19. COMMISSION DE LA VARIATION DES LATITUDES

PRÉSIDENT: SIR HAROLD SPENCER JONES, Astronomer Royal, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex, England.

DIRECTEUR DU BUREAU: M. CARNERA.

MEMBRES: MM. Baldini, Buchar, H. E. Burton, H. Castro, Cecchini, Dodwell, Lambert, Markowitz, Michkovitch, Moreau, A. J. Orlov, Peres, Sollenberger, Stoyko, M. F. Subbotin, E. L. Williams.

A. Report of the Director of the Central Bureau from 1938 to the end of 1947

When, in May 1922 after the First World War, the I.A.U. and the I.G.G.U. met for the first time it was decided that the systematic study of the motion of the pole should be continued. This study had been commenced over 23 years earlier by the International Geodetical Association and had been continued without interruption during the war, thanks to the keenness of the observers and the work of the Swiss and Dutch geodesists and astronomers, who had undertaken to maintain the necessary contacts between the observing stations and the Potsdam Central Office. The Second World War, which broke out barely two decades later, had more serious consequences for this study. The generous and worthy offer of our Swiss colleagues to be intermediaries between the belligerent countries and to help in the exchange of data between the observing stations and the Central Bureau passed unheeded. The Italian Foreign Minister at the time refused to allow the observing books to be transmitted. We had hoped that, when hostilities were over and communications had been re-established, we should be able to obtain, although late, the complete series of observations. But, unfortunately, the war proved to have had serious consequences for our work. The station of Carloforte, after having had its observing activity increasingly hampered, was compelled, in the face of increasing danger. to dismantle the instruments and suspend all activity in the spring of 1943. From Batavia came the even more sad news of the complete destruction of the station. During 1940 the Adelaide Observatory had to suspend its activities. So, of the eight stations on which the latitude service was based in 1940, and which were giving yearly about 11,000 values for the latitude, three were missing, two of which were amongst the most active, while for other reasons the work of some of the other stations was more or less seriously hampered at various times. We also lament the loss of some of our best supporters who, directly or indirectly, had greatly helped our work and whose loss leaves a gap which cannot be filled. It will suffice to recall the names of Kimura, Schlesinger, Aguilar, Schumann, Bianchi, Yamasaki, Kawasaki, to realize what a gap has been caused in these recent years in the small circle of students of this problem; this gap will be particularly felt by the writer, who was fortunate in having, from his early years, the above-mentioned astronomers as colleagues. I should like to pay tribute to their memory.

It would not be right if, at this point, after having recalled the sad part, I did not mention the valuable help received from the Allied Military Government, which made it possible to re-establish relations with the President of the Commission, Sir H. Spencer Jones and the Vice-President of the I.G.G.U., Dr W. Lambert, and to obtain not only the observation books from the stations but also financial help to enable us to continue our work and to fill the gap in our knowledge of the motion of the pole caused by the delay in the receipt of the observations since 1940. We are also very grateful to the American, Colonel Washburn, who, as a head of the liaison office between M.A.G. in Rome and the Ministry of Education, managed to arrange that the work at our station of Carloforte should be started again.

To all those who helped us and co-operated with us, and especially to the three abovementioned, I express my warm and heart-felt thanks.

I. Observational Work at the Stations of the International Latitude Service

Since January 1938, the date which ended my last report presented to the I.A.U. at Stockholm in August 1938, the following observers have taken duties in the international latitude stations:

At Mizusawa:

M. Yamasaki and S. Kawasaki until the end of 1942.

Tadahiko Hattori, from January 1943 to May 1944 and then from October 1944 to date.

Shigetsugu Takagi, from January 1943 to September 1944.

Tetsuro Ikeda, from June 1944 to date, acting director of the station.

Susumu Goto in August and September 1944.

At Kitab:

- L. Schtschirgezky from the beginning to end of 1941.
- W. Obraszow from the beginning of 1940 to the end of 1941.
- E. Schaposhnikowa from the beginning of 1942 to the period of the last observation book received (March 1946).
- M. Korotaeva from May 1942 to March 1946.
- G. Lange intermittently from the beginning of 1944.

At Carloforte:

- G. Righini from the beginning of the period until December 1939.
- M. Mattana from the beginning of the period until June 1941.
- T. Nicolini from July to October 1941 and June to October 1946.
- A. Colacevich from January to the end of April 1940.
- N. Missana-Rudari from July 1941 to April 1943.
- M. Castellano from October 1941 to December 1941 and from June 1946 to date.

At Gaithersburg:

E. L. Williams for the whole period.

At Ukiah:

H. G. Wrocklage from the beginning until the end of August 1946.

L. F. Canvette from December 1946 to date.

At Adelaide:

R. V. Burton from the beginning until August 1940 when observations ceased.

At La Plata:

- V. Manganiello from the beginning until October 1942.
- T. Agabios, from September 1942 until the end of June 1943.
- R. Lassalle from July 1944 until the end.

At Batavia:

E. A. Scharpff from beginning to March 1940, the last month for which we received observations.

Schulte in the first months of 1938.

Poldervaart from December 1938 to the first month of 1939.

Ch. M. Kalkmann from February to December 1939.

K. Gsoellpointner from March to December 1939.

Poels the first three months of 1940.

All the stations, unfortunately, were subject during these years to more or less prolonged interruptions for different reasons, with the exception of Mizusawa and perhaps also Kitab. From this last station we have not received any observation books since April 1946. It is to be hoped that the work of observation has continued and that soon, with the support of the authorities and bodies which are trying to re-establish cultural exchanges with the U.S.S.R. we may be able to receive the observations since March 1946. Russian Science has made an important contribution to the work of the International Latitude Service since 1899, first with the station of Tschardjui and then later of Kitab. The Kitab observations would be particularly valuable for the months in 1946 during which we have not at our disposal either the observations of Carloforte or those of Ukiah.* But the station that was particularly missed during these years was Carloforte; the lack of suitable and willing staff, which already was much felt during 1939 when three months of valuable observations were lost by incapacity or apathy in installing and adjusting the zenith telescope after the overhaul and repair done by the Officine Galileo of Florence, was fully manifest in the following year 1940, when during August, without any reason, the observations were completely stopped, and it was not possible to start them again until the beginning of July 1941.

In June 1938 the large zenith telescope which had been in use for 39 years and was in need of complete overhaul in every part, had to be exchanged with another one of the same make of a somewhat smaller dimension, which was obtained on loan from the Astronomical Observatory of the Palermo University. This instrument was in use from June 1938 until the end of March 1939. The recommencement of regular observations, entrusted in the second half of 1941 to conscientious staff, was soon hampered by the war, which in the spring of 1943 had assumed such violence as to necessitate the closing down of the Observatory. Later on, at the end of hostilities, every effort was made for an early resumption of work, but the assurances and promises of the ministries in Rome, and even the intervention of Colonel Washburn, met with so many obstacles that not until the spring of 1946 was it possible to begin the repairs at the station and the reinstallation of the instruments, enabling the observations to be recommenced. Even now, at the time of writing, the staff necessary for the regular functioning of the station has not been allocated.

For the station of Gaithersburg we deplore an instrumental fault in the micrometer which at the beginning was unnoticed (movement of the micrometer head with respect to the screw itself). This fault developed later to such an extent as to render suspect the observations of the last three months of 1941, compelling us to reject completely the results obtained in December 1941. Once the fault was repaired it was noticed that the displacement of the position of the movable wire with respect to the readings had necessarily affected the determinations of the progressive errors of the screw and it was necessary to reduce the observations without taking these errors into account.

In the second half of 1946 Mr H. G. Wrocklage, observer at Ukiah, who had spent many years at the station and had attained an exceptional standard of observing, had a sudden illness which interrupted the observations for three months (September to November 1946). From December 1946 the regular work was taken up in a commendable manner by Mr Canvette. We have already referred to the destruction of the Batavia Observatory. We deplore what has happened, which has deprived our research of such an important contribution. It is hoped that the archives of the station have not been lost and that the details of the observations since March 1940 (the date of the latest observations to reach us) will be available, and that in the near future we shall see the station reopened.

From Adelaide we received, at the end of the war, the observation books which extend up to August 1940, when observations were stopped, the telescope being then returned to Mizusawa, the period of loan having expired. The renewal of the loan and the resumption of observations is under consideration. It is hoped that this will prove possible, because

* [The Kitab observation books from March 1946 to September 1947 have been received since the report was written. H. S. J.]

the combination of the observations at Adelaide with those at La Plata adds greatly to the weight with which the polar motion is determined. The station of La Plata, thanks to the great interest of their observers and particularly of Ing. V. Manganiello, and of the directors Aguilar, Manganiello and Wallbrecher, has continued observations for the whole period except for a few months in 1947, when it was necessary to interrupt them for a complete overhaul of the instrument. Now Director Wallbrecher is considering the installation of a photographic instrument.

As far as Mizusawa is concerned we have nothing to say except to mention the loss of the founder of the station, Prof. Kimura, who directed the observatory with great ability until his death, and of his collaborators S. Kawasaki (from April 1922) and M. Yamasaki (from April 1924).

The actual work of observation achieved by the different stations during the nine years is summarized in the following Table in which we give the total number of pairs of stars observed in each year at the individual stations:

TABLE I

	1938	1939	1940	1941	1942	1943	1944	1945	1946	Total
Mizusawa	1,166	1,464	1,510	1,205	1,373	1,220	1,208	1,178	1,339	11,663
Kitab	1,298	1,325	1,677	1,315	1,310	1,909	2,077	1,549	315**	12,775
Carloforte	1,699	872*	597†	875	1,322	197¶	—		910††	6,472
Gaithersburg	1,313	1,307	1,253	1,433	1,232	1,440	1,370	1,053	1,558	11,959
Ukiah	1,336	1,468	1,205	1,188	1,145	1,221	1,454	1,541	1,221	11,779
Adelaide	1,280	1,501	53 0‡	_						3,311
La Plata	1,582	1,125	890	1,058	841	521	1,045	253;	‡‡	7,315
Batavia	1,937	1,962	267§		<u> </u>					4,166
	11,611	11,024	7,929	7,074	7,223	6,508	7,154	5,574	5,343	69, 44 0

* Of low weight because the three months April, May and June are completely missing and the remaining months are of poor quality.

[†] Only the first eight months and exceptionally poor even during months of the most favourable weather.

‡ Only the first eight months of the year.

|| Only the second half of the year.

§ Only the first three months of the year.

¶ Only the first three months of the year.

** Only the first three months: presumably the work has been carried on but the observations have not been received.

†† Only from June to December.

^{‡‡} Only the months of January and February. The note-books of observations for other months up to March 1947 have reached us in the form of microfilms, but they have not been computed on account of difficulties in utilizing these copies. Thanks to the kind interest shown by the Director of the Military Geographical Institute of Florence we shall shortly have copies sufficiently clear and we shall proceed with the computation of these observations.

The values of the monthly mean latitudes obtained from the two groups of observations at the different stations are to be found in the following Tables where the number of pairs used for the mean are stated. Tables II and III contain the results of the northern stations and Tables IV and V those of the southern stations; for both groups we have separated the evening observations from the morning. The latitudes were calculated in the usual manner, keeping unchanged for the whole of 1940 the values already adopted for the levels, for the scale of the micrometer screws and for the progressive and periodical errors. After 1940, while keeping the same values for the levels and the errors of the micrometer screws, we adopted slightly different values for the screw-values based on the results of the definitive reductions of the observations in the years 1935–40. The mean positions and proper motions of the stars used up to the end of 1940 were based on a communication by Prof. Kimura, before the Albany *General Catalogue* had been received. When I started the definitive calculations the data received from Kimura were compared with the *General Catalogue*; while there was on the whole very good agreement,

	2 Y CHING										
		Mizu	isawa	Ki	tab	Carlo	oforte	Gaithe	rsburg	Uki	ah
Epoch	Group	΄φ ″	Obs.	΄φ #	Obs.	΄φ ″	Obs.	΄φ ″	Obs.	΄φ ″	Obs.
1938-06	IV	3.775	27	1.825	38	8.817	99	13.334	34	12.240	28
·14	v	•444	58	·615	22	.733	76	·247	45	·135	36
·23	vī	·508	58 57	·764	47	·876	91	.354	67	·386	$\frac{30}{25}$
·31	VII	·410	46	·599	68	.779	51 78	·354 ·350	71	·298	$\frac{25}{52}$
-39	VIII	·266	40 62	·593	82	.756	99	.253	38	·258	52 76
•39	IX	·165	9	·400	65	·670	99 95	.159	64	·044	72
-55	X	·180	49	·400 ·603	81	9.026	95 124	·225	5 <u>4</u>	·044 ·134	84
•64	XI	·328	49 38	·794	93	·235	81	·431	111	.172	84
•72	XII	·438	69	·861	100	·156	68	.478	46	.170	75
·80	I	· 1 550	73	·823	59	·120	43	.433	40 80	·152	54
-88	'n	·438	59	.733	29	8.863	$\frac{43}{52}$.107	55	11.959	48
.97	III	·762	43	·687	20	9·017	20 20	·395	45	11 303 12.203	46
1939-06	IV	3.638	57	1.711	12	8.885	22	13.408	24	12.230	50
·14	V	$\cdot 472$	54	·659	53	·696	44	·102	47	·076	41
·22	VI	·574	85	·739	65	$\cdot 852$	22	·364	68	·342	52
·31	VII	.421	108	·615	50			·280	65	·261	60
·39	VIII	·307	62	·621	73			·223	83	.153	60
·47	IX	·190	55	·404	78			·224	51	·021	72
·56	X	·200	69	·622	62	.907	109	·298	66	·161	83
·64	XI	·334	46	·725	84	9.145	69	·428	42	·179	78
·73	XII	·377	49	·838	57	$\cdot 178$	38	·434	63	·161	71
·80	I	·475	64	·760	68	·316	70 70	·482	82	.141	78
·89	II	·284	65 07	·667	46	8.952	70	·167	68	11·977	72
$\cdot 97$	111	$\cdot 638$	65	·866	53	9.182	37	.395	50	12.152	23
1940.06	\mathbf{IV}	3.630	76	1.788	29	9.018	31	13.336	45	12.113	35
·14	V	$\cdot 564$	52	.710	47	8.708	71	.067	31	.075	34
$\cdot 22$	VI	-619	52	$\cdot 834$	79	·870	59	·297	55	$\cdot 274$	42
·31	\mathbf{VII}	· 4 88	77	·744	68	.718	46	$\cdot 319$	57	$\cdot 275$	48
$\cdot 39$	VIII	$\cdot 344$	99	·639	99	·608	35	$\cdot 274$	51	·180	54
·47	IX	·161	85	·409	94	$\cdot 655$	36	$\cdot 231$	50	·060	72
.56	X	·145	41	·760	74	$\cdot 825$	38	$\cdot 276$	61	·135	70
·64	XI	$\cdot 540$	45	·864	100	9.057	34	·471	49	·201	59
•73	XII	·411	85	·779	92	<u></u>		·479	90	·187	66
·80	I	·453	98	·747	86			·418	65	.183	45
·89	II	·463	38	·740	52	—		·179	42	11.963	62
.97	111	$\cdot 625$	52	·812	47			·488	49	12.243	30
1941.07	IV	3.557	50	1.793	28			13.220	38	12.147	41
·14	V	.399	35	·727	83			·148	58	·006	41
·22	VI	·614	50	·811	46			·367	53	$\cdot 245$	48
·30	VII	·468	72	.727	46			·237	80	·224	40
.39	VIII	·358	69	·699	55		_	·173	72	·142	48
•47	IX	$\cdot 265$	46	·577	61			·220	85	·132	60 70
·56	X	·308	13	·623	108	8.774	78	·221	60	·100	$72 \\ 72$
·64	XI	·304	34	·756	104	·948	110	·423	62	·244	72 50
•71	XII	·351	39	·827	90	·976	92	·430	102	·225	59
•79	I	·380	82 69	·784	26	9.087	62	·378	58 70	·231	53
·88	II	·272	62	·785	18	8·924	86	$\cdot 240$	70 96	·015 ·264	42
·96	III	·531	57	·892	9	.933	41	(.627)	26		36
1942.07	IV	3.406	41	2.078	11	8.905	28	13.364	26	12.141	24
·14	V	·368	39 65	1.607	25	·788	33 52	215	44	11.995 19.152	48
·22		·504	65 70	·961	18	9.034	53 55	·332	49 69	12.153	36 26
·30 ·20		·411	78	·708	51 87	8·916	55 51	·217	68 62	·161	36 41
·39 ·47	VIII IX	·419 ·313	91 83	·706 ·632	87 34	·861 ·839	$\begin{array}{c} 51 \\ 63 \end{array}$	·149 ·123	63 83	·035 ·037	41 48
.41	IA	.919	00	.097	94	.098	60	.179	00	.091	#0

