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Abstract. We determine for all d and p the maximal derived length of a soluble
subgroup of the multiplicative group of a division ring of finite degree d and
characteristic p ≥ 0 to within one.
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To state our conclusions precisely we need to introduce some notation. The derived
length of a soluble group G we denote by dl(G). For any positive integer n let dl(n)
denote the maximal derived length of a soluble group of order n. For n > 1 set

cl(n) = max{dl(c) : c | n and c �= n}

and put cl(1) = −1. If c divides n then dl(c) ≤ dl(n), so cl(n) ≤ dl(n), even if n = 1. Let
G be a soluble group of order n > 1 and derived length dl(n). Set c = |G′| . Then c | n,
c �= n and

dl(c) ≥ dl(G′) = dl(G) − 1 = dl(n) − 1.

Hence cl(n) ≥ dl(n) − 1 for n > 1. Trivially this holds if n = 1. Thus the following is
true.

LEMMA 1. For all positive integers n we have cl(n) = dl(n) − 1 or cl(n) = dl(n).

Throughout D will denote a central division F-algebra of finite degree d and
characteristic p ≥ 0 and G will be a soluble subgroup of D∗ = D\{0}. Let Dl(d, p)
denote the maximal derived length of a soluble subgroup G of D∗ over all possible
choices of D and G, but with fixed d and p. Our aim is to obtain good bounds for
Dl(d, p) for all d and p. The papers [4] and [7] give good bounds for the index of some
abelian normal subgroup of such a group G. These give reasonable bounds for the
derived length of G, but not the best possible. In fact they are about double what is
possible. Alternatively we can regard such a group G as a linear group of degree d over
a maximal subfield of D with trivial unipotent radical. This leads via [3] to the bound
Dl(d, p) < 3.4 + 5(log9 d). The following is the main result of this paper.

THEOREM. If d is even with cl(d) ≤ 1, then Dl(d, 0) = 4. In all other cases

1 + dl(d) ≤ Dl(d, p) ≤ 2 + cl(d).
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The even integers d with cl(d) ≤ 1 are precisely 2, 2q for any prime q, and 8. Also, if d is
even with cl(d) = 2, then Dl(d, 0) = 4.

The anomalous cases with d even and p = 0 are caused by the existence of
the quaternions. Apart from these cases, where we know the answer is 4, we have
pinned Dl(d, p) to within 1; namely such a Dl(d, p) is either 1 + dl(d) or 2 + dl(d).
Determination of the function dl(n) is finite soluble group theory. Both the possibilities
for Dl(d, p) above occur, and occur infinitely often. It is difficult to formulate a general
rule that determines when each case occurs as it seems to involve as much number
theory as group theory.

There are actually three possible situations.
Type (a). 1 + dl(d) = Dl(d, p) = 2 + cl(d) < 2 + dl(d).
Type (b). 1 + dl(d) = Dl(d, p) < 2 + cl(d) = 2 + dl(d).
Type (c). 1 + dl(d) < Dl(d, p) = 2 + cl(d) = 2 + dl(d).

Each of (a), (b) and (c) in each characteristic occur infinitely often. Firstly we have the
following.

PROPOSITION 1. If d = qm is a power of a prime q, then Dl(d, p) = 1 + dl(d), except
that Dl(d, 0) = 4 for q = 2 and 1 ≤ m ≤ 6.

Now fix the prime q. The integer sequence {dl(qm)} is monotonically increasing to
infinity, goes up by at most 1 at each step and goes up much slower than m (in fact
something like log2 m). Thus there is a strictly increasing sequence

1 = m0 < m1 < · · · < mi < · · · .
of positive integers such that dl(qm) = dl(qmi ) for mi ≤ m < mi+1 and dl(qmi ) + 1 =
dl(qmi+1 ). Thus cl(qm) = dl(qm) − 1 if m = mi for some i and cl(qm) = dl(qm) otherwise.
In view of Proposition 1, for each p, this gives infinitely many examples of type (a)
above and infinitely many of type (b). It also suggests that pinning down Dl(d, p)
further is likely to involve much number theory. Here are some more examples that
further illustrate this last point. Note also that (c) of Proposition 2, for each p, gives
infinitely many examples of type (c) above.

