since their sources of information on the state of the econ-
omy and their interpretation of that information are likely to be fairly
similar from one time period to the next.

Short-termBusEzp; and Long-termBusEzp; are the responses to the
items asked in the Survey of Consumers. PresApp; is the percent ap-
proving of the president for the last survey taken in each quarter from
1960 to 1993. The model is estimated quarterly, from the second quarter
of 1960 to the fourth quarter of 1993.1!

By using the results from the last survey in each quarter for presi-
dential approval, the sampling error for each survey can be approximated
and incorporated into the measurement equations of the dynamic linear
errors-in-variables model. This is the same as the approach used in the
analysis of opposition to nuclear power. One could tackle this problem
differently through the use of quarterly averages. Quarterly averages
should reduce the sampling error to a very small number. This was con-
firmed in some analyses that I conducted using the average for each of
the quarters. Quarterly averages of survey marginals are not a luxury
that many researchers have. To illustrate the more general approach
and the techniques for handling sampling error, I present only the re-
sults from an analysis of the presidential approval measured by the last
survey of the quarter.

I first estimate the two transition equations using OLS. For the OLS
analysis, I used the short-term business expectations as an indicator of
economic expectations and can therefore compare the results from OLS
to the multiple indicator analysis. Table 5 shows the results of this OLS
analysis.!? The significance of the lagged effects for the expectation

11Tests for unit roots were conducted on this data set. The presidential approval
series did not have a unit root over this time period, therefore, the variables cannot
be co-integrated.

12The regression model and Kalman filter model for presidential approval included
dummy variables for the transition quarter between administrations.
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TABLE 5. Ordinary Least Squares Estimates for the
Presidential Approval Model

Dependent Variable: Short-term Business Expectations

Variable Coeff SE
Short-termBusEzp,_, 0.898+« 0.104
Adj. R? = 0.82

SE of Estimate = 13.95

Dependent Variable: Presidential Approval®*

Variable Coeff SE
PresApp,_, 0.660= 0.061
Short-termBusEzp, 0.082« 0.026
Change in Unemployment 0.139 0.246
Inflation -1.010 0.266
Adj. R? = 0.62

SE of Estimate = 7.59

Quarterly data from 1960:2 to 1993:4

*The model was estimated with a dummy variable for each
transition quarter between administrations. The coefficient
estimate for the dummy variable is not shown.

*p< .08

equation is not surprising. The approval equation mirrors the results of
MacKuen, Erikson and Stimson and shows that people’s perceptions of
the economy have a more reliable effect on presidential approval than
do measures of real economic conditions. With short-term business ex-
pectations in the model, the coefficient for the change in unemployment
has the wrong sign and is not significant.

Estimation of the dynamic linear errors-in-variables model for pres-
idential popularity via the Kalman filter further confirms that expec-
tations about the economy have a more reliable effect on presidential
approval than current economic conditions do (Table 6). The estimates
for the dynamic linear errors-in-variables model do suggest that the re-
gression estimate for the lagged effect of short-term business expecta-
tions is attenuated. The regression estimate (.90) is lower than that
of the dynamic linear errors-in-variables model (.936).}® In the second

13Because the metric for the latent variable, BusEzp,, is set equal to short-term
business expectations and this variable is used as the indicator in the regression
analysis, it is meaningful to compare the relative size of the coefficients from the two
models.
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TABLE 6. Maximum Likefihood Estimates for the
Presidential Approval Model

Transition Equation 1: Business Expectations

Variable Coeff SE
Business Expectations,_; 0.936* 0.031

Transition Equation 2: Presidential Approval

Variable Coeff SE

Presidential Approval;_ 0.682* 0.061
Business Expectations; 0.105* 0.029
Change in Unemployment —1.098 1.016
Inflation —0.294 0.272