TABLE II Evening

TABLE II (continued) Evening

		Mizus	sawa	Kit	ab	Carlo	forte	Gaither	sburg	Ukia	ah
Epoch	Group	¢ ″	Obs.	φ "	Obs.	¢	Obs.	ф ″	Obs.	ф "	Obs.
1942.56	x	3.375	50	2.582	66	8.825	122	13.140	58	12.022	78
·64	XI	·521	78	.792	98	.935	45	·280	60	·160	$\dot{72}$
.71	XII	·504	50	·785	92	·960	89	·387	59	·220	60
.79	I	·533	60	·666	76	·995	61	$\cdot 343$	66	$\cdot 247$	60
·88	II	$\cdot 403$	42	$\cdot 458$	86	·846	45	$\cdot 202$	37	.080	47
·96	III	.510	49	$\cdot 848$	44	9.071	53	.571	28	$\cdot 345$	36
1943 .06	IV	3.389	63	1.773	80	8.940	37	13.439	41	12.274	48
·14	v	$\cdot 282$	31	-526	41	·843	34	·301	51	.084	40
$\cdot 23$	VI	$\cdot 424$	71	·790	44	9.051	40	$\cdot 473$	89	$\cdot 255$	54
·31	VII	· 4 00	72	·733	70			$\cdot 303$	70	$\cdot 129$	36
.39	\mathbf{VIII}	·288	61	·640	88			$\cdot 234$	58	11.976	60
·47	IX	$\cdot 225$	54	·684	135			$\cdot 158$	58	·903	66
·56	x	·343	58	.711	106			·103	56	·929	64
•64	XI	·466	53	·852	124			·226	75	12.028	72
.72	XII	·521	22	·892	110		<u> </u>	$\cdot 275$	74	·099	71
•80	I II	$\cdot 592 \\ \cdot 247$	92 97	··818 ·713	89	_		.159 .070	70 64	$\cdot 171$ $\cdot 071$	48 37
·90 ·98	III	·247	$\begin{array}{c} 27\\ 35\end{array}$	·872	- 80 38			·309	38	·469	37 24
1944·06	IV	3.522	42	1.731	53			13.287	66	12.327	42
·14	V	·347	34	•499	101			·247	54	·144	42 36
·23	vī	.505	43	·706	76			·440	59	.329	71
·31	vii	·326	46	.670	95			.338	56	·184	48
.39	VIII	$\cdot 243$	71	.721	99			$\cdot 281$	69	.065	$\overline{54}$
.48	IX	.076	48	·692	112	_		$\cdot 263$	81	.003	60
·56	x	$\cdot 222$	50	.795	138			·190	45	11.873	84
·64	\mathbf{XI}	$\cdot 380$	65	2.005	110			$\cdot 234$	90	$\cdot 926$	96
.72	\mathbf{XII}	·609	64	$\cdot 082$	107			·144	39	$\cdot 963$	84
·81	Ι	·637	97	1.948	98			$\cdot 025$	80	12.026	60
·89	II	$\cdot 442$	61	·684	68			12.984	41	11.845	60
.98	III	·711	33	.928	30			13.292	32	12.331	50
1945.06	IV	3.587	65	1.772	51			13.148	36	12.382	53
·14	V .	$\cdot 540$	39	$\cdot 556$	54	. —		·144	42	·200	54
-22	VI	·573	51	·683	60			·388	48	·446	48
•31	VII	·307	89	·553	69			·381	71	·360	72
·39	VIII	·231	72	·486	80			·396 ·291	65	·206 ·121	56
·47 ·55	IX X	·046 ·046	46 48	·491 ·680	107 77		_	·291 ·264	46 37	·030	84 102
·64	XI	·167	-10 53	·868	106	_	·	$\cdot 257$	58	·064	89
.72	XII	.325	22	2.041	80	<u></u>		-299	23	.013	81
-80	I	·470	47	·158	60			·185	66	11.948	80
·90	ĪĪ	·442	65	1.692	20			12.945	33	·695	30
.97	III	·661	27	2.090	44			13.028	28	12.032	4 5
1946.06	IV	3.777	47	2.054	48			13.170	65	$12 \cdot 231$	69
·14	v	$\cdot 626$	55	1.737	64	_		12.984	70	·077	70
$\cdot 22$	VI	·719	59	$\cdot 830$	58		—	13.246	68	$\cdot 268$	51
·30	VII	$\cdot 497$	92		—	—		·303	42	$\cdot 357$	84
.39	VIII	·312	53					$\cdot 255$	49	·217	72
·48	IX	·159	69			8.685	54	·287	35	·248	84
.56	X	·015	50			·869	120	·312	57 78	·174	88 49
·64		·160	64 52			9·038	57 84	$+423 \\ +503$	76 95	·231	48
-72 -81	XII I	·242 ·297	53 72			$\cdot 246 \\ \cdot 251$	84 63	·503 ·426	95 72	_	
·81 ·89	II	·297 ·255	72 51	-		·251 ·116	63 41	·420 ·125	70	_	_
·89 ·97	III	·486	38			·340	48	•359	28	·161	65
	~ * *	100				010	+0			101	

TABLE III Morning

		Mizus	sawa	Kit	ab	Carlo	forte	Gaithersburg		Ukiah	
Epoch	Group	φ ″	Obs.	\$ "	Obs.	ф "	Obs.	\$ <i>*</i>	Obs.	¢ ″	Obs.
1938.07	v	3.568	25	1.612	34	8.687	78	13.193	20	$12 \cdot 155$	26
·14	VI	$\cdot 635$	54	·807	18	·901	63	·394	32	$\cdot 359$	35
·23	VII	$\cdot 497$	65	$\cdot 718$	4 6	$\cdot 740$	83	·360	65	$\cdot 363$	24
·31	\mathbf{VIII}	$\cdot 392$	44	.586	65	$\cdot 847$	61	$\cdot 314$	- 70	$\cdot 245$	48
·39	\mathbf{IX}	$\cdot 182$	49	$\cdot 370$	49	$\cdot 678$	90	·174	43	·126	77
·47	X	$\cdot 222$	15	$\cdot 508$	64	$\cdot 753$	80	·289	64	·149	72
•56	XI	$\cdot 355$	39	·685	77	9.157	114	·447	37	$\cdot 228$	84
·64	XII	·362	51	·726	81	·265	71	·519	98	·238	78
·73 ·80	I II	·420	.61	·735	71	·271	49	·392	38	·154	77
·80 ·88	III	·402 ·631	89	·708	48	8.879	40	·156	81	11.958	53
.98	IV	·698	$\begin{array}{c} 49\\ 35\end{array}$	·925 ·858	$\frac{23}{18}$	9·046 8·736	38 6	·460 ·223	$\frac{26}{31}$	$12.182 \\ .158$	$47 \\ 35$
1939-06	V	3.485	$50 \\ 52$	1.766	18	8·730 8·740	9	13.054	12	12.034	35 46
·14	vī	·657	56	·901	47	·870	29	.349	41	·328	42
.22	VII	·507	81	·669	62	·844	26	$\cdot 352$	62	.332	47
·31	vIII	-388	83	.658	45			·307	59	·210	60
$\cdot 40$	IX	·194	46	·283	73			·275	62	·041	60
·47	x	$\cdot 294$	43	$\cdot 554$	71	_		·305	28	·140	72
$\cdot 56$	XI	·360	56	·670	55	9.037	102	· 4 61	56	$\cdot 252$	86
$\cdot 64$	\mathbf{XII}	$\cdot 382$	43	$\cdot 723$	73	$\cdot 202$	57	$\cdot 485$	44	·190	78
.73	I	$\cdot 502$	50	·737	54	$\cdot 267$	31	$\cdot 506$	48	$\cdot 143$	72
·80	II	.339	59	$\cdot 722$	46	8.979	62	$\cdot 216$	75	11.942	77
·89	III	·533	67	·814	34	9.343	53	$\cdot 453$	64	12.215	71
·97	IV	·550	49	·844	52	.111	22	.335	47	·120	19
1940.06	V	3.459	73	1.700	19	8.757	19	13.071	41	12.013	30
·14	VI	·688	47	·902	32	·988	42	·311	28	·261	32
$^{\cdot 22}_{\cdot 31}$	VII VIII	·584 ·470	50 56	·800	71	·787	43	·291	58 55	.252 .256	42
.39	IX	·470 ·264	50 82	·689 ·407	73 88	·677 ·619	$\frac{42}{20}$	·285 ·072	$55 \\ 51$	$.230 \\ .127$	$\begin{array}{c} 48 \\ 54 \end{array}$
-47	X	·264	$\frac{82}{72}$	·611	93	·846	$\frac{20}{22}$	·349	44	-199	70
.56	XI	·349	21	·736	74	.953	89	.450	60	·293	66
·64	XII	·591	34	.755	97	9.095	20	.557	44	·234	60
·73	I	·394	80	·626	82			·510	81	·187	66
·80	11	·260	92	·700	86			$\cdot 185$	64	11.967	39
·89	III	$\cdot 534$	40	.799	48			$\cdot 550$	41	$12 \cdot 219$	51
·97	IV	$\cdot 541$	63	·847	47		—	· 4 80	41	·149	30
1941.07	v	3.411	45	1.815	23	_		13.246	31	11.954	38
·14	VI	·685	33	·900	80		<u> </u>	·293	47	12.277	32
·22	VII	·501	57	·790	45			$\cdot 273$	57	·077	41
·30	VIII	·518	66 50	·762	39	—		·214	89	·195	37
·39 ·47	IX X	·369 ·381	59 60	·636	56 67	—		·154	73	·211	48 59
·47 ·56	XI	·381 ·314	11	·631 ·692	$\begin{array}{c} 67 \\ 102 \end{array}$	8.907	72	·195 ·376	66 61	•354 •333	59 72
·64	XII	·418	25	·802	94	·957	101	·486	65	·234	67
.71	I	·419	42 42	·721	83	9.059	68	·457	91	·203	60
.79	Î	·286	83	·683	23	8.882	63	$\cdot 201$	61	.000	52
.88	III	·379	71	·811	18	9·014	76	·434	$\mathbf{\tilde{54}}$	·370	40
.96	IV	·437	54	·902	11	8.980	26	(.186)	30	.064	30
1942.07	v	3.395	44	1.545	10	8.811	18	13-141	38	12.068	23
·14	VI	·600	38	.989	21	·974	16	·436	44	·246	42
$\cdot 22$	VII	$\cdot 499$	56	.744	18	·928	35	·147	32	·101	36
·30	VIII	$\cdot 462$	82	.639	36	$\cdot 884$	40	$\cdot 192$	72	•090	30
$\cdot 39$	\mathbf{IX}	$\cdot 318$	64	·607	78	$\cdot 851$	49	·163	68	·068	42
·47	х	· 4 07	68	·588	25	·917	57	·176	71	·073	48

TABLE III (continued) Morning

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mizus	sawa	Kit	ab	Carlo	forte	Gaither	sburg	Uki	ah
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Epoch	Group		Obs.		Obs.		Obs.		Obs.		Obs.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1942.56	XI	3.482	36	1.731	72	8.963	115	13.273	56	12.129	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.79					61						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·88	III		53		71	9.117	39		39	$\cdot 341$	35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·96	IV	$\cdot 430$	47	·776	43	8.922	25	$\cdot 465$	15	$\cdot 321$	33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1943.06	v	3.348	49	1.567	72	8.933	23	13.356	40	12.113	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·23	VII	$\cdot 406$	65	1.759	27	9.002	37	$\cdot 381$	35	·147	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cdot 31$			80	$\cdot 704$	60		. <u> </u>		65	·038	35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					2.010							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·81	II		69	1.748	92			12.918		11.848	53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				54								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·98	IV	$\cdot 647$	34	·810	28	—		-059	32	$\cdot 258$	41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1945-06	v	3.488	59	1.621	52	_		13.123	30	$12 \cdot 206$	47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		VI		34								53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\cdot 22$	\mathbf{VII}	$\cdot 467$	62	·600	59		_	$\cdot 295$	46	$\cdot 438$	48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				78								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\cdot 89$ III $\cdot 526$ 50 $ \cdot 395$ 37 $\cdot 484$ 86 $ -$	·81											
·97 IV ·488 41 ·246 38 ·267 35 ·129 57					<u> </u>	_				86		
	·97	IV	· 4 88	41		—	$\cdot 246$	38	$\cdot 267$	35	·129	57

TABLE IV

Evening

		Adela	uide	La Pl	ata	Bata	via			La Pl	ata
Epoch	Group	¢ ″	Obs.	ф ″	Obs.	ф <i>"</i>	Obs.	Epoch	Group	ф <i>"</i>	Obs.
1938 .06	IV	36 ·547	40	31.781	74	38.167	64	1942.05	IV	31.708	53
·14	v	·692	59	.887	$\overline{75}$	·434	29	•15	v	.913	49
·23	VI	.776	76	·848	54	.535	68	·21	VI	·849	43
·30	VII	37.091	43	32.127	48	·830	87	·31	VII	$32 \cdot 228$	50
$\cdot 39$	VIII	·026	67	31.825	91	·951	59	.39	VIII	·033	32
•47	\mathbf{IX}	36.984	36	·795	65	·747	73	·47	\mathbf{IX}	31.967	28
.55	х	.767	28	.629	86	$\cdot 236$	119	$\cdot 56$	X	·960	29
·64	\mathbf{XI}	$\cdot 724$	32	.539	78	$\cdot 387$	108	·64	XI	·667	29
$\cdot 72$	\mathbf{XII}	$\cdot 895$	90	·838	94	·690	111	$\cdot 72$	\mathbf{XII}	32.010	48
·81	I	$\cdot 657$	70	.675	80	·166	91	·80	I	31.717	52
·88	II	$\cdot 344$	67	$\cdot 592$	64	$\cdot 070$	63	·89	II	$\cdot 451$	67
$\cdot 97$	III	·677	73	$\cdot 985$	64	$\cdot 367$	71	.97	III	·739	34
1939.06	\mathbf{IV}	36.539	104	31.870	57	$38 \cdot 103$	49	1943-07	\mathbf{IV}	31.608	28
·14	v	$\cdot 682$	76	.967	69	$\cdot 324$	73	$\cdot 15$	v	·791	58
$\cdot 22$	\mathbf{VI}	$\cdot 626$	80	·884	71	$\cdot 458$	85	$\cdot 22$	VI	·661	37
· 3 0	\mathbf{VII}	37.124	60	$32 \cdot 240$	90	.599	62	·31	\mathbf{VII}	32.033	29
.39	\mathbf{VIII}	36.997	69	31.920	41	$\cdot 815$	86	$\cdot 39$	VIII	31.890	29
·47	\mathbf{IX}	·988	75	$\cdot 810$	47	$\cdot 750$	82	$\cdot 45$	\mathbf{IX}	.750	6
·55	х	$\cdot 943$	66	·606	40	$\cdot 250$	78	$\cdot 55$	X	·829	32
·64	XI	·760	27	·495	34	·444	57	$\cdot 64$	XI	·780	21
$\cdot 73$	XII	.953	88	.773	33	•754	91	.73	XII	·919	27
·81	I	·735	69	·463	54	$\cdot 252$	101	·80	I	32.104	32
·88	II	·473	35	·579	44	·262	91	·91	II	31.588	23
.97	111	$\cdot 673$	37	$\cdot 924$	61	$\cdot 593$	66	•95	III	32.010	1
1940.05	IV	36.579	55	31.826	36	37.966	37	1944.06	\mathbf{IV}	31.696	28
$\cdot 15$	v	·719	41	·918	82	38.033	49	·14	v	$\cdot 623$	12
$\cdot 22$	VI	.591	28	·897	52	$\cdot 095$	39	$\cdot 22$	VI	·708	98
·30	VII	·958	26	32.226	51			•31	VII	32.026	73
· 4 0	VIII	·982	37	31.882	32			·38	VIII	31.793	48
·47	IX	.929	35	·729	31		_	·50	IX	·774	27
·56	X	·763	15	·620	44	—		·55	X	·615	18
·62 ·72	XI XII	$\cdot 793$	10	$.520 \\ .801$	$rac{47}{31}$	_		·66 ·71	XI XII	·635 ·928	$\begin{array}{c} 42 \\ 65 \end{array}$
·82	I			-587	39		_	·81	I	.909	33
•88	Î			-431	34	_		-89	Î	·685	77
·97	III			·842	54 54	_	_	.99	III	32·039	53
1941.05	IV		_	31.773	70			1945 .07	IV	31.853	60
$\cdot 15$	v	·	—	$\cdot 857$	44	—		·14	v	·944	81
$\cdot 23$	VI		—	$\cdot 912$	43						
$\cdot 32$	VII		—	$32 \cdot 167$	42						
·39	VIII			$\cdot 953$	38	—					
•47	IX			$\cdot 783$	52						
·56	X	_		.771	31						
·65	XI			·509	50	_					
$\cdot 72$ $\cdot 81$	XII			·816	61						
·81 ·89	I II	_		.575 .421	76 62						
·89 ·98	III		_	·421 ·801	62 68						
.90	111			:001	00	_					