PROPOSITION 2.
(a) If d = 2q with q an odd prime, then cl(d) = 1 < 2 = dl(d) and Dl(d, p) = 3 =

1 + dl(d) = 2 + cl(d) if p > 0 and is 4 otherwise.
(b) If d = 3q with q ≡ 1 mod 3 and a prime, then cl(d) = 1 < 2 = dl(d) and

Dl(d, p) = 3 = 1 + dl(d) = 2 + cl(d).
(c) If d = 3q with q ≡ 2 mod 3 and an odd prime not equal to p, then cl(d) = 1 = dl(d)

and Dl(d, p) = 3 = 2 + cl(d) = 2 + dl(d).

Let T be a periodic soluble subgroup of D∗. The possible structures for T are
given by [5] 2.1.1 if p > 0 and by [5] 2.5.9 if p = 0. In the latter case there are seven
possibilities (the eighth, namely (c) of [5] 2.5.9, being insoluble). From this it is easy to
derive the following result.

LEMMA 2. Let T be a periodic soluble subgroup of D*.
(a) If p > 0, then AutT is abelian.
(b) If T satisfies (ai), (aii), (aiii) or (bii) of [5] 2.5.9, then AutT is metabelian.
(c) If T satisfies (bi), (biii) or (biv) of [5] 2.5.9, then AutT is soluble of derived length

exactly 3.
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LEMMA 3. Let G ≤ D* be soluble. Then dl(G) ≤ 2 + cl(d ), unless p = 0 and d is
even, when dl(G) ≤ max{4, 2 + cl(d)}.

Proof. If d = 1 the result is trivial, so assume otherwise. It is easy to see that we
may also assume that D = F [G], the F-subalgebra of D generated by G, as this change
replaces d by some divisor of d. Let A be a maximal abelian normal subgroup of
G. Then the index (G : A) is finite (just treat G as a soluble linear group over F with
trivial unipotent radical acting on the F-space D). Set e = dimF F [A]. Then e divides
d. Also CF [A](G) = F . Set H = CG(A). By Galois theory (G : H) = dimF F [A] = e. We
now break the remainder of the proof of Lemma 3 into five steps.

(a) If e = d, then dl(G) ≤ 1 + dl(d) ≤ 2 + cl(d).

For in this case F [A] is a maximal subfield of D and hence also of F [H]. But
it is also central in F [H]. Thus F [H] = F [A], H is abelian and H = A. Therefore
dl(G) ≤ 1 + dl(d) ≤ 2 + cl(d), the latter by Lemma 1.

(b) Let e = 1. Then either dl(G) ≤ 2 = 2 + dl(e) ≤ 2 + cl(d), or p = 0, d is even,
G has a normal quaternion subgroup of order 8 and dl(G) ≤ 4.

Here A ≤ F∗, so A is a central maximal abelian normal subgroup of G of finite
index. By a theorem of Schur T = G′ is periodic. By [5] 2.1.1 and 2.5.9 there is a
characteristic subgroup S of T with an ascending characteristic cyclic series such that
T/S is isomorphic to 〈1〉, Sym(4), the Klein 4-group or Alt(4) and if T �= S, then p = 0,
d is even and T has a characteristic quaternion subgroup of order 8.

Clearly S ≤ A, so if T = S, then G′′ = T ′ ≤ A′ = 〈1〉 and dl(G) ≤ 2. Suppose
T �= S. In all these remaining cases AutT is soluble of derived length 3 by Lemma 2.
Hence [T, T ′′] = [T, G′′′] = 〈1〉. But then T/S cannot be Sym(4). Consequently G′′′ =
T ′′ ≤ S ≤ A and so dl(G) ≤ 4 as claimed.