Error Variance for Transition Equations

A 131.240* 20.308
a§ 51.977* 6.961

Measurement Equations

Short-termBusEzp, 1.000* —
Long-termBusEzp, 0.628 0.018
PresApp, 1.000* —

Quarterly data from 1960:2 to 1993:4
*Indicates a fixed parameter.
*p< .08

transition equation, the BusEzp, variable is positively related to pres-
idential approval, but a comparison of the regression estimate (.08) to
the Kalman filter estimates (.105) shows that the regression estimate is
somewhat lower. None of these differences are statistically significant,
however. The confidence interval around the maximum likelihood esti-
mate contains the regression estimate, and vice versa. In this analysis,
the coefficients for inflation and the change in unemployment both have
the correct sign although neither is significant.

The measurement equations also provide some information to help
in the development and testing of theories. In this case, the coefficient
between the indicator and the latent factor is significant, confirming that
people’s expectations about the economy form a single dimension and
do not readily divide into a short and long-term component.
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Application 3: A Multiple-Indicator Model of Approval and
Economic Expectations

The analysis above can be extended to include a multiple indicator model
for approval as well as business expectations. To do this, I specify a
model to explain the effects of the economy on people’s general approval
of government, not just on their evaluation of the president. This can be
accomplished by adding an indicator of citizen’s approval of Congress to
the measurement model so that both congressional approval and pres-
idential approval are thought to be caused by a single latent approval
variable. Thus, the dynamic linear errors-in-variables allows us to study
concepts that are not readily measured by a single indicator.

The congressional approval series is constructed from a series of
polls described in Magleby and Patterson (1994). The results from these
polis were combined into a single series using the techniques developed
by Stimson (1991) to estimate policy mood. The data are quarterly
estimates of congressional approval from 1977 to 1993.14

The effects of the economy on this more general approval latent vari-
able should be similar to those estimated for the presidential approval
series. | use the same measures of business expectations, unemployment,
and inflation to explain the variation in the general approval variable.

The transition equations are the same as in the presidential approval
example reported above. The measurement models include congressional
approval as an indicator of approval and are

Short-termBusEzp; BusEzp, vy
Long-termBusEzp; | _ | a2BusEzp, 4| v
P rcsApp; - App ¢ V3t
CongApp; P2 App, Vat

The results of the model are in Table 7. In the measurement model, the
loading of the congressional approval indicator on the approval factor
is .971 and significant. This suggests that both indicators of approval
are explained by an single underlying approval. The loading for the
long-term business expectations on the underlying factor is .578 and
also significant. As in the analysis of presidential approval, business
expectations seem to form a single underlying expectations factor.

The transition equation for the approval model shows that the co-
efficient for lagged approval (.664) is significant and that the business
expectations coefficient (.140) has a positive and significant impact on
the general approval latent variable. The coefficients for the change in

141 am grateful to Jim Stimson and Mark Watts for supplying me with the con-
gressional approval series.
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TABLE 7. Maximum Likeihood Estimates for the
General Approval Mode

Transition Equation 1: Business Expectations

Variable Coeff SE

Business Expectationse_, 0.882* 0.057

Transition Equation 2: Approval

Variable Coeff SE

Approval;_; 0.664* 0.080
Business Expectations, 0.140* 0.038
Change in Unemployment -1.098 0.620
Inflation 0.509 0.292

Error Variance for Transition Equations

~

154.005* 31.661

o
2 35.075* 7.671

Measurement Equations

Short-termBusEzp, 1.000* —

Long-termBusEzp, 0.578* 0.027

PresApp, 1.000* -

CongApp, 0.971* 0.068

Quarterly data from 1977:2 to 1993
*Indicates a fixed parameter.
*p<.05

unemployment and inflation are not significant at the .05 level. The un-
employment coefficient has the correct sign but the inflation coefficient
does not. Overall, the results for the general approval factor are similar
to those from presidential approval—people’s sociotropic and prospec-
tive evaluations of the economy have a significant impact on their evalu-
ations of government, and these attitudes about the economy have more
reliable effects than economic conditions do.