TABLE	V
-------	---

		Adela	ide	La Pl	ata	Bata	via			La Pl	ata
Epoch	Group	¢ ″	Obs.	¢ ″	Obs.	φ <i>"</i>	Obs.	Epoch	Group	ф "	Obs.
1938 .06	v	36.612	38	31.935	50	38 · 4 21	59	1942 .05	v	31.788	36
·14	vī	·633	63	·871	61	•491	42	•15	vi	.837	40
·23	VII	37.126	72	$32 \cdot 256$	39	·731	77	·21	VII	32.205	21
·30	VIII	36.921	33	31.970	36	·934	94	.32	VIII	·009	22
.39	IX	·904	48	·788	76	·839	71	·39	\mathbf{IX}	·109	15
-47	\mathbf{X}	·908	32	·667	60	$\cdot 268$	77	·47	\mathbf{X}	$31 \cdot 816$	17
$\cdot 55$	XI	·703	27	$\cdot 523$	71	$\cdot 456$	97	$\cdot 55$	XI	·860	13
·64	$\mathbf{X}\mathbf{I}\mathbf{I}$	·929	34	·719	55	.774	124	·64	$\mathbf{X}\mathbf{I}\mathbf{I}$.978	15
$\cdot 72$	I	·741	75	$\cdot 645$	83	$\cdot 246$	129	$\cdot 72$	I	·791	28
·81	II	$\cdot 452$	59	·533	64	$\cdot 213$	103	·80	II	$\cdot 541$	33
-88	III	·709	52	$\cdot 925$	54	$\cdot 543$	47	.89	111	.780	68
·97	IV	$\cdot 544$	66	.950	6 0	$\cdot 103$	82	·97	IV	$\cdot 623$	17
1939.06	v	36.640	100	31.994	51	38.380	45	1943.07	v	31.721	26
·14	VI	·616	78	$\cdot 928$	46	.333	72	·15	VI	$\cdot 642$	36
.22	\mathbf{VII}	37.005	99	$32 \cdot 249$	61	.615	95	$\cdot 21$	VII	·941	18
·30	\mathbf{VIII}	36 ·930	59	31.990	66	·757	86	·31	\mathbf{VIII}	$\cdot 851$	14
.37	IX	.926	47	·877	29	$\cdot 649$	94	· 4 0	\mathbf{IX}	$\cdot 857$	18
•47	\mathbf{X}	·846	64	$\cdot 721$	30	$\cdot 219$	111		\mathbf{X}	—	— .
·55	XI	$\cdot 724$	45	$\cdot 442$	23	$\cdot 525$	73	·58	XI	$\cdot 753$	15
·64	XII	·975	32	·734	21	·754	77	·63	XII	·970	12
.73	I	.729	75	·569	25	·364	107	•74	I	·855	14
·81	II	·522	59	$\cdot 252$	35	·289	104	•79	II	·511	31
·88	III	·756	32	·888	48	·636	101	·93	III	32.075	14
·97	IV	$\cdot 575$	25	.932	39	· 2 10	75		IV		
1940.05	\cdot V	36.571	53	31.888	33	38.023	23	1944.07	v	31.726	9
$\cdot 15$	VI	·676	4 0	$\cdot 892$	47	37.833	58	·15	VI	·624	9
·22	VII	·880	27	32.266	40	38.430	61	·23	VII	32.085	94
•30	VIII	.772	24	32.016	35			·32	VIII	31.794	57
•40	IX	·805	46	31.948	15			•38	IX	·783	42
•47	X	-845	40	·646	22		_	·49	X	·587	24
-56	XI	·969	9	·617	39			·54	XI	·563	10
·62 ·72	XII I	37.002	18	·683 ·533	$\frac{28}{16}$		—	·65 ·70	XII I	·887 ·785	41 43
·82	i			·400	13	_		·81	II	·684	43 29
.88	III	_	_	·842	15		_	.89	III	32.079	65
.97	IV		_	·831	54	_		.99	IV	31.958	48
1941·05	v			31 ·835	48			1945.06	v	31.966	39
1941-05 ·15	vī		_	685	40 32			·15	vi	·765	39 73
·24	VII			32.231	32 24			10	V I	100	15
.32	VIII		_	31.983	29						
.39	IX		_	·951	30						
•47	x			.770	27						
·56	XI			.578	$\overline{24}$						
·65	XII			·737	35						
·73	I		_	.509	46						
·81	II		<u> </u>	·379	54						
·89	III		_	·864	34						
.97	IV			$\cdot 723$	38	_					

TABLE VI

	North—Evening										
		Mizusawa		Kit	ab	Carlo	forte	Gaithers	sburg	Ukia	h
Epoch	Group	φ	Obs.	φ	Obs.	φ	Obs.	¢	Obs.	φ	Obs.
		"		"		"		"		"	
1935.06	IV	3.657	42	1.897	5	8.915	42	13.494	54	12.236	56
·14	v	$\cdot 345$	59	·709	47	·890	40	.159	61	·034	26
$\cdot 23$	VI	$\cdot 547$	63	$\cdot 812$	31	.977	80	·340	61	$\cdot 272$	59
·30	\mathbf{VII}	$\cdot 373$	79	$\cdot 782$	50	·912	90	$\cdot 231$	50	·138	70
•39	\mathbf{VIII}	$\cdot 292$	78	$\cdot 673$	74	$\cdot 834$	75	·199	94	.083	67
·47	IX	$\cdot 163$	42	$\cdot 487$	70	$\cdot 645$	133	·044	68	11.957	55
·56	\mathbf{X}	$\cdot 284$	53	.759	52	·808	156	·159	64	12.019	94
-64	XI	·499	59	·839	89	·940	149	$\cdot 355$	36	$\cdot 232$	96
.72	$\mathbf{X}\mathbf{I}\mathbf{I}$	·503	42	$\cdot 831$	63	·945	74	·474	68	$\cdot 240$	78
·80	I	$\cdot 567$	87	·788	62	·941	31	$\cdot 573$	69	$\cdot 232$	72
·89	II	$\cdot 567$	73	$\cdot 653$	48	·850	29	$\cdot 224$	53	$\cdot 120$	60
-97	III	·734	39	·896	49	9.032	26	$\cdot 596$	42	$\cdot 338$	39
	T	otals	716		640		925		720		772
				No	rth—N	Iorning					
		Mizu	sawa	Kit	ab	Carlo	forte	Gaithers	sburg	Ukia	ıh
				·							
Epoch	Group	΄ φ	Obs.	. φ	Obs.	φ	Obs.	φ	Obs.	φ	Obs.
1	1	"		, , , , , , , , , , , , , , , , , , , ,		"		,		, ,,	
1936-06	v	3.380	43	1.646	5	8.831	31	13.246	34	12.081	48
·14	VI	$\cdot 645$	48	.934	45	9 ·018	42	$\cdot 257$	44	·306	21
$\cdot 23$	VII	$\cdot 451$	78	$\cdot 803$	28	8.928	76	$\cdot 285$	46	.171	55
·30	VIII	$\cdot 390$	77	.721	48	$\cdot 858$	69	$\cdot 150$	53	$\cdot 122$	70
.39	\mathbf{IX}	$\cdot 244$	69	$\cdot 572$	60	.677	53	.167	82	11.998	59
-47	X	$\cdot 275$	32	·669	63	$\cdot 827$	126	·206	71	12.094	54
.56	XI	$\cdot 434$	28	.917	59	·964	124	$\cdot 373$	40	$\cdot 229$	96
·64	\mathbf{XII}	.539	40	$\cdot 812$	96	.951	136	.539	23	$\cdot 235$	96
$\cdot 72$	I	.511	34	.765	59	.976	66	.576	60	$\cdot 278$	77
·81	II	-423	69	·733	54	·794	19	$\cdot 215$	53	$\cdot 057$	71
.90	III	·616	76	·826	44	9.028	13	$\cdot 526$	42	·365	56
.97	IV	$\cdot 634$	47	.929	40	8.945	19	$\cdot 526$	30	-267	36
	Т	otals	641		601		774		578		739

North-Evening

South-Evening

South-Morning

		Adela	lide	La P	lata			Adela	ide	La Pla	ata
		ــــــــــــــــــــــــــــــــــــــ									
Epoch	Group	φ	Obs.	φ	Obs.	Epoch	Group	ϕ	Obs.	ϕ	Obs.
		"		"				"		"	
1935 ·06	IV	36.647	84	31.722	122	1935.06	v	36.743	82	31.804	111
·14	v	.785	92	·816	114	·14	\mathbf{VI}	$\cdot 661$	95	·773	94
$\cdot 23$	VI	$\cdot 726$	63	·717	132	$\cdot 23$	VII	37.052	70	$32 \cdot 104$	117
·30	\mathbf{VII}	37.053	32	32.069	111	·30	VIII	36.859	23	31.887	98
.39	VIII	36.895	56	31.925	86	.39	\mathbf{IX}	·860	47	$\cdot 847$	62
·47	\mathbf{IX}	·914	28	$\cdot 863$	95	·48	\mathbf{X}	$\cdot 843$	18	$\cdot 754$	68
·56	X	·894	40	.785	99	.56	XI	.731	38	·709	85
·64	XI	·710	85	$\cdot 633$	78	·64	XII	·886	76	·878	45
.73	$\mathbf{X}\mathbf{I}\mathbf{I}$	·868	44	·920	81	.73	I	·713	42	·800	64
·81	I	$\cdot 664$	75	$\cdot 745$	76	·81	II	$\cdot 420$	72	·626	60
·89	II	·461	69	.558	88	.89	III	·713	61	·909	70
$\cdot 97$	III	·699	55	$\cdot 831$	78	$\cdot 97$	\mathbf{IV}	$\cdot 653$	57	$\cdot 745$	68
		Totals	723		1160				709		928

in two instances I found a sensible difference; in the declination and proper motions of star I of the pair 5I (group IX) and of star I of the pair 65 (group XI). The first leads to a difference of $+0^{"}\cdot48$ in the mean declination of the pair and a change of this amount in the latitudes derived from it; and in consequence a difference of about $+0^{"}\cdot08$ to the mean latitude obtained from that group, from the epoch 1940 when we adopted the data of the *General Catalogue* in the calculation of the ephemerides. The second discrepancy results in a decrease in the value for the latitude obtained with the pair of about $0^{"}\cdot085$ also from 1940, and in a decrease of $0^{"}\cdot014$ for the mean latitude of the group. The values which we give for 1940 are referred to the declinations of the previous years, but not the values for the years 1941-46; this gives rise to the difference between the values of z obtained for the groups IX and XI in the first years and the last years.

It may be recalled that following a decision taken at Stockholm by our Commission the Central Bureau was entrusted with the final calculation of the observations made during 1935 at the International stations, because from the beginning of that year the present programme of observation, slightly different from that of the previous years, was adopted. In order that the results for that year should be on a uniform basis with those of the following years, all the observations taken in 1935 have been recomputed. The results are summarized in Table VI in a similar manner to those for the years 1938-46.

Using the values of the mean latitude adopted in the previous years for each of the different stations, the instantaneous co-ordinates x and y of the North Pole of rotation and the z term were calculated for the mean epoch of the observation of each group, for the morning and evening observations separately. This separation is necessary, because the z term depends on effects of a diverse nature and, in particular, on the corrections to the adopted declinations of the stars. This effect has a magnitude greater than all the others and a value which is characteristic of each group, as is seen by comparing, in Table VII, the value of z derived from the morning observations in any month with the value derived from the evening observations in the following month, the same group of stars being observed. In Table VII are given the values found for the co-ordinates x and y of the pole from morning and evening observations, together with the mean values; also the values of z from morning and evening observations, together with the mean values for the same group but in consecutive months.

It may be remembered that when it was possible to use the results from Adelaide and La Plata to supplement those of the northern stations, the instantaneous co-ordinates of the pole were derived not only in the customary manner but also by taking into account the southern observations, so obtaining results which have greater weight. The advantage of including the results of the southern observations becomes more apparent the smaller the polar motion, as the magnitude of the residual errors of observation then approximates more nearly to the amplitude of displacements of the instantaneous pole from the mean pole. It would be very advantageous if the co-operation of the two southern stations were permanent. But, as we have already stated, the observations at Adelaide were discontinued in 1940 and the inclusion of the observations from La Plata only would be of little, if any, value. However, as the calculations were made for 1935 and subsequently for the years 1938 and 1939 in this manner, i.e. taking into account all the seven stations, we give in Table VIII the values for 1935, obtained from the northern stations only, and in Table IX those for the same years 1935, 1938 and 1939, obtained from all the seven stations.

The agreement between the two values of the co-ordinates X and Y, obtained from the evening and morning groups is generally satisfactory, but it is apparent how noticeably the agreement is affected by lack of or extreme poorness in observations at times at some stations, which by their geographical position affect noticeably the determination of one or other of the co-ordinates.

Thus it is clear that the X values become less accordant when there is a noticeable decrease in the number of observations at Carloforte, as is usually the case in the winter months, or, worse still, when the observations are missing altogether, while the lack of