From now on assume that 1 < e < d. Set K = G(dl(e)) ≤ H ∩ G′, where G(n) denotes
the n-th derived subgroup of G. Then T = K ′ is periodic.

(c) If AutT is metabelian, or if dl(AutT) = 3 and dl(e) ≥ 2, then

dl(G) ≤ 2 + dl(e) ≤ 2 + cl(d).

In the first case T = K ′ ≤ G′′ and [T, G′′] = 〈1〉. In the second case K ≤ G′′, T ≤
G′′′ and [T, G′′′] = 〈1〉. In both cases T is abelian, K is metabelian and

dl(G) ≤ 2 + dl(e) ≤ 2 + cl(d).

(d) Suppose dl(G) > 2 + dl(e). Then p = 0, dl(AutT) = 3, dl(e) = 1, d is even, T
has a characteristic quaternion subgroup of order 8 and dl(G) = 4.

By (c) and Lemma 2 (coupled with [5] 2.5.9) we have all of (d) except for the
derived length of G. Since dl(e) = 1 we have K = G′ and T = G′′. Since dl(AutT) = 3
we have [T, G′′′] = 〈1〉. Hence T ′ is abelian and so dl(G) ≤ 4. By hypothesis dl(G) >

2 + dl(e) = 3. Therefore dl(G) = 4.

The following summarises the main conclusions above and Lemma 3 is immediate
from it.
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(e) Either e = d and dl(G) ≤ 1 + dl(e),
or e < d and dl(G) ≤ 2 + dl(e),
or e < d, p = 0, d is even and dl(G) ≤ 4. �

LEMMA 4. (a)1 + dl(d) ≤ Dl(d, p) for all d and p.
(b) If d is even, then Dl(d, 0) ≥ 4.

Proof. (a) We need to construct a division ring D of degree d and characteristic p
and a soluble subgroup G of D∗ with dl(G) = 1 + dl(d).

Choose a finite soluble group H of order d and derived length dl(d). Take a free
presentation L/R of H, where L is free of finite rank at least 2. Set G = L/R′ and
A = R/R′. Then G is finitely generated and A is an abelian normal subgroup of G
with G/A ∼= H. Also G is torsion-free (G. Higman), see [5] 1.4.7 and A = CG(A), see
Auslander & Lyndon [1].

Clearly G is polycyclic. Let P be any field of characteristic p. The group algebra
PG is an Ore domain ([5] 1.4.8 or [2]); let D be its division ring of quotients. Denote
the centre of D by F . Clearly CF(A)(G) = F , so Galois theory yields

dimF F(A) = (G : CG(A)) = (G : A) = d.

Also D = F(A)[G], so dimF(A)D ≤ (G : A) = d. Hence degD ≤ d. But F(A) is a subfield
of D of dimension d over F , so degD ≥ d. Therefore degD = d. Finally

dl(G) = 1 + dl(H) = 1 + dl(d).

This is presumably well known, but see Lemma 5 below.
(b) The quaternion algebra (–1, –1/Q(

√
2)), where Q denotes the rationals,

contains a copy of the binary octahedral group BO48 of order 48 and derived length 4.
Here d = 2, of course. We can avoid the

√
2. The infinite soluble group

K = 〈i, j, i + j,−(1 + i + j + ij)/2〉

has derived length 4 and lies in the multiplicative group of D0 = (−1,−1/Q). Again
d = 2. In particular Dl(2, 0) ≥ 4.

Suppose d = 2c for some c ≥ 2. Let H be a cyclic group of order c. With this H let
L, R, G and A be as in the proof of part (a). With D0 = (−1,−1/Q) again, the group
ring D0G is an Ore domain ([2]); let D denote its division ring of quotients and F the
centre of D. Clearly the soluble group K of derived length 4 embeds into D∗. It remains
to check that D has degree d = 2c, for if so we will have Dl(d, 0) ≥ 4.