Conclusion

Despite the limited attention that time series analysts have devoted to
measurement issues, the current simulations of the dynamic linear errors-
in-variables model demonstrate that ignoring measurement error can be
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costly. Even with modest amounts of measurement error, parameter
estimates are likely to be biased, and they get much worse as error
increases.

Because the dynamic linear errors-in-variables model can incorpo-
rate multiple indicators of latent concepts, it can improve the efficiency
of parameter estimates. This was evident in the simulation that com-
pared a multiple indicator model to one using single indicators of latent
variables. More importantly, the use of a multiple indicator model may
free a researcher from having to choose only one of several potential
indicators to represent a latent concept such as expectations about the
economy or approval of government. With the dynamic linear errors-in-
variables model, it is possible to use all the available information from
the indicators and specify a measurement model that links the indicators
to the latent concepts.

In the substantive examples, a comparison of OLS to the maximum
likelihood estimates did not show significant bias in the OLS estimates.
Nonetheless, the analysis of the impact of opinion regarding nuclear
power on regulatory enforcement and the consequences of economic per-
ceptions on approval are important in demonstrating how measurement
error can be addressed. The case of NRC enforcement and public opinion
shows how knowledge about sampling error can be incorporated into the
analysis using the measurement model in the dynamic linear errors-in-
variables model. The multiple indicator models demonstrate that more
complex measurement of key concepts for both dependent and indepen-
dent variables is possible.

Although the dynamic linear errors-in-variables model used here was
fairly simple, the model is flexible enough to handle a variety of specifica-
tions. For example, the structure that was imposed on the independent
variable through the additional transition equation is not required. The
model can also be estimated with more complex lag structures, and lag-
length tests can be conducted by comparing log-likelihood ratios. Thus,
attention to measurement error in time series analysis can assist political
scientists in better estimating a variety of complex and simple models
that implicitly rely on latent concepts, but are typically modeled using
only noisy indicators of these concepts.

APPENDIX: THE KALMAN FILTER

In order to use the Kalman filter equations to estimate the unknown
parameters for the dynamic linear errors-in-variables model, it is conve-
nient to write equations (4) and (5) in a slightly more compact form. For
times t = 1,2,..., the state vector is X, = (u¢, z:)’, with covariance ma-
trix P, the measurement vector is m, = (u;, z;)’, the vector of shocks
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is w; = (e, €)', and the vector of measurement errors is ry = (v, vze) -
The dynamic linear errors-in-variables model can be written as

X, = BXg-l + GWg
mg = OXg_l + 1

where

A 0 1 0 10
o[ 8] e-[29) e[20]

The covariance matrices of the disturbances are

2 90 2 0
SN E

O,

To begin the filter, starting values Xy must be provided for the state
vector and its covariance matrix Pg. There are different strategies for
choosing starting values. For the state vector, previous values of the
observed variables are often available and provide good starting values.
Using the average of a stationary series is also an option. The covariance
matrix can be set to relatively high values, indicating a high degree of
uncertainty about prior information. Or the average values of P; from
one pass through the Kalman filter can be used as the initial conditions.

Given Xy, Pg, dofort = 1,...,T: (1) predict X, from its known
previous value,

xt|t—1 = th—llt—l ’

{2) calculate the variance of X, from updated previous variance and
from prior information on £,,,, and G,

Pyi—1 =BP;j-1B' + GEwu G ;

(3) calculate innovations by subtracting the values of the observed vari-
ables from the predicted values,

Neye—1 =My — aXye ;

(4) form the information matrix H; from the estimated variance, Py,
Hg = aPm_la' + 2" H

(5) update X, given current information about innovations, «'H;},n,,

Xt = Xeje—1 + Py (aIHt-llnt) i
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(6) update P,, given a and H,

rpr-1
Ptlt = Ptlt—l - Ptlt—la Hg_1aP:|¢-1 .
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