TABLE VII

Northern Stations

		X				Y		Z			
Epoch	Group	E.	M.	Mean ″	E.	м.	Mean	Ē.	M.	Mean	
1937-97	IIIIV				<i>"</i>	"	"	. ″	″ + ·029	"	
1938.06	IV-V	215	206	210	044	+.014	015	+.097	063	+.063	
·14	V-VI	-·114	145	129	+.057	+.048	+.052	- 081	+.107	072	
·23	VI–VII	- ·116	170	143	+.092	+.106	+.099	+.061	021	+.084	
·31	VII–VIII	-·114	067	090	+.148	+.128	+.138	032	044	026	
·39 ·47	VIII–IX IX–X	055 039	065 024	-·060	+.134	+.178	+.156	-·105	219	074	
.56	X–XI	+.129	+.120	031 + .124	+.145 +.119	$+ \cdot 168 + \cdot 142$	+.156 +.130	235 098	142 + .046	227 120	
·64	XI-XII	+.195	+.180	+.187	+.095	+ 154	+130 +129	+.058	+.040 +.087	+.052	
$\cdot 72$	XII–I	+.126	+.149	+.137	+.062	+.062	+.062	+.094	+.064	+.090	
·80	I-II	+.054	+.013	+.033	+.025	037	006	+.092	095	+.078	
·88	II–III	016	004	010	071	012	041	094	+.133	094	
.97	III–IV	116	206	161	+.014	- • 090	038	+.101	+.034	+.117	
1939-06	IV-V	101	086	094	+.062	082	− ·010	+.054	-·096	+.044	
·14 ·22	V-VI	-·118	125	122	-017	+.003	007	114	+.106	105	
·22 ·31	VI–VII VII–VIII	120052	101 +.023	111015	+.085	+.118	+.102	+.054	+.018	+.080	
.39	VIII–IX	+0.032	019	+.013	+.115 +.096	+.104 +.222	+.110 +.159	034 086	024 231	008 055	
·47	IX-X	+.037	+.040	+.039	+.163	+.144	+.154	206	089	218	
·56	X–XI	+.093	+.084	+.089	+.151	+.170	+.161	099	+.020	094	
·64	XI-XII	+.160	+.180	+.170	+.128	+.137	+.133	+.021	+.054	+.020	
.73	XII–I	+.181	+.167	+.174	+.078	+.094	+.086	+.061	+.094	+.057	
·80	I–II	+.202	+.123	+.163	+.084	003	+.041	+.097	090	+.095	
·89 ·97	II–III III–IV	+.114 +.069	+.172 +.075	+.143	+.022	+.061	+.042	121	+.136	105	
				+.072	-·016	012	-·014	+.121	+.066	+.128	
1940·06 ·14	IV–V V–VI	007 150	067	037	016	054	035	+.056	-· 118	+.061	
·14 ·22	VI-VII	130 109	113 131	$132 \\120$	070 +.003		053	- 088	+.098	103	
·31	VII–VIII	129	146	120 138	+.003 +.076	+.017 +.082	+.010 +.079	+.063 008	$^{+\cdot 028}_{-\cdot 042}$	+.081 +.010	
$\cdot \overline{39}$	VIII-IX	109	107	108	+.109	+.120	+.114	111	225	077	
·47	IX-X	011	+.031	+.010	+.183	+.164	+.174	226	075	225	
•56	X-XI	+.101	+.048	+.074	+.109	+.161	+.135	102	+.028	089	
·64	XI-XII	+.053	+.039	+.046	+.051	+.109	+.080	+.101	+.119	+.064	
·73 ·80	XII–I I–II	+.158	+.096	+.127	+.109	+.174	+.142	+ 073	+.024	+.096	
.89	II–III II–III	+.089 +.055	+.161 +.111	+.125 +.083	+.088048	+.021 +.102	+.055	+.049	106	+.037	
.97	III–IV	+ 026	$+ \cdot 128$	+.033 +.077	+.048	+.044	+.027 +.053	062 + .131	+.127 +.113	084 + .129	
1941.07	IV-V	- 023	+.134	+.055	031		025	+.015			
·14	V-VI	+.059	030	+.015	+.031	019	025 008	013	011 +.106	+.064 045	
$\cdot 22$	VI-VII	021	+.027	+.003	029	+.009	-·010	+.092	+.025	+.099	
•30	VII–VIII	024	037	- 031	001	+.004	+.002	004	+.005	+.010	
.39	VIII–IX	+.031	017	+.007	+.037	+.048	+.042	065	094	030	
·47	IX-X	+.046	013	+.016	+.119	+.062	+.090	112	080	103	
•56 •64	X–XI XI–XII	- 007	+.046	+.019	+.082	+.141	+.112	- 118	026	-·099	
·04 ·71	XII-XII XII-I	+.077 +.067	+.037 +.068	+·057 +·067	+.144 +.106	+.128 +.142	+.136 +.124	+.005	+.060	010	
.79	I–II	+.096	+.061	+.079	+.081	+.055	+.124 +.068	+.032 +.034	$+.057 \\101$	+.046 +.046	
·88	II-III	+.114	+.073	+.093	+.023	+.118	+.071	082	+.054	091	
·96	III–IV	002	+.047	+.023	+.015	+.003	+.009	+.080	+.035	+.067	
1942 .07	IVV	+.072	040	+.016	029	+.048	+.009	+.053	129	+.044	
·14	V–VI	003	-·011	007	+.042	002	+.020	128	+.128	129	
·22	VI–VII	+.017	016	+.001	025	 ∙033	- 029	+.073	- 037	+.100	
·30	VII–VIII	+.006	024	009	+.040	+.022	+.031	-·041	068	− ·039	
.39	VIII–XI	+.002	+.022	+ 012	• 015	+.056	+.020	088	123	078	

TABLE VII (continued) Northern Stations

			X			Y			Z	
Epoch	Group	E.	 M. ″	Mean ″	Ē.	M.	Mean ″	E.	м. ″	Mean ″
1942·47 ·56 ·64 ·71 ·79 ·88	IX–X X–XI XI–XII XII–I I–II II–III	$ \begin{array}{r} & & \\ + \cdot 025 \\ - \cdot 008 \\ - \cdot 015 \\ - \cdot 006 \\ - \cdot 001 \\ - \cdot 034 \end{array} $	$ \begin{array}{c} & & + \cdot 011 \\ & + \cdot 014 \\ & - \cdot 033 \\ & - \cdot 017 \\ & + \cdot 027 \\ & + \cdot 033 \end{array} $	$ \begin{array}{c} & * \\ + \cdot 018 \\ + \cdot 003 \\ - \cdot 024 \\ - \cdot 012 \\ + \cdot 013 \\ \cdot 000 \end{array} $	$ \begin{array}{r} & & \\ & + \cdot 028 \\ & + \cdot 029 \\ & + \cdot 006 \\ & + \cdot 064 \\ & + \cdot 085 \\ & + \cdot 096 \end{array} $	$+ \cdot 043$ + $\cdot 024$ + $\cdot 052$ + $\cdot 129$ + $\cdot 134$ + $\cdot 105$	$ \begin{array}{r} & + \cdot 035 \\ + \cdot 027 \\ + \cdot 029 \\ + \cdot 096 \\ + \cdot 109 \\ + \cdot 102 \end{array} $	$\begin{array}{c} & -\cdot 135 \\ -\cdot 134 \\ +\cdot 016 \\ +\cdot 047 \\ +\cdot 034 \\ -\cdot 125 \end{array}$	$ \begin{array}{r} -\cdot 092 \\ -\cdot 008 \\ +\cdot 037 \\ +\cdot 035 \\ -\cdot 128 \\ +\cdot 128 \end{array} $	$- \cdot 129 \\ - \cdot 113 \\ + \cdot 004 \\ + \cdot 042 \\ + \cdot 035 \\ - \cdot 126$
.96	III–IV	+.045	- 002	+.022	+.135	$+ \cdot 139 + \cdot 136$	$+ \cdot 137$ $+ \cdot 134$	+.120 +.141 +.037	+.057 065	+.135 +.047
1943.06 .14 .23 .31 .39 .47 .56 .65 .72 .81 .90	IV-V V-VI VI-VII VII-VIII VIII-IX IX-X X-XI XI-XII XII-I I-II II-III	$+ \cdot 033$ $+ \cdot 082$ $+ \cdot 137$ $+ \cdot 084$ $+ \cdot 122$ $+ \cdot 186$ $+ \cdot 094$ $+ \cdot 112$ $+ \cdot 096$ $- \cdot 066$ $+ \cdot 090$	$+ \cdot 053$ $+ \cdot 062$ $+ \cdot 077$ $+ \cdot 113$ $+ \cdot 172$ $+ \cdot 077$ $+ \cdot 101$ $+ \cdot 129$ $- \cdot 020$ $+ \cdot 019$ $- \cdot 076$	$+ \cdot 043$ $+ \cdot 072$ $+ \cdot 107$ $+ \cdot 098$ $+ \cdot 147$ $+ \cdot 132$ $+ \cdot 098$ $+ \cdot 120$ $+ \cdot 038$ $- \cdot 023$ $+ \cdot 007$	$\begin{array}{r} + \cdot 132 \\ + \cdot 140 \\ + \cdot 061 \\ + \cdot 054 \\ + \cdot 049 \\ + \cdot 010 \\ - \cdot 041 \\ - \cdot 053 \\ - \cdot 046 \\ - \cdot 059 \\ + \cdot 009 \end{array}$	$+ \cdot 136$ + $\cdot 012$ + $\cdot 076$ + $\cdot 037$ + $\cdot 072$ + $\cdot 005$ - $\cdot 043$ - $\cdot 012$ - $\cdot 063$ - $\cdot 002$ + $\cdot 020$	+.134 +.076 +.068 +.045 +.060 +.007 042 032 054 030 +.014	$\begin{array}{r} +037 \\ -\cdot 103 \\ +\cdot 022 \\ -\cdot 009 \\ -\cdot 106 \\ -\cdot 136 \\ -\cdot 121 \\ +\cdot 005 \\ +\cdot 016 \\ -\cdot 121 \end{array}$	$\begin{array}{r}003 \\ +.142 \\ +.011 \\060 \\093 \\094 \\007 \\ +.026 \\ +.027 \\137 \\ +.095 \end{array}$	+.047 084 +.082 +.001 083 114 107 001 +.040 +.021 129
·98 1944·06	III–IV IV–V	091 071	042 + .004	067 033	+.106 +.070	003 +.137	+.051 +.103	+.079 +.038	+.037 119	+.087 +.037
·14 ·23 ·31 ·39 ·48 ·56 ·64 ·72 ·81	V-VI VI-VII VII-IXI IX-X X-XI XI-XII XII-I I-II	$\begin{array}{r} -\cdot 042 \\ -\cdot 010 \\ +\cdot 091 \\ +\cdot 190 \\ +\cdot 293 \\ +\cdot 274 \\ +\cdot 292 \\ +\cdot 139 \\ -\cdot 027 \end{array}$	$+ \cdot 027$ + $\cdot 030$ + $\cdot 061$ + $\cdot 192$ + $\cdot 263$ + $\cdot 274$ + $\cdot 266$ + $\cdot 164$ - $\cdot 012$	$\begin{array}{r} -\cdot 007 \\ +\cdot 010 \\ +\cdot 076 \\ +\cdot 191 \\ +\cdot 278 \\ +\cdot 278 \\ +\cdot 274 \\ +\cdot 279 \\ +\cdot 151 \\ -\cdot 019 \end{array}$	$\begin{array}{r} + \cdot 131 \\ + \cdot 153 \\ + \cdot 120 \\ + \cdot 075 \\ + \cdot 105 \\ - \cdot 024 \\ - \cdot 105 \\ - \cdot 209 \\ - \cdot 195 \end{array}$	$+\cdot 158$ $+\cdot 154$ $+\cdot 163$ $+\cdot 164$ $+\cdot 075$ $-\cdot 020$ $-\cdot 075$ $-\cdot 128$ $-\cdot 166$	$+\cdot 144$ $+\cdot 153$ $+\cdot 141$ $+\cdot 119$ $+\cdot 090$ $-\cdot 022$ $-\cdot 090$ $-\cdot 168$ $-\cdot 180$	$ \begin{array}{r} -\cdot 118 \\ +\cdot 073 \\ -\cdot 024 \\ -\cdot 055 \\ -\cdot 108 \\ -\cdot 091 \\ +\cdot 034 \\ +\cdot 076 \\ +\cdot 006 \end{array} $	$+ \cdot 034$ $- \cdot 004$ $- \cdot 060$ $- \cdot 094$ $- \cdot 076$ $+ \cdot 016$ $+ \cdot 062$ $+ \cdot 038$ $- \cdot 158$	$\begin{array}{r} -\cdot 118 \\ +\cdot 053 \\ -\cdot 014 \\ -\cdot 057 \\ -\cdot 101 \\ -\cdot 083 \\ +\cdot 025 \\ +\cdot 069 \\ +\cdot 022 \end{array}$
·89 ·98	II–III III–IV	$004 \\126$	105 179	055 152	118076	151 080	134078	166 +.110	$+\cdot 102 + \cdot 106$	162 +.106
1945-06 -14 -22 -31 -40 -48 -55 -64 -72 -81 -89	IV-V V-VI VI-VII VII-VIII VIII-IX IX-X X-XI XI-XII XII-I I-II II-II	$\begin{array}{r} -\cdot 169 \\ -\cdot 196 \\ -\cdot 129 \\ -\cdot 007 \\ +\cdot 065 \\ +\cdot 170 \\ +\cdot 283 \\ +\cdot 310 \\ +\cdot 343 \\ +\cdot 292 \\ +\cdot 037 \end{array}$	$\begin{array}{c} -\cdot 138 \\ -\cdot 152 \\ -\cdot 146 \\ -\cdot 124 \\ +\cdot 120 \\ +\cdot 172 \\ +\cdot 186 \\ +\cdot 248 \\ +\cdot 267 \\ +\cdot 187 \\ +\cdot 163 \end{array}$	$\begin{array}{c}153 \\174 \\137 \\066 \\ +.092 \\ +.171 \\ +.234 \\ +.279 \\ +.305 \\ +.239 \\ +.100 \end{array}$	$\begin{array}{r} + \cdot 009 \\ + \cdot 043 \\ + \cdot 137 \\ + \cdot 223 \\ + \cdot 230 \\ + \cdot 219 \\ + \cdot 124 \\ + \cdot 038 \\ - \cdot 059 \\ - \cdot 189 \\ - \cdot 172 \end{array}$	$\begin{array}{r} + \cdot 030 \\ + \cdot 064 \\ + \cdot 159 \\ + \cdot 216 \\ + \cdot 235 \\ + \cdot 254 \\ + \cdot 115 \\ + \cdot 033 \\ - \cdot 071 \\ - \cdot 177 \\ - \cdot 262 \end{array}$	$\begin{array}{r} + \cdot 019 \\ + \cdot 053 \\ + \cdot 148 \\ + \cdot 219 \\ + \cdot 232 \\ + \cdot 236 \\ + \cdot 119 \\ + \cdot 036 \\ - \cdot 065 \\ - \cdot 183 \\ - \cdot 217 \end{array}$	$\begin{array}{r} + \cdot 030 \\ - \cdot 089 \\ + \cdot 079 \\ - \cdot 027 \\ - \cdot 085 \\ - \cdot 158 \\ - \cdot 112 \\ - \cdot 020 \\ + \cdot 073 \\ + \cdot 093 \\ - \cdot 210 \end{array}$	$\begin{array}{r} - \cdot 079 \\ + \cdot 109 \\ + \cdot 002 \\ - \cdot 068 \\ - \cdot 110 \\ - \cdot 120 \\ + \cdot 027 \\ + \cdot 012 \\ + \cdot 071 \\ - \cdot 146 \\ + \cdot 162 \end{array}$	$\begin{array}{r} + \cdot 068 \\ - \cdot 084 \\ + \cdot 094 \\ - \cdot 012 \\ - \cdot 076 \\ - \cdot 134 \\ - \cdot 116 \\ + \cdot 003 \\ + \cdot 042 \\ + \cdot 082 \\ - \cdot 173 \end{array}$
·97 1946·06 ·14 ·22 ·31 ·39 ·48 ·56 ·64 ·72	III-IV IV-V V-VI VI-VII VII-VIII VII-IX IX-X X-XI XI-XII XII-I	$+ \cdot 045$ $- \cdot 067$ $- \cdot 174$ $- \cdot 231$ $- \cdot 231$ $- \cdot 113$ $- \cdot 055$ $+ \cdot 140$ $+ \cdot 156$ $+ \cdot 263$	$+\cdot 104$ $-\cdot 162$ $-\cdot 179$ $-\cdot 247$ $-\cdot 204$ $-\cdot 155$ $-\cdot 047$ $+\cdot 095$ $+\cdot 171$ $+\cdot 263$	$+ \cdot 074$ $- \cdot 114$ $- \cdot 176$ $- \cdot 192$ $- \cdot 217$ $- \cdot 134$ $- \cdot 051$ $+ \cdot 117$ $+ \cdot 163$ $+ \cdot 263$	$\begin{array}{r} -\cdot 239 \\ -\cdot 165 \\ -\cdot 122 \\ -\cdot 042 \\ +\cdot 191 \\ +\cdot 203 \\ +\cdot 289 \\ +\cdot 273 \\ +\cdot 229 \\ +\cdot 163 \end{array}$	$\begin{array}{r} -\cdot 135 \\ -\cdot 151 \\ -\cdot 050 \\ +\cdot 034 \\ +\cdot 142 \\ +\cdot 275 \\ +\cdot 231 \\ +\cdot 302 \\ +\cdot 281 \\ +\cdot 163 \end{array}$	$\begin{array}{r}187 \\158 \\086 \\004 \\ +.166 \\ +.239 \\ +.260 \\ +.287 \\ +.255 \\ +.163 \end{array}$	$+ \cdot 070$ + $\cdot 145$ - $\cdot 078$ + $\cdot 083$ - $\cdot 070$ - $\cdot 156$ - $\cdot 196$ - $\cdot 204$ - $\cdot 059$ + $\cdot 044$	$\begin{array}{r} +\cdot 100 \\ -\cdot 066 \\ +\cdot 065 \\ +\cdot 024 \\ -\cdot 076 \\ -\cdot 186 \\ -\cdot 134 \\ -\cdot 083 \\ +\cdot 013 \\ -\cdot 088 \end{array}$	$\begin{array}{r} + \cdot 116 \\ + \cdot 122 \\ - \cdot 072 \\ + \cdot 074 \\ - \cdot 023 \\ - \cdot 116 \\ - \cdot 191 \\ - \cdot 169 \\ - \cdot 071 \\ + \cdot 029 \end{array}$
·81 ·89 •97	I–II 1I–III III–IV	$+ \cdot 263 + \cdot 246 + \cdot 290$	$+ \cdot 278 + \cdot 234 + \cdot 167$	$+\cdot 270 + \cdot 240 + \cdot 228$	$+ \cdot 084 \\ - \cdot 067 \\ + \cdot 047$	$+ \cdot 060 \\ - \cdot 042 \\ - \cdot 059$	+.077 054 006	$+ \cdot 048 \\ - \cdot 102 \\ + \cdot 067$	146 +.198 +.090	$- \cdot 020 \\ - \cdot 124 \\ + \cdot 132$

AU VII

TABLE VIII

			X			Y			Z	
Epoch	Group	E.	 M.	Mean	E.	M.	Mean	Ē.	M.	Mean
		"	"	"	"	"	#	"	"	"
1935.06	IV–V	064	007	036	+.029	+.059	+.044	+.122	-·089	+.106
·14	V–VI	+.049	055	003	+.006	043	019	098	+.116	-·094
$\cdot 23$	VI–VI1	027	+.011	008	+.041	+.026	+.034	+.068	+.005	+.092
·30	VIIVIII	+.037	008	+.015	+.026	+.010	+.018	038	074	<i>−</i> ·016
·39	VIII-IX	+.035	009	+.013	+.058	+.073	+.066	-·110	194	092
•47	IX-X	003	+.036	+.017	+.069	+.069	+.069	267	113	230
.56	X-XI	+.049	+.045	+.047	+.004	+.038	+.021	119	+.059	-·116
·64	XI–XII	007	001	004	+.041	+.101	+.071	+.051	+.091	+.055
.72	XII–I	+.005	+.010	+.008	+.084	+.147	+.116	+.075	+.095	+.083
$\cdot 80$	I–II	023	025	024	+.092	+.004	+.048	+.085	079	+ .090
·89	II–III	053	034	044	+.030	+.104	+.067	054	+.150	 ∙0 66
$\cdot 97$	III–IV	059	041	050	+.068	+.043	+.056	+.200	+.141	+.175

Northern Stations

observations at Kitab brings a greater uncertainty to the determination of Y. From this it is clear that it is desirable that the work should proceed everywhere with the greatest regularity and without interruption. The interruptions, apart from upsetting the homogeneity and continuity of the results, also cause doubts and uncertainties. I wonder whether, in view of all the difficulties experienced in Italy in maintaining the service at Carloforte, it would not be advisable to revert to the original system prior to 1914 when all the stations were directly controlled by the old International Geodetic Association.

It has been already pointed out that the values of Z derived from the observations in each group represent to a great extent the effect of the errors in the adopted declinations and consequently they give, with a change of sign, the corrections to the mean of the declinations of each group. It follows that the values of Z obtained in successive years should agree; the agreement is, in fact, satisfactory when it is remembered that the individual values are subject to errors of observation and that in Z are included also the effects of real or apparent latitude variations, which can be separated only with difficulty.

In Table X are summarized the values obtained in each year from 1935 to 1946, after applying the corrections to the values for the years previous to 1940 to the groups IX and XII, as already mentioned, in order to reduce all the results to the positions of the *General Catalogue*. In the last line the mean value for each group is given. The mean error of a single value, derived from the scatter about the mean values, is $\pm 0".028$; that of the mean group corrections is $\pm 0".008$.

The values of X and Y from Tables VII, VIII and IX were plotted and smooth curves drawn to pass as nearly as possible through the plotted points. From these curves the co-ordinates X and Y of the instantaneous pole were read off at every tenth of a year and are given in Table XI. With these values the curves showing the polar motion are to be found in the diagrams.

II. Final Reductions of the Observations for the Period 1935-40

The end of 1940 completed the first period of 6 years, which includes five Chandlerian periods and six yearly periods, from the time when the reduction of the observations taken at the International Latitude Stations was entrusted to us. The reduction in the work of the Office caused by the war enabled me to investigate the observational data so far collected in order to determine improved values of the polar motion to supersede the provisional values which are published year by year. TABLE IX Northern and Southern Stations

	Mean	۴.	$+ \cdot 106$	+.012	+ -077	270		-079	-018	060.+	- 097	+.056	+.278		1	+.112	+-004	- 003	374	156	- 088	+-047	+.185	036	+.126	+.326	— ·037	090.+	027	+.018		170	122	+.015	+.200	062	+.131	+.312	-001
Za	M	×	+.020	+ 081	280		062	-001	+.081	- 092	+.029	+.273	– ·026	+.092	+.109	000	+.029	- 423	165	690· -	007	+.189	020	+.115	+.314	021	+ ·041	6 10 –	+.013	350	175	133	700·+	+.221	049	+.135	+.342	011	+ ·054
	ц	•	+.106	+-004	+.072	260	112	095	034	660.+	-102	+.083	+.282	+.021	I	+.116	600.+	- 036	326	148	107	+.102	+.182	1-053	+.138	+.339	053	+ .078	035	+.023	403	165	111	+.023	+.179	074	+.126	+.282	600 : +
	Mean	×	+.120	092	160.+	016	091	228	116	+.055	+ .084	+.093		$+ \cdot 177$	ł	+.063	070	+ -087	0 00	070	222	114	+.057	+ -097	+.081		$+ \cdot 119$	+-045	106	+.083	600 . –	·061	225	094	+.026	+.063	$+ \cdot 102$	103	+·134
Z_b	M.	×	087	+.113	+.005	074	191	111	+.059	+.092	660 +	075	+.153	$+ \cdot 140$	+.033	062	+.110	+.026	038	212		+.052	+.095	+ ·068	960	+.135	+.031	- 098	$+ \cdot 107$	+.025	032	— ·241	095	+.026	+.060	$+ \cdot 100$	089	+-144	+.072
	E.	×	+.120	097	+-068	037	108	264	120	+.050	+.076	+.087	052	+.200	[+.093	078	+.065	026	102	- 232	160. –	+.063	+ -098	+ -094		$+ \cdot 103$	+.059		+.059		089	209	094	+.026	+-066	$+ \cdot 103$	117	$+ \cdot 124$
	Mean	•	+-037	019	+.030	+.014	+.053	+ -067	+ -024	+·064	+ 083	+.026	+ •044	+-042	I	007	+.038	+ ·095	$+ \cdot 122$	+.161	$+ \cdot 164$	+.106	+.095	+.037		059	– ·032	036	022	+-067	+.086	+·141	+.118	+.131	+.113	+ ·064	+.048	600· -	066
Y	М.	×	+-043	033	+.015	+ .011	+ ·066	+ .066	+.030	+ -085	+.103	017	+.062	+.034	I	100·+	+.034	$+ \cdot 101$	$+ \cdot 110$	$+ \cdot 172$	$+ \cdot 177$	+.119	+.121	+-040	037	1.036		094	015	+ -079	+-079	+.196	$+ \cdot 104$	+.135	+.114	+ -070	+.022	100-	073
	щ	¥	+.030	1 200-1	+.045	+-016	+.039	+ 068	+.016	+.043	+.062	690.+	+.026	+.050	I	021	+.042	680-+	+.135	+.150	+.152	+.094	690.+	+.035	+.013	1-083	+.022	+.023	028	+.055	+.093	+.086	+.131	+.127	+.112	+.058	+.074	016	059
	Mean	Ł		1-004	-012	+.010	003	+-014	+-049	012	032		071	067	1			— ·147	108	052	021	+-095	+.152	+.111	+.026	035	171	125	1.139	151	072			+.024	$+ \cdot 147$	$+ \cdot 148$	+.170	+ 083	+-011
X	M.	ł	025		001	007	018	+ -032	+.035	020	042		083	- ·053	ł	-215	161	176	- 088	- 071	013	+.003	$+ \cdot 141$	+.129	+.013	032	102	-·101		147	038	084	052	+-012	+ .147	+.138	+.152	+ -098	+ ·002
	मं	×	063	+.037	023	+.026	+.012	005	+.063	1-004	022	1-020	090 I	081	I	187	133	119	128	- ·034	030	860;+	+.163	+ -0.93	+-040	- 039		148	130	-154	106	+0.15	- 042	+.036	$+ \cdot 147$	$+ \cdot 157$	+.188	890.+	A10.+
	Group		IV-V	1/-/	IIV-IV	IIIV-IIV	VIII-IX	IX-X	X-XI	IIX-IX	I-IIX	I-II		111-11	I	IV-V	ΙΛ-Λ	IIV-IV		XI-IIIA	IX-X	X-XI					V1111	1V-V						X-X1	IIX-IX			111-111	111-17
	Epoch		1935-06	·14	.53	08.	-39	-47	·56	·64	-72	08. 1	68. 19	78.	1937-96	1938-06	·14	53 53		6 <u>8</u> .	·47	.56	40 17	21.	9 80 80 80 80 80 80 80 80 80 80 80 80 80	ș S	16.	1939-06	•14 90	77.	16.	68.	-47 	90.	40 1	£1.	ģ	68. 10	LR.
																נ	9	5																			13-	2	

TABLE X

Group	.IV	v	VI	VII	VIII	IX	x	IX	XII	I	II	III
Year	"	*	"	"	"	"	*	"	"	"	"	"
1935 +	106*	094	+.092		092	-·150†	116	+.041	+.083	+.090	066	+.175
										+.127	201	+.154
1937 +	- 092	075	+.058	014	103	-·161	142	005	+.051	+.084	106	+.152
1938 +	063	072	+.084	026	074	-·147		+.038	+.090	+.078	-·0 94	+.117
1939 +	⊦∙044	105	+.080	008	055		-·094	+.006	+.057	+.095	105	+.128
1940 +	-·061	103	+.081	+.010	077	145	089	+.050	+.096	+.037	-·084	+.129
1941 +	- •064	045	+.099	+.010		103	·099	·010	+.046	+.046	091	+.067
1942 +	- ·0 44	129	+.100	-·039	078			+.004	+.042	+.035	-·126	+.135
1943 +	⊦·0 4 7	084	+.082	+.001	083	-·114	107	001	+.040	+.021	129	+.087
1944 -	- •037	-·118	+.053	014	057	·101	083	+.011	+.069	+.022	162	+.106
1945 +	- •068	084	+.094	012	076	·134	·116	013	+.042	+.082	173	+.116
1946† +	⊦·122*	072	+.074	023		·191	·169	085	+.029	020	124	+.132
1946* +	- •090		—							—		
Mean +	- • 071		+.081	008	074		-·112	+.007	+.060	+.058	122	+.125

* Half-weights should be given to the two values for 1935 and 1946, as the first is obtained from the observations for the month of January only and the second for December only.

[†] The corresponding values for the years 1935-40 have been corrected in order to bring the proper motions to the values given by the G.C.

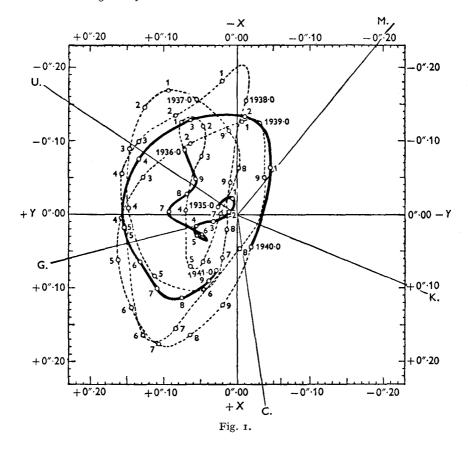


TABLE XI

				1110000 11	-			
Epoch	X	\boldsymbol{Y}	Epoch	X	Y	N	orthern Sta	tions
	"	"		"	"		<u> </u>	·
1938 ·0	156	012	1943.0	+.030	+.146	$\mathbf{E}\mathbf{poch}$	X	Y
·1	183	+.020	·1	+.056	+.112		"	"
$\cdot 2$	135	+.084	$\cdot \hat{2}$	+.087	+.070	1935-0	012	+.025
•3	-130 - 100	$+ \cdot 136$.3	+.118	+.055	·1	023	+.007
	056	+.150 +.158	•4	$+ \cdot 145$	+.036	$\cdot \hat{2}$	004	+.010
·4		+.158 +.153	•5	$+ \cdot 129$	-005	· <u>3</u>	+.009	+.032
.5	+.024		·6	$+ \cdot 125$ $+ \cdot 104$	037	•4	+.017	+.056
·6	+.162	+.128	·0 ·7	+.063	056	·5	+.028	+.053
•7	+.154	+.084			033	·6	+ 020 + 030	+ 000 + 000
•8	+.046	002	·8	+.007		.7	003	+.092
.9	048	038	.9	049	+.012	-8	028	+ 0.02 + 0.068
1939-0	120	- 031	1944 ·0	066	+.058	.9	023	+.057
•1	126	006	·1	026	+.125	6·0		+.057 +.071
$\cdot 2$	097	+.063	$\cdot 2$	+.004	+.156	0.0	088	+.011
•3	051	+.127	.3	+.060	+.144			
· 4	+.004	+.156	•4	$+ \cdot 210$	+.116	Nort	hern and So	outhern
.5	+.062	+.162	.5	+.268	+.084		Stations	
·6	+.127	+.143	·6	+.272	060			·
·7	+.176	+.107	.7	+.182	150	Epoch	X	Y
.8	+.165	+.065	-8	010	180		"	*
.9	+.123	+.019	.9	084	130	1935.0	-·036	+.026
		-				·1	043	+.005
1940.0	+.044	020	1945.0	144	062	•1	021	+.008
·1	064	046	·1	173	+.012	•3	021	+000 $+030$
$\cdot 2$	134	012	·2	-·152	+.135	·3 ·4		+.050 +.050
.3	129	+.063	•3	060	+.211		+.008	
· 4	076	+.132	•4	+.092	+.237	•5	+.028	+.050
•5	+.018	+.153	-5	+.191	+.228	·6	+.021	+.042
·6	+.064	+.131	·6	+.280	+.065	•7	028	+.064
•7	+.100	+.108	•7	+.305	038	·8	054	+.041
·8	+.114	+.075	•8	+.252	178	.9	067	+.037
.9	+.091	+.038	.9	+.115	215	1936 ·0	105	+.060
1941 ·0	+.070	+.016	1946 ·0	+.012	176	1938 ·0		019
·1	+.038	-·013	·1	144	105	·1	185	+.013
$\cdot 2$	+.003	012	$\cdot 2$	191	004	$\cdot 2$	142	+.072
•3	-·013	+.006	.3	217	+.166	•3	-·109	+.125
·4	-·004	+.069	•4	140	+.234	•4	052	+.163
$\cdot 5$	+.021	+.093	.5	020	+.288	.5	+.021	+.150
•6	+.040	+.124	·6	+.134	+.278	·6	+.132	+.099
$\cdot \tilde{7}$	+.066	+.121	•7	+.265	+.195	·7	+.126	+.056
·8	+.082	+.081	•8	+.292	+.092	.8	+033	013
.9	+.074	+.047	.9	+.246	040	.9	068	061
1942·0	+.023	+ .018	1947.0	$(+\cdot 214)$	(078)	1939·0	-·150	-·034
	•		1947.0	(+214)	(010)		150	034 017
·1	+.007	+.006				·1		
·2	004	+.001				·2	-·134	+.032
.3	+.001	+.016				•3	086	+.100
·4	+.009	+.027				·4	023	+.135
.5	+.009	+.028				•5	+.045	+.146
·6		+ 034				·6	+.118	+.132
•7	008	+.076				•7	+.148	+ 080
·8	+.002	+.103				·8	+ 133	+.020
.9	+.014	+ 120				.9	+.074	030
						1940.0	(025)	(087)
						-		



Fig. 3.

First of all we had to investigate the instrumental constants in order to ensure that the values of the latitude variation were free from systematic errors of an instrumental nature. The large mass of observations obtained at the several stations had to be analysed in order to determine the value of one revolution of the micrometer screw of each instrument and its variations with temperature and time. The conclusions have been published in the *Memorie dell' Accademia Nazionale dei Lincei di Roma*.* At almost all the stations special observations were made for this purpose, limited in the earlier period to the observations of certain polar stars at their maximum elongation, and then later supplemented by the observation of a pair of stars, as suggested by Prof. Kimura.

The first of these methods offers a means of obtaining simultaneously the screw-value as well as material for the investigation of periodic and progressive errors of the screws, but has many inconveniences for the determination of the screw value. The second is really efficient only when the declinations of the stars are very accurately known and when the observations are continued systematically throughout the whole period, to co-ordinate the results obtained in the different epochs. A long time (about half an hour) is required for the observation of a circumpolar star across the whole field of view of the telescope near its elongation; to observe at intervals of two-tenths of a revolution throughout this time is a considerable strain on the observer; in addition, the position in which the telescope is set will introduce flexure effects. The uncertainties which are thus introduced could perhaps be eliminated if the observations of each star were equally distributed not only between the two instrumental positions but also between the two elongations; this would necessitate repeating the work at intervals of several months and giving preference to observations which are taken when the temperatures are almost identical; but we cannot be certain that nothing will have intervened in the meantime to alter the scale-value of the micrometer. Sufficient attention has not been paid to these factors and the inconsistent results obtained make one suspect the existence of systematic differences due to flexure and personal errors, though no reliable conclusions can be drawn. I believe that if one cannot afford a period long enough for observing, with all possible precautions, a fundamental star very near to the pole, this method of determining the screw-value should not be recommended, as the accuracy of the results obtainable is not proportionate to the work entailed.

The results show, without any doubt, that the method of observing pairs of stars is much more efficient, but for this it is essential: (1) that the declinations and proper motions of the stars should be known with a great accuracy; (2) that the difference in the declinations should be sufficiently large, so that the effects of accidental errors of observation as well as of errors on the adopted declinations are minimized; (3) that the observations of the same pair of stars should be repeated on many evenings in different instrumental positions so as to eliminate personal and instrumental errors and to obtain material for estimating the order of magnitude of the accidental error of measurement, and later for judging whether the differences between the results from individual pairs are to be attributed to errors in the declinations or to accidental errors of measurement; (4) that observations should be made of many pairs in the hope of balancing out the effects of errors of the adopted declinations; (5) that a number of pairs should be observed at different periods of the year when the temperatures will be different (for instance in the northern hemisphere with observations taken in the morning in the month of April after the latitude observations, and in July in the evening before the latitude observations) in order to determine the effect of temperature on the screw-value. I shall not give details of the results obtained at individual stations but merely mention that the proposal made at the meeting in Paris in 1935 by Prof. Kimura that the stations should observe a large number of star pairs has been followed in practice only at the stations of Batavia, Adelaide, La Plata, Mizusawa and Kitab (perhaps because with a larger staff they could more easily attend to this extra work).

* Memorie Classe Scienze fisische, matematiche e naturali dell' Accademia Nazionale dei Lincei, vol. 1, fasc. 4, Sezione 1. Roma, 1947.

Unfortunately, the method of making the observations has been interpreted differently at different stations. The stars given by Kimura present a serious difficulty, as the pairs do not follow each other in such a way that they can be observed in succession; if one particular pair is observed, it is necessary to miss the next pair and sometimes two or three others; moreover, at certain times as many as 14 pairs occur in a period of two hours, but there are other periods during which only three or four are to be found. At Batavia it was thought that all the 92 pairs should be observed, and that it would have been sufficient to do this once or twice every year. At other stations, a selection was made of certain pairs, and the measures of these pairs were repeated many times during each year. The choice of the pairs having been made according to different criteria, the pairs observed at the different stations were not the same. This gave rise to some difficulty when it was desired to intercompare the results obtained. Since it can be assumed that the effect of errors in the declinations will be less the larger the number of different pairs observed, the number of pairs should not be too small; on the other hand, each pair should be observed for a sufficient number of times to enable corrections to the declinations to be derived. At the same time, it is important not to overload the observers. Experience gained in recent years at the different stations shows that 40 pairs will be sufficient. It is desirable that all the stations should concentrate on these pairs and preferably on those which have already been observed sufficiently to derive reliable corrections to the declinations, so that the results can be reduced to the mean of all the pairs. These corrections are found in the Table on pp. 280–1 of my above-mentioned work. I must also mention another trouble which came to light in the course of this investigation. From time to time there occur sudden and apparently inexplicable changes in the micrometer screwvalue, without any note in the observing book of any adjustment of focus having been made. While, for instance, for Batavia every small fact which might possibly affect the observations is noted, for Kitab there is no note to account for a change of screw-value of over o".055 corresponding to a displacement of the plane of the wire system of the order of about 2 mm. We must also add that these variations are exactly confirmed by the results of the subsequent investigations.

TABLE XII

Year	Adelaide ″	Mean error	La Plata ″	Mean error ″
1935 1936	+.00468 +.01230	$\pm .00204$ $\pm .00293$	00628 00676	$\pm .00114$ $\pm .00130$
1937 1938	+.00982 +.00814	$\pm .00261$ $\pm .00201$	00891 $\{00444$ +.00419	$\pm .00140$ $\pm .00141*$ $\pm .00053†$
1939 Mean	$+ \cdot 01013 + \cdot 01009$	$\pm .09215 \pm .00120$	+.00052 00686 +.00177	$\pm .00136$ $\pm .00068$ $\pm .00111$

* Value obtained from the first eight months of the year 1938.

[†] Values obtained from the four last months of this year.

[‡] Mean obtained from the period for the years 1935–37 and the eight months of the year 1938.

§ Mean of the last months of 1938 and the year 1939.

Having completed this first study and having determined the micrometer screw-values and their variations, both with temperature and through the six-year period, all the latitude variations were re-computed. It is clear that if there had not been any errors in the declinations adopted for the latitude pairs and if the adopted screw-values at the different stations were correct, the mean of the monthly latitudes (and particularly those derived only from the nights when all the six pairs of each group were observed) should give identical results. If this does not happen, differences must arise from errors of the adopted declinations or screw-values. If we consider the results obtained in a particular month for a particular group, observed by the five northern stations, we have six unknowns

for the six corrections of declinations and five for the corrections of the five micrometer screw-values; i.e. a total of 11 unknowns, with 30 equations of condition; it is clear that it is possible to determine these 11 unknowns. A rigorous solution would have involved very heavy computations, made more difficult by the small differences between the coefficients for the correction of the micrometer screw-values at the various stations for any given pair. A method of successive approximations was therefore adopted. Particulars need not be given; but as an illustration of the results, those obtained for the two stations of the southern parallel at Adelaide and La Plata are quoted. Taking the micrometer screw-values found on p. 215 (for Adelaide) and on p. 231 (for La Plata) of my quoted work, I found, after three successive approximations, that for the years 1935–39 the value of the screw-values required the corrections given in Table XII on p. 200.

A glance at these corrections and at their mean errors shows that the differences between the yearly means are not necessarily real differences; we must subdivide the whole interval into limited periods within which the corrections oscillate within the limits of the expected errors. For Adelaide two periods are enough: the one consisting of the year 1935 and the other of the years 1936-39. For La Plata, the following five periods are used: (1) 1935-36; (2) 1937; (3) 1938, January to end of August; (4) 1938, September to December; (5) 1939-40. The following values of the screw-values were used:

Adelaide	1935	$R = 39.9481 - 0.00120 (t^{\circ} - 15^{\circ} \cdot 0)$
	1936-39	$R = 39.9535 - 0.00120 (t^{\circ} - 15^{\circ} \cdot 0)$
La Plata	1935-36	$R = 39.7644 - 0.00117 (t^{\circ} - 15^{\circ} \cdot 0)$
	1937	$R = 39.7620 - 0.00117 (t^{\circ} - 15^{\circ} \cdot 0)$
	1938 to end of August	$R = 39.7665 - 0.00117 (t^{\circ} - 15^{\circ} \cdot 0)$
	1938 SeptDec.	$R = 39.7751 - 0.00117 (t^{\circ} - 15^{\circ} \cdot 0)$
	1939-40	$R = 39.7710 - 0.00117 (t^{\circ} - 15^{\circ} \cdot 0)$

Along with the determination of the corrections to the screw-values we have determined the declination correction for each star pair, required to reduce the latitude derived from that pair to the mean value for the whole group. It must be remembered that these corrections are not the whole corrections, as each group needs a declination correction to reduce the groups to the same basis. This error of the mean declinations of each group, however, affects the correction for the screw-values. It may happen, therefore, that for two groups of stars, observed on the same night, two different corrections for the screwvalue may be required, and that such systematic differences will recur from year to year, because they have their origin in a residual error of the declinations of the two groups.

It is unnecessary in this report to give particulars of these investigations, which require detailed description, supported by all the numerical results, and which will have to be published separately. It is sufficient to mention that these computations have been completed and that, using the derived values, the definitive reduction of all the observations obtained from the beginning of 1935 to the end of 1940 has been undertaken and completed.

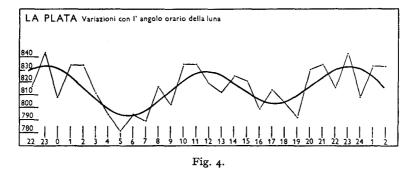
For the eight stations we have derived for each pair and for each group the values of the mean monthly latitudes and for each group also the mean latitudes for each night. The computation of the instantaneous co-ordinates of the pole and the detailed study of the residual term, due to phenomena of local or general character, is still to be done. It may be of interest to mention a result already obtained. Because of the uniformity of distribution through the year of the observations at La Plata and because the observations during six years, which include six yearly cycles and five Chandlerian cycles, were all made by one observer, I have analysed the mean latitudes according to the hour angle θ_{α} of the Moon at the mean time of observation, giving to the individual values a weight proportional to the number of pairs used. The values ϕ of the latitude for the different lunar hour-angles are given in Table XIII, where the number of pairs and the relative weight is also given for each value. In the fifth column are given the residuals of each value from the mean. In the sixth are given the values computed from the following formula omitting the terms in $3\theta_{\mathfrak{q}}$ for the reason given below and in the seventh are the corresponding residuals v'.

$$f = 3\mathbf{1}^{"} \cdot 8\mathbf{14} + \mathbf{0}^{"} \cdot \mathbf{0016} \cos \theta_{\mathfrak{q}} - \mathbf{0}^{"} \cdot \mathbf{0059} \sin \theta_{\mathfrak{q}} + \mathbf{0}^{"} \cdot \mathbf{0156} \cos 2\theta_{\mathfrak{q}} \\ - \mathbf{0}^{"} \cdot \mathbf{0047} \sin 2\theta_{\mathfrak{q}} + [+\mathbf{0}^{"} \cdot \mathbf{0010} \cos 3\theta_{\mathfrak{q}} + \mathbf{0}^{"} \cdot \mathbf{0033} \sin 3\theta_{\mathfrak{q}} + \dots].$$

Inspection of the residuals v shows how the latitude values vary periodically, and that the main term must be half the lunar day. By analysing them, the formula given above was derived. The sum of the squares of the residuals v is 6783, and of the residuals v' is only 3120, i.e. less than half. When the calculation is repeated with the inclusion of the terms in $3\theta_a$, the sum of the squares of the residuals is 3037. This reduction is far too small to enable us to attribute any reality to those terms. This result, while confirming the results obtained years ago by Stetson, proves that in the latitude determinations we must take into account a short-period variation, of a maximum amplitude of three to four hundredths of a second, which might be caused by the sum of the effects of different phenomena due to the Moon, such as the deviation of the vertical produced by solid tides and refraction phenomena related to atmospheric tides. Even this brief description is sufficient to show how much interest this type of research can have not only for astronomy but also for geodesy and geophysics, and how necessary it is that, as soon as possible, the service should be intensified in order to secure a wider collection of observations, which should be of the highest accuracy.

TABLE	VIII
TABLE	AIII

MOON'S						
hour	Seconds of	No. of				
angle	lat.	pairs	P	υ	f	v'
0 h	31″·8 08	350	1.2	- 6	31″.831	-23
1	833	372	1.2	+19	825	.+ 8
2	833	469	1.6	+19	816	+17
3	811	385	1.3	- 3	806	+ 5
4	794	442	1.5	-20	798	- 4
5	781	399	$1 \cdot 3$	-33	793	12
6	794	469	1.6	-20	793	+ 1
7	789	407	1.4	-25	797	- 8
8	821	452	1.5	+ 7	805	+16
9	802	345	1.1	-12	813	-11
10	834	406	1.3	+20	822	+12
11	834	379	1.3	+20	827	+ 7
12	819	353	$1 \cdot 2$	+ 5	828	- 9
13	812	323	1.1	-2	825	13
14	825	370	$1 \cdot 2$	+11	819	+ 6
15	821	335	1.1	+ 7	812	+ 9
16	799	374	$1 \cdot 2$	-15	806	- 7
17	814	416	1.4	0	803	+11
18	804	350	1.2	-10	804	0
19	792	435	1.4	-22	809	-17
20	830	395	1.3	+16	816	+14
21	834	390	1.3	+20	824	+10
22	816	301	1.0	+ 2	830	-14
23	843	347	$1 \cdot 2$	+29	833	+10


The attempt to correlate the latitudes with lunar declinations did not give any conclusive results. Probably there are many effects which are so small that they are masked by other larger effects. I hope to revert to this particular research when all the computations have been completed. It will then be possible to eliminate the effect of the motion of the pole from the derived latitudes and therefore it should be easier to identify the

202

Moon's

lunar effects; it will then be possible to obtain the corresponding values also for the other stations.

I hope that I have given a clear idea of the actual state of the work of the definitive reductions of the observations for the six years, 1935-40. The delay in completing this work has been due in part to the necessity for overtaking the arrears of computation of the observations obtained during the war years and in part to the fact that insufficient staff has been available to permit the work to be hastened.

III. Research carried out in Italy for the Study of the Problems of Latitude Variation

I feel that it is my duty, before concluding this report, to draw the attention of the Commission to some researches which have been carried out in Italy, although they do not come under the Central Bureau.

When in 1943 war operations compelled observations at Carloforte to be suspended, it was decided, in agreement with the President of the Italian Geodetic Commission, and with the approval of the Ministry, to take advantage of a programme of work already in hand by Prof. Cecchini, Director of the Observatory of Pino Torinese, to undertake latitude determinations at the Observatory, using the same methods as at the International Stations, and to continue them until such time as work could be resumed at Carloforte. While Dr Missana, the observer from Carloforte, using a zenith telescope put at his disposal by the Observatory of Capodimonte, observed the two latitude groups, each of six pairs of stars, Prof. Cecchini, assisted by Dr A. Fresa and Dr Tedeschini, observed the same stars with a Bamberg transit instrument as well as the preceding and following groups of the general programme. In this way not only was a mutual check of the results obtained, but the uninterrupted period of night observations lasting eight hours provides data for complementary researches of great interest. This work was continued until the end of 1946 so that there are available seven months of simultaneous observations. These observations can also be used for the study of the movement of the pole during the period in which the collaboration of Carloforte was lacking.

The results of these two long series of observations are only partly available at present, but the full results should be ready within a few months.

In connection with series of latitude observations, intended for investigation of local phenomena, I must also mention those recently started by Prof. Peisino at Teramo. The observations are made with a small zenith telescope and the programme is similar to that adopted at the International stations.

A research of great interest is in progress at Naples by Dr Nicolini, who, after having made a great contribution as an observer at the station of Carloforte, has now devoted himself to the study of latitude variation phenomena, analysing from different viewpoints the large number of observations which have been so far gathered, with the purpose of separating, as far as possible, the two principal movements of the pole, the yearly movement and the Chandler movement. He has already published two papers, one in the *Rendiconti* and one in the *Memorie dell' Accademia Nazionale dei Lincei*; he has prepared a summary of his conclusions which is included in this Report. Apart from the variable amplitudes and periods shown both by the annual cycle and the Chandlerian cycle, there is also shown a displacement of the path of the pole with respect to the mean pole. This displacement, while showing at times a relative regularity of motion, has at other times sudden variations which coincide with changes of programme. It seems reasonable to believe that, while the regular displacements are to be attributed to the imperfect knowledge of the proper motions in declination of the observed stars, the sudden displacements are due to the lack of a proper connection between the different programmes of observation. This draws attention to an inconvenience which has not been sufficiently emphasized. Although we have nearly a half century of accurate observations for the determination of the motion of the pole, we still lack a homogeneous system of declinations.