Set C = CF(A)(G). By Galois theory dimC F(A) = (G : CG(A)) = (G : A) = c. Also
F(A) centralizes D0, so C = F and R = F(A)[D0] is a non-commutative division ring
of dimension at most 4 over its centre. Thus its degree is 2 and R = (−1,−1/F(A)).
Now R[G] has finite dimension over F , so D = R[G] and consequently dimF D ≤ 22c2.
But F(A, i) ≤ R is a field of dimension 2c over F . Therefore dimF D ≥ (2c)2. Thus
degD = 2c = d and the proof of the lemma is complete. �

LEMMA 5. Let L/R be a free presentation of the soluble group H, where L is free of
rank at least 2. Then dl(L/R′) = 1 + dl(H).

Proof. Let n = dl(H). If n = 0 the claim is obvious, so assume n ≥ 1. Clearly
dl(L/R′) ≤ 1 + n. Suppose dl(L/R′) < 1 + n and set K = L(n−1). Then K ′ ≤ R′, so by
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Theorem 3 of [1] we have K ≤ R. But then dl(H) < n, a contradiction. Consequently
dl(L/R′) = 1 + n. �

The Proof of the Theorem. Putting together Lemmas 3 and 4 we have the following.
If d is even, then

max{4, 1 + dl(d)} ≤ Dl(d, 0) ≤ max{4, 2 + cl(d)}.
In all other cases

1 + dl(d) ≤ Dl(d, p) ≤ 2 + cl(d).

Suppose d is even. If cl(d) ≥ 2, then 1 + dl(d) ≤ Dl(d, 0) ≤ 2 + cl(d). If cl(d) ≤ 2, then
Dl(d, 0) = 4. It remains to determine those even d with cl(d) < 2.

If q is an odd prime there is a non-abelian, metabelian group of order 2q. There
is also such a group of order 8. Hence if either 2q or 8 is a proper divisor of d, then
cl(d) ≥ 2. Suppose d is even with cl(d) < 2. Then d = 2, 4, 8 or 2q for q some odd
prime. Moreover in all these cases d is even with cl(d) < 2. The proof of the Theorem
is complete. �

The Proof of Proposition 1. The existence of the bound is immediate from Theorem
2 of [6], except where p = 0, q = 2, d > 1 and G has normal subgroups A ≤ H = CG(A)
with (G : H) dividing d/2 and H/A ∼= Sym(4) or Alt(4). In this case set C = CG(H/A).
Since Aut(H/A) ∼= Sym(4), so dl(G/C) ≤ 3. Clearly dl(G/H) ≤ dl(d/2) and H ∩ C =
A. Therefore

dl(G/A) ≤ max{3, dl(d/2)} and dl(G) ≤ max{4, 1 + dl(d/2)}.
The only powers d of 2 with dl(d) ≤ 2, are 1, 2, 4, 8, 16, 32, and 64. The proposition
follows. �

The Proof of Proposition 2.
(a) Clearly cl(2q) = 1. The dihedral group of order 2q shows that dl(2q) ≥ 2. Thus

dl(2q) = 2 and Dl(2q, p) = 3 if p > 0 and 4 otherwise by the Theorem.
(b) Clearly cl(2q) = 1 and dl(3q) ≤ 2. Since 3 divides (q – 1), there is a soluble

group of order 3q and derived length 2. Thus dl(3q) = 2 and Dl(3q, p) = 3.
(c) Again cl(3q) = 1. Let G be soluble of order 3q. Then G has a normal

subgroup N of order 3 or q. But 3 does not divide (q – 1) and q does not divide
(3 – 1). Therefore N is central, G is abelian and dl(3q) = 1. The group G of
Example 10(i) of [7] has derived length 3. By the Theorem Dl(3q, p) ≤ 2 + 1. Thus
Dl(3q, p) = 3. �
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