
* 

Nonlinear Oscillation of the Magnetosphere around Neutron Stars 

Hi toshi HANAMI 
Department of Physics, Hokkaido University 

Sapporo 060, JAPAN. 

SUMMARY; We investigate the unsteady motion of mass reservoir formed by the 
accretion onto the magnetosphere around rotating neutron stars. The unsteady 
motion of the reservoir induces secondary accretion to neutron star by R-T 
instability. The nonperiodic or quasiperiodic phenomena of X-ray bursters seems 
to be related to this property of mass reservoir on the magnetosphere. We 
classify the typical dynamical state of the reservoir into three types with the 
parameters which are accretion rate M and angular velocity of neutron star 
& . They are nonsequential oscillation, sequential periodic (quasi-periodic) 
oscillation, and chaotic oscillation states. 

1. Physical Model; We propose a symplified model for the non-1inear-like 
phenomena in X-ray sources, considering the properties of Rayleigh-Taylor 
ipstability on the magnetopause which is formed by the accreting matter to the 
neutron star, and then obtain the motion of this magnetopause^ „ 

We assume that the stellar magnetic field is dipolar (« u ), and has axial 
symmetry everywhere. We use cylindrical coordinates (<o, <t>, z) centered on the 
neutron star and aligned with the stellar rotation axis. This configuration is 
sketched in Figure 1. We obtain the nondimensionalized equations which 
construct a complete set for the dynamics of reservoir ring, as following, 
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Bp = x <-(8), where t, x, V, H, Bp, Bt, E, E , fi, and E are the 
nondimensinal time, radius, radial velocity, specific angular momentum, mass, 
poloidal, toroidal magnetic field of the reservoir, accretion rate, angular 
velocity of central star, and mass loss rate from reservoir. 

Figure 1 
3. Results; We have started our calculation giving the 
initial condition fixed on E = 1.0, V=0.0, x=1.0, Mtl9Q£f£;J$o 
H = 0.1, Bt=0.0, and the various values of cn or* 
the control parameters E and fi. We get 
three types solutions, as shown below, 

ffi Eacc dynamics 
case 
case 
case 
case 
case 
case 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

1 
-1 
-1 
-1 
0 
-1 

0 
0 
0 
0 
0 
0 

3 
2 
2 
3 
1 
2 

00 
50 
53 
00 
00 
80 

Periodic 
Expans i on 
Chaotic 
Periodic 
Periodic 
Periodic 

4. Physical Meanings; We will consider the physical meaning of the results 
shown in above section. Now, for experimental approach, we introduce a test 
circular ring which does not change its mass M and also E. This test ring is 
initially rotating with Keplerian velocity, and then, for the interaction with 
stellar magnetic field, the ring losses the angular momentum. When the ring 
falls into the'magnetosphere, the rotating velocity of the ring may become the 
same velocity as that of the magnetosphere. 
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These situations, which represent the difference between the direct and the 
retrograde rotation of the star against the disk, shows schematically in figure 
3 (a) and (b). 

A (Stable) r Periodic Oscillation Direct Rotation; 

Retrograd Rotation; 

Perturvation 
B (StableH 

•Mass Change •* Chaotic