In the case of the stars included in the first programme of observation at the northern stations (from 1899 to the beginning of 1906) we have, in addition to the investigation of Prof. Fr. Cohn (Ableitung der Declinationen und Eigenbewegungen der Sterne für den Internationalen Breitendienst), the direct determinations made with the meridian circle of the Bonn Observatory by Dr Mönnichmeyer (Beobachtungen der Internationalen Polhöhensterne, Bonn, 1904). But there is no direct link with the following programmes. It is true that an effort was made always to keep in a new programme a number of pairs belonging to the old programme, but a liaison between the mean systems of declinations was missing. A determination of the declinations of the stars used at the latitude stations would be of great value and might help to enlighten some parts of the problem, though it is difficult to say whether the consequences of these missing links could entirely be overcome; it might then be necessary to recompute all the observational material. In my view the declinations ought to be observed not only with meridian circles but also with vertical circles, such as those of Pulkova, Odessa, Munich, Babelsberg, Belgrade, etc. and possibly making use also of instruments in the prime vertical. The Observatory of Capodimonte intends, as soon as it obtains permission from the Ministry to reorganize its staff, to start these determinations with the Repsold Meridian Circle and eventually to use also a transit instrument in the prime vertical, for which an application has already been made; but it is hoped that the Capodimonte Observatory will not be the only one and that other observatories which possess suitable instruments will collaborate, so that reliable declinations can be determined. If only four observatories would collaborate with a degree of accuracy similar to that of Mönnichmeyer's work we should secure proper motions of greater reliability and obtain better agreement between the latitudes deduced from the different pairs than is possible using the positions of the Boss General Catalogue which, though good, are not good enough for the purpose.

From this research by Nicolini it seems to me that the interpretation to be given to the Chandlerian period of the polar motion is still an open question, particularly if we think of the variability of the amplitude as well as of the duration of the period. It appears necessary, rather than desirable, to continue the observations without interruption; while studying means of making them more reliable and numerous, the present liaison system between the stations must be continued, so as to limit as much as possible the sources of uncertainty, among which we must give full weight to the insufficient knowledge of declinations.

IV. Future Work

From what has been said, it is clear that if the war has noticeably hampered the normal prosecution of research, these years have not, however, been entirely fruitless. I would dare to say that it is clearer to-day how the study of the movement of the pole of terrestrial rotation is to be considered as a problem of great interest to astronomers, geodesists and geophysicists. In order to clarify many still obscure points, a full and complete collaboration from all sides is indispensable. The astronomical observations ought to be perfected to such an extent as to obtain a much higher degree of accuracy. This to me seems

unattainable unless we could increase the focal lengths, eliminate the use of levels, and increase the stability of the instruments. All this seems to have been achieved with the photographic instrument in use at the Naval Observatory at Washington, but with a noticeable increase of work, as to the night observing has been added the measurement of the plates. The proposal to equip a number of stations with similar instruments would certainly, if achieved, give a noticeable advantage, as residual errors due to refraction and personal errors in setting would be eliminated. But if we want to obtain from these new instruments the fullest advantages, we should never depart from the condition presented by the present latitude stations that they should be placed on the same parallel, so as to be able always to observe the same stars. A decision which would enable us to create in the northern hemisphere a group of at least three stations equipped with similar instruments, with at least two stations in the southern hemisphere, would be indeed welcome. For instance, if we wanted to keep the present station of the Naval Observatory, I believe it would not be difficult to find in Europe suitable localities (in Italy for instance, Catanzaro in Calabria, a town of over 40,000 inhabitants) and probably even in the western regions of the United States, north of San Francisco. Personally, I consider it indispensable to retain the stations where they are at present, and as they are at present.

There is no doubt, though, that to eliminate the inconvenience of the discontinuity presented by the station of Carloforte where, for climatic reasons, there are several months of great activity, with other months (in the late autumn and early spring) with very few possibilities of observations, it would be desirable to obtain the co-operation of another observatory placed not far from the Greenwich meridian, in a favourable climatic position, as for instance at Lisbon, prepared to make an efficient contribution by means of regular and systematic observations. Perhaps a recommendation from the I.A.U. to this effect, proposed by our Commission, might result in an understanding with that Observatory and obtain its co-operation.

But our researches do not concern only astronomy, which might well be contented with a less exhaustive study of the problem, but also other fields from which it would be desirable to receive some co-operation. For instance, there is no doubt that it would be very useful to have experiments and observations with the aim of verifying at different places on the Earth the effects produced by the actions of the Moon upon the direction of the local vertical and upon the atmospheric tides, to see to what extent they can cause systematic variations in the refraction; in general, it would be important to know with accuracy every event of meteorological, seismic, hydrological and volcanic nature which might show noticeable perturbations in the state of disposition of masses of the Earth. It is not appropriate for me to draw a programme of such wide co-operation, particularly in view of the difficult conditions under which scientific research is working in almost all countries of the world. It will be enough for the present to have remarked upon it and to leave to the future the task of providing for it.

V. Financing of the Central Office

Up to the beginning of the war it had been possible to provide for the needs of the Central Bureau with the remittances sent regularly every year by the I.A.U., the International Union for Geodesy and Geophysics together with the grant from the Consiglio Nazionale delle Ricerche and from the Ministry of Public Instruction. When, later on, difficulties first arose in transferring money from one country to another, they were overcome by a method of compensation. The Consiglio Nazionale delle Ricerche in Rome was credited with the money due to Italy by the I.A.U. and the I.U.G.G. The Consiglio Nazionale delle Ricerche paid to us the amounts due. So the useless double transfer of funds was avoided; this system was carried on also during the war. To be precise I should say that the I.A.U. should have paid the sum of 1350 francs (gold) to the Observatory of Arcetri for the publication of the *Immagini spettroscopiche del bordo solare*, and 2250 francs (gold) to our Central Bureau; since the total sum was in excess of the Italian

subscription, the amounts of money given to Arcetri and to Naples were proportionally reduced. When in 1943 and 1944 our office at Naples was cut off and could not receive any financial grant either from the Ministry or from the Consiglio Nazionale delle Ricerche, we had to turn to the generous and keen interest of the President of our Commission, Sir Harold Spencer Jones, and to the Vice-President of the International Union of Geodesy and Geophysics, Dr Walter D. Lambert. We received from the first a sum of £200 sterling granted to us by the Royal Society of London, and from the second an amount of 245.06 dollars, on behalf of the International Association of Geodesy. Similarly thanks to the interest of the President, Sir Harold Spencer Jones, we received during the year 1946 the sum of f200 sterling from each of the two international unions. It was thanks to these grants that we were able to carry on our work; because while the devaluations of the lira reduced it to one-fortieth of its pre-war value, the grant from the Consiglio Nazionale delle Ricerche was still the same and the grant of the Ministry was only double the original. We therefore had to meet practically all the expenses with the grants which reached us from the Unions. I had hoped that the situation would improve during 1947 but instead it deteriorated. It is true that the Unions fixed an annual grant of 2500 francs (gold) each and that the International Astronomical Union at the beginning of 1947 gave instructions to the Consiglio Nazionale delle Ricerche to pay me the amount of 2250 francs (gold) corresponding to the contribution due from Italy to the Union. But so far we have not yet received payment of the residue and nothing has reached us from the International Association of Geodesy, so that, for the whole of the year 1947, the Central Bureau, apart from the partial grant of the International Astronomical Union, has received only the 25,000 lire from the Consiglio Nazionale delle Ricerche (the same sum was granted to us before the war) and 40,000 lire from the Ministry (which is double what had been granted to us in 1942–43) and therefore a total of 210,386.80 lire, which covers only a small part of our real expenses.

It is to be hoped that we shall succeed in obtaining in the very near future the payment of the grant fixed by the Unions for the year 1947–48, payments which are facilitated by the Consiglio Nazionale delle Ricerche of Rome which is disposed to follow the system which proved so practicable in the past, that is to say in paying to us on behalf of the Union the grants and being credited with the subscriptions. But apart from this it is also absolutely necessary that the Consiglio Nazionale delle Ricerche adjust their contribution to the present value of the lira. If this is not done so as to secure our financial position for 1948, it will be impossible for us to continue our work. We have already made an application for this. So far we have met with no success. If it is wished that the Central Bureau should remain entrusted to Italy, which has contributed so powerfully to the study of the problems of the variation of latitude since the time of the researches of Fergola and of A. Nobile, it is necessary that the representatives of Astronomy and Geodesy in the Consiglio Nazionale delle Ricerche and the Italian Geodetical Commission at the Ministry manage to persuade and remind those who still, to-day, contribute practically the same sums as before the war, that the actual value of the lira is only one-fortieth of the pre-war value.

> LUIGI CARNERA Director

APPENDIX. Observed Characteristics of the Polar Movement. By T. NICOLINI

As 45 years of definitive results of the International Latitude Service and 12 years of provisional results reduced by Prof. L. Carnera are now available, it is possible to examine in a relatively simple way the fundamental characteristics of the observed polar movement. The summary here sketched presents some features of interest which are not fully in accord with what is generally accepted.

The present analysis is based on analogy with beating wave-forms. The two ascertained components of the polar motion have periods of 1.00 and nearly 1.20 years, so that the

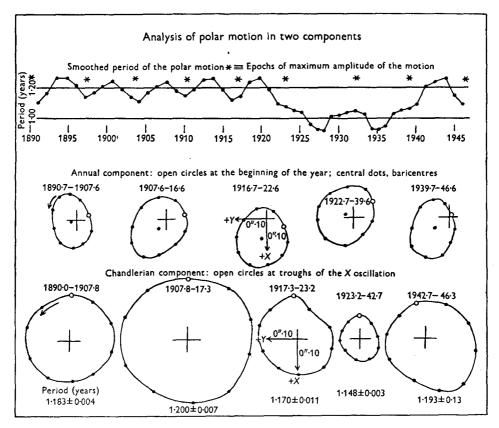
oscillations in X and Y, as well as the resultant total motion, have variations in amplitude with 'beat period' of about 6 years.

The period of a single revolution of the pole will be subject to an oscillation, as is clear from the first diagram in the figures. It follows from theory that when the crests of that oscillation are contained in the interval 1.00-1.20 years, the annual component is predominant; when this interval contains the troughs of the oscillation, Chandler's component is predominant.

The straightforward application is evident from the diagram, based on the times of transits of the polar path through +X. The wave-form shows, about 1923 and 1939, discontinuities in which the amplitude ratio of the two components is reversed: the predominant term is the annual within this time interval, the Chandlerian out of it. These clear indications, like the 'beat period' (which is the simple period of the figured wave-form), must be kept in mind when analysing the data of the International Latitude Service, in order to get a proper disentanglement and determination of the two components of the motion.

A detailed discussion is given in 'Contributi Astronomici' (*Capodimonte*, ser. II, vol. III, No. 8). This paper gives sixteen successive determinations of the annual term. When these have been subtracted from the total polar motion, the residual component is Chandler's motion. The regularity of this component in X and Y is so striking that it must be concluded that only the annual and Chandler's periodicities have physical reality. In contrast to the annual terms, Chandler's term shows striking variations in amplitude; there are five intervals within each of which the amplitude may be considered fairly constant. In Table I are given the mean annual terms in the five intervals of determination which are closest to those now mentioned for that of Chandler.

TABLE I


Annual terms in five intervals, by tenths of year (unit $o'' \cdot o_I$)

Fractions of year		·0	·1	$\cdot 2$.3	•4	•5	·6	•7	•8	.9	Bary- centres
1890.7-907.6							-		•	-		+0.4
1907.7-16.6	X	-1.1	-5.4	-6.3	-3.4	+ 2.2		+11.8	+11.3	+ 8.2	+4.0	$^{+1.6}_{+2.9}$
16.7-22.6				-	•		+11.3 +10.4		-			+2.5 + 6.0
22.7-39.6					•	-	+ 8.9 + 0.8					+1.3 -1.0
	Y	-6.2	-4.1	+1.7	+7.2	+10.7	+11.2	+ 8.8	+ 2.8	- 3.0	-5.9	+2.3
39.7-46.6							+ 8.9 + 12.3		•	•		+3·4 +4·6

TABLE II

Chandler's term in five intervals, by tenths of cycle, commencing with the troughs of the X oscillation (units $o'' \cdot o_I$)

Fract	tions of cycle	•	·0	·1	$\cdot 2$	•3	•4	$\cdot 5$	·6	•7	·8	•9
(I)	1890-0-907-8	Х	- 14·9	-10.9	– 4·3	+ 5.5	+11.5	+12.9	+10.7	+ 3.7	- 5.7	-12.2
		Y	- 0.8	+ 8.8	+13.7	+12.6	+ 6.7	- 1·3	- 7.8	-13.3	-13.4	- 7.7
(II)	$1907 \cdot 8 - 17 \cdot 3$	X	-19.6	-16.0	- 7.4	+ 8.0	+16.6	+20.0	+16.7	+ 5.0	- 6.1	-16.2
		Y	- 0.5	+12.6	+19.9	+19.8	+10.8	- 2·0	13.6	-20.1	-20.6	-13.6
(III)	$17 \cdot 3 - 23 \cdot 2$	Χ	-13.8	- 9.2	- 4·4	+ 4.0	+ 9.4	+11.6	+ 9.2	+ 3.4	- 3·8	-9.2
		Y	+ 1.0	+ 8.6	+12.2	+11.0	+ 6.0	- 0.6	- 8.6	-11.0	-10.2	- 3.8
(IV)	$23 \cdot 2 - 42 \cdot 7$	X	- 7.3	- 5.3	-2.7	+ 0.5	+ 3.8	+ 6.8	+ 6.6	+ 3.2	- 0.7	— 4·9
		Y	+ 0.4	+ 3.5	+ 5.7	+ 6.2	+ 4.7	+ 1.4	-3.2	- 6.0	-5.8	- 3·8
(V)	42.7 - 46.3	X	-11.3	- 7.3	- 1·3	+ 6.7	+13.3	+16.7	+14.7	+ 4.3	- 4.7	-10.7
		Y	+ 3.0	+ 8.3	+12.3	+11.7	+ 3.7	— 4 ·7	-12.3	-16.3	-14.0	- 6.7

н	10	~
•	16.1	· · ·

The shifting of the barycentres in reference to the 'mean pole' (assumed origin of X and Y) is an apparent motion, a 'programme shifting' due to errors in proper motions and changes in the observing programme. For instance, since 1940 the declinations from the Albany *General Catalogue* have been used; the previous values were modified by as much as $+0^{"}.96$ and $-0^{"}.16$; in addition the observations at the Carloforte Station (nearly on the X axis) have had a long period of interruption. Consequently, the shifting of the barycentre in the last interval is not surprising. The results referring to Chandler's term are synthesized in Table II and are shown, under the annual ones, in the figure. It is of interest to note that the period is variable in correspondence with the amplitude variation.

The transits of Chandler's motion through the points of maximum co-ordinates +X and -X, give a time series whose dates are all determined with about the same precision. As our series begins at 1890.0, and this epoch coincides with a well-established transit through -X, i.e. with a trough of the X oscillation, we will consider here the whole series of these troughs. This series has been accurately smoothed by considering the epochs corresponding to all the crests and troughs of Chandler's oscillations in X and Y. The best results are so obtained, and they are given in Table III, with the first differences P, which correspond to the successive single values of Chandler's period. Some more details are given in the published paper, particularly in Table VII.

These results may be used to get both mean periods and their precision. In regard to the M.S.E. of a value P, it appears possible without serious difficulty to make a general

estimate (from differences, considered as accidental, between tabulated P and mean values in the five large intervals), which gives 0.054 years. On account of the presumably equal precision of all the epochs, each of the five intervals is to be considered as affected by the same M.S.E., and then we get the M.S.E. of the mean periods. The final results are synthesized in Table IV.

TABLE III

Transits of Chandler's component pole through points of maximum co-ordinate -X, and successive periods

Epochs	P	Epochs	P	Epochs	P	Epochs	P	Epochs	P
1890.00	1.09	1901.88	1.19	1913 .78	1.17	1925.64	0.93	1936-91	1.10
91.09	1.21	3.07	1.12	14.95	1.23	26.57	1.17	38.01	1.18
92·30	1.24	4.22	1.21	16.18	1.16	27.74	1.12	39.19	1.22
93 .54	1.16	5.43	1.12	17.34	1.18	28.86	1.09	40.41	1.16
94 ·70	1.13	6.55	1.19	18.52	1.26	29.95	1.15	41.57	1.13
95.83	1.25	7.74	1.18	19.78	1.21	31.10	1.11	42.70	1.16
97.08	1.24	8.92	1.26	20.99	1.09	$32 \cdot 21$	1.19	43.86	1.22
98·32	1.20	10.18	1.12	22.08	1.11	33·4 0	1.14	45.08	1.20
99.52	1.19	11.30	1.21	$23 \cdot 19$	1.18	34.54	1.23	46.28	1.19
1900.71	1.17	12.51	1.27	24.37	1.27	35.77	1.14	(47·47)	—

TABLE IV

Amplitude and mean periods of Chandler's component motion in five intervals

Intervals:		I 1890·7–1907·8	11 1907·817·3	111 1917·3–23·2	IV 1923·2–42·7	V 1942·746·3•
	A = P =	15 0″·282 1·183 ±·004	$8 \\ 0'' \cdot 420 \\ 1 \cdot 200 \\ \pm \cdot 007$	$5 \\ 0'' \cdot 242 \\ 1 \cdot 170 \\ \pm \cdot 011$	17 0″·132 1·148 ±·003	$\begin{array}{c} 3 \\ 0'' \cdot 292 \\ 1 \cdot 193 \\ \pm \cdot 013 \end{array}$

The variations of period appear to be significant; moreover, they appear nearly proportional to the corresponding amplitude variations, according to the relation

P = 0.185A + 1.128

(*P* in years, *A* in o" \cdot oI units). It might be thought that the variations of period are apparent, and due to some unforeseen effect of the changes of programme on Chandler's term. But the reliability of the results can hardly be challenged, for though a change of programme may shift the annual term it should not modify that of Chandler. In the effective motion, the 'beat period' is clearly seen; it is the time interval between successive epochs of maximum amplitude of the total polar movement (or between crests, or troughs, in the first diagram), and it gives immediately Chandler's period. So, after the maximum amplitude at about 1917, come those of 1923, of 1931, and of 1939; the 'beat period' is clearly lengthened, and this interference effect shows in the simplest way that Chandler's period has decreased. This same fact is also evident in the diagram given by Sir H. Spencer Jones in 'Observations made with the Cookson floating Zenith Telescope, 1927–36' (Royal Observatory, Greenwich), which are independent of the international programme. The reality of variations in the period is checked also by the analysis of the second differences; reference may be made to the respective diagram in the paper in 'Contributi' (*Capodimonte*).

The variation of the mean period, particularly the small value during the fourth interval, shows that the analogy (proposed by G. U. Yule) of the 'bombarded pendulum', in which there is a natural period of oscillation, while the periodicity is disturbed by changes of phase, is not appropriate. It would seem preferable here to make the analogy with an uncompensated pendulum, or with one of variable length.

Another conclusion from the above may be mentioned, which provides a warning with regard to changes in the plan of the I.L.S. Up to the present the continuity of programme of the stations on the same parallel has kept the wandering of the 'mean pole' sufficiently under check. Every change of programme should be carefully studied in advance, otherwise this check could become rather confused, and a valuable series of data could get impaired.

B 1. Abstracts of Papers by Members of the Staff of the U.S. Naval Observatory

1. 'Lunar effects on clock corrections.' By Paul Sollenberger and G. M. Clemence. A.J. 48, 78, 1939. The analysis of five years of clock corrections determined by the PZT shows the normal tidal effect in longitude.

2. 'Effect of the Moon on the determination of latitude at Washington.' By Wm. Markowitz and S. M. Bestul. A.J. 49, 81, 1941. The analysis of 24 years of latitude observations with the PZT shows the normal tidal effect in latitude.

3. 'The free polar motion, $1916 \cdot 0 - 1940 \cdot 0$.' By Wm. Markowitz. A.J. **50**, 17, 1942. The motion was determined from the PZT and the Cookson telescope observations of Greenwich. The motion was regular up to 1923 but not thereafter. The average amplitude and period were $0'' \cdot 104$ and 422 days. Increase in period is correlated with increase in amplitude. The pole of figure did not show a secular change.

4. 'Redeterminations of latitude and longitude.' By Wm. Markowitz. Trans. Amer. Geophys. Union, 26, 197, 1945. Apparent continental shifts are traced to systematic errors. The indicated westward shifts of Greenland found by Jelstrup are ascribed to a systematic correction of about 4^{s} that the earlier lunar methods of longitude determinations require. An indicated change of 1^{s} in the longitude of South America is ascribed to errors in the early cable determinations. An indicated change of -0''.7 in the latitude of three U.S. Coast and Geodetic Survey stations is eliminated when modern proper motions are used.

5. 'Declinations and proper motions of 64 stars observed with the photographic zenith tube.' By Paul Sollenberger. A.J. **51**, 145, 1945. The relative declinations and proper motions were derived from the PZT observations. The tabulated values are on the FK3 system.

6. 'Magnitude effects in proper motions.' By Wm. Markowitz. A.J. 51, 153, 1945. A comparison of the PZT and transit circle proper motions in declination shows a magnitude effect in the latter. Additional data, which confirm this, show that the effect varies with different declination zones.

7. 'Variation of latitude at the U.S. Naval Observatory, 1938 to 1945.' By Paul Sollenberger. The annual results have been published as a continuation of the results of preceding years in the A.J. numbers: 1110, 1130, 1141, 1144, 1147, 1150, 1154 and 1159. The 1946 results are in the Press.

B 2. REPORT ON THE U.S. NAVAL OBSERVATORY PHOTOGRAPHIC ZENITH TUBE NO. 2

Photographic zenith tube No. 2, being constructed by the Material Department of the Observatory, is to be located at the U.S. Naval Base, Guantanamo Bay, Cuba. The objective has been accepted from the makers, the Perkin-Elmer Corporation.

Drawings of the instrument are being prepared and will be available soon. Those desiring copies may write to the Observatory. The Observatory has been designated by the I.A.U. as an information centre on matters concerning the PZT.

The new station is in nearly the same longitude as Washington while its latitude is $+20^{\circ}$. By operating the two stations additional information regarding the variation of latitude and longitude will be obtained. The weather conditions at the two stations being independent, the accuracy of the time service will be increased.

The general principles of the design of F. E. Ross are followed except that the automatic

reversal and the synchronous motor-plate drive, which have been incorporated in PZT No. 1, are now part of the instrument. The instrument rests on rails set in a hollow concrete foundation instead of having massive iron castings for the lower part of the tube. The various parts of the instrument may readily be disassembled and set up again at another site where a foundation has been cast. A brief comparison of the two instruments follows:

	PZT No. 1	PZT No. 2
Aperture	8 in.	8 in.
Focal length	203 in.	149 in.
Half-field in arc	10′	17'
Height, main part	140 in.	54 in.
Weight, largest section	700 lb.	250 lb.
Exposure, each image	20 sec.	20 sec.

A study of the Washington observations indicates that the accuracy of the PZT is limited largely by variations in refraction through the night; it is not operated like the usual photographic instrument in which all the stars on the plate are taken simultaneously. It appears, therefore, that a reduced focal length will not materially reduce the accuracy, whereas important advantages will accrue because of the larger field and increased speed. The operation of the new PZT will serve as a test.

B 3. PHOTOGRAPHIC ZENITH TUBE FOR THE ROYAL OBSERVATORY, GREENWICH

Observations with the Cookson floating zenith telescope were terminated in 1940 and will not be resumed. A photographic zenith telescope is under construction and will be placed at the new site of the Observatory at Herstmonceux, Sussex. The design differs in many respects from the Washington design. The principal differences are as follows:

- (i) The aperture is 10 in., focal length 135 in.
- (ii) A plain ball-bearing is used for constraint of the rotary, in place of the conical bearing, in order to reduce friction and to facilitate construction.
- (iii) An autocollimation method is used as a criterion of the angle of reversal of the rotary.
- (iv) As a fixed axis of rotation is not required for (iii), a definite constraint in the horizontal plane is not needed. The two working orientations are each defined by a pair of stops instead of by a single stop.
- (v) Adjustments to the objective are provided for squaring-on and for coincidence of the nodal plane and photographic plate.
- (vi) Automatic reversal is accomplished by means of a system of wires which exert a pure torque on the rotary and therefore no tilting torque on the tube. The system is such that unidirectional rotation of the driving shaft is converted into reciprocating rotation of the rotary.
- (vii) The plate carriage is annular and the plate-holder mount is circular so that symmetry of diffraction pattern is secured. The carriage constraints are external to the aperture.
- (viii) Relative motion of the carriage and rotary is made to approximate to pure translation by means of a compensating system of flexed rods which constrain the carriage in the horizontal plane to which the motion is restricted by means of three balls that roll between horizontal planes.
 - (ix) Uniformity of rate in the relative translation of carriage and rotary is obtained by a specially designed system comprising a differential roller and metallic tapes.
- (x) The time-scale is produced photographically by means of a clock-controlled lamp, giving flashes of very short duration. An independent chronograph is not required.(xi) The height of the mercury surface is accurately adjustable and, as criterion of
- (xi) The height of the mercury surface is accurately adjustable and, as criterion of adjustment for constancy of scale-value, an optical null method has been introduced for use in conjunction with a suspended silica rod.

C. GENERAL

Vol. VIII of the Results of the International Latitude Service, containing the definite discussion of the observations at the International Latitude Stations from 1922.7 to 1935.0 by Dr H. Kimura was published in 1940. As the volume was printed in Japan, copies were not available until after the conclusion of the war; with the assistance of the U.S. Coast and Geodetic Survey, the stock of copies was brought to America and distributed from there.

Arrangements have been made, through the International Council of Scientific Unions, for grants in aid of the work of the Central Bureau of the International Latitude Service to be paid by U.N.E.S.C.O. through the International Astronomical Union and the International Union for Geodesy and Geophysics. These grants are paid with arrangements by which U.N.E.S.C.O. accepts financial responsibility for certain permanent scientific services of international character, the scientific direction of the work remaining with the Unions themselves. A separate grant has also been made towards the cost of publication of vol. IX of the *Results of the International Latitude Service*.

H. SPENCER JONES President of the Commission

Report of meetings

PRESIDENT: Sir HAROLD SPENCER JONES.

SECRETARY: PAUL SOLLENBERGER.

Sessions: August 20, at 10.30 a.m.; August 21, at 11.30 a.m.

The President opened the meeting with a brief review of the conduct of the latitude work during the war. Mizusawa and Kitab continued work without interruption throughout the war, but observations at Carloforte were stopped. The President arranged for the collection of observing books from the American and Russian stations, and sent them to Prof. Carnera. The books from Japan were received after the end of the war through the U.S. Coast and Geodetic Survey. U.N.E.S.C.O. has accepted the latitude work as a project which it will support through the International Astronomical and Geodetic Unions. The report of Carnera appears in the Report of the Commission.

In view of the fact that Prof. Carnera is about to retire the President recommended that the work of the Central Bureau be continued in Italy under the direction of Prof. Cecchini at Turin. A resolution to this effect was approved, as was also a resolution thanking Prof. Carnera for carrying on the work during the difficult period of the war.

It was stated that arrangements have been made to resume work at Carloforte in spite of some difficulties. Prof. Cassinis had been very helpful in making the necessary arrangements through the National Research Council in Italy.

The President pointed out the importance of continuing latitude observations at the two stations on the same parallel in the southern hemisphere, particularly in the northern winter when northern observations are less complete. Observations were made at Adelaide, with a zenith telescope loaned by Mizusawa, for 7 years till the end of 1940, when the telescope was returned to Japan. La Plata is now the only remaining southern station. It is considered important that observations be resumed at Adelaide. That observatory has been closed, and the site of the new University Observatory is not suitable for latitude variation observations. A suitable site has been found near the old observatory, however, but a telescope and funds are required. An experienced observer is available.

The President has requested the Minister of the Interior of the Commonwealth Government to provide the necessary funds to enable observations to be resumed for a period of 7 years. A favourable response is looked for, but it was believed that a resolution by the Union, stressing the importance of the project, would be helpful. Such a resolution

was adopted. At the end of the 7-year period it is expected that the development of the photographic zenith tube will require a review of the international latitude variation programme.

The President stated that in 1944 the Batavia station had been destroyed, and that the observing books have disappeared. The zenith tube is intact at the Bosscha Observatory.

Prof. Carnera is undertaking the reduction of the latitude results from 1935 \cdot 0 to the end of the present year. The questions as to money grant and form of publication were discussed. In particular, there was a question as to the possibility of abridging the publication. The President favoured publication in the same form as before, as also did Dr Lambert and Prof. Cecchini. The President thought that the nations which were carrying on the latitude work should have the greatest voice in the manner of publication. M. Tardi said that the Association of Geodesy had not contributed to the recent volume. He thought that only 30 to 100 persons were interested in all the details, and thought that, instead of printing 1000 copies, a smaller number should be produced by some other process. It was pointed out that part of the cost of publication of the results computed in Japan had been borne by that government, but that Italy would probably be unable to do likewise. The President believed that unforeseen uses for the complete work might arise, and advocated full publication. He hoped that the Association of Geodesy would contribute. Dr Lambert hoped that U.N.E.S.C.O. would help, but had no definite information.

The President proposed a grant of 8000 gold francs towards the cost of publication of the results from $1935 \cdot 0$ to the end of the present year. This was to be in addition to the 4000 gold francs voted at Copenhagen, but not yet spent. The Commission approved the proposed grant. It was also agreed that the annual grant of 3000 gold francs for carrying on the work of the Central Bureau would be continued.

The President asked for a special grant of 1000 gold francs for moving the archives, records, calculating machines and other equipment of the Central Bureau from Capodimonte to Turin. This was approved.

A letter from Prof. Hagihara was read, urging that the latitude results should be published promptly. The President thought that the delays in recent years had not been due to the Central Bureau, but were caused by delays in forwarding the observing books to that agency. A resolution was adopted urging that the observing stations should forward the observing books to the Central Bureau promptly.

The President summarized a communication from Prof. Hagihara. At Mizusawa two entirely different types of telescope, one photographic and one visual, were used. The latitudes determined by these two instruments during a four-year period were closely similar. The following data were given:

Systematic difference	(photo-visual)	-0''035
Mean closing errors:	Photo	-0''251
-	Visual	-0"221

It was further noted that the variation of closing errors from year to year, as obtained with the two instruments, was closely similar. This indicated that the variations were not due to the instruments themselves, a result contrary to the conclusion of F. E. Ross. The variation in atmospheric conditions from evening to morning are therefore considered a more probable cause of the variation in closing error. Prof. Cecchini said that fifteen years ago he had noted a close correlation between closing errors and atmospheric conditions. The results communicated by Prof. Hagihara showed that the annual component of the latitude variation was relatively uniform in amplitude, while the amplitude of the Chandlerian component varied widely. Similar results have been found by Nicolini (*vide* pp. 206-10). It was also noted that the length of period and amplitude of the Chandlerian component increased and decreased together.

Prof. Orlov proposed that the effect of the variation in the position of the mean pole should be removed from the published latitudes. He proposed that corrections for this purpose should be derived for application to the published latitudes for 1900–35, and that the effect of variation in the position of the mean pole should be excluded from the results in the future. The President asked how the polar movement was to be computed, and Prof. Orlov replied that it was to be by the method of successive approximations. He said he had already done this for his own work, and furnished a paper to illustrate. The President pointed out that the application of such corrections would cause delay in the work of the Central Bureau, and therefore suggested that it should be left to that Bureau to decide whether corrections should be made. Prof. Orlov also proposed that the latitude of $39^{\circ} 8'$ should be kept for the location of latitude instruments, but that the existing instruments should be replaced with larger telescopes, such as the Pulkova instrument of 135 mm. aperture.

The President said that there had been no proposal to change the latitude from 39° 8'. He expressed the opinion that any decision about a change in the instruments should be delayed pending more experience in the use of photographic zenith tubes. He thanked Prof. Orlov for drawing attention to these matters.

In further discussion of the matter the President said that the fluctuations of the mean pole shown by the Greenwich observations and by the results derived from the international observations showed some fluctuating differences. He believed that the question required research. Further, he stated that Greenwich results showed that the fluctuation of the mean pole depended on the amplitude of the polar motion. Prof. Orlov did not agree with this conclusion. He advocated the application of corrections for the mean polar motion, even for periods of only one year.

Prof. Cecchini presented a resolution expressing the great interest of the International Astronomical Union in the observations for the variation of latitude, made with the large zenith telescope of l'Instituto Geografico e Cadastral de Lisbonne. The resolution was adopted.

Dr Lambert presented a proposal to refer all latitude values to the same pole. The matter was discussed very briefly. It was felt to be a matter requiring careful study, and it was therefore postponed for consideration at the next meeting of the Union. In the meantime the Central Bureau will be able to study the matter.

Mr Sollenberger said that Dr Beals was planning to install a photographic zenith tube at Ottawa. He had expressed a desire that the Union should adopt a resolution supporting such projects, as an assistance to him in obtaining the necessary funds. A suitable resolution was approved by the Commission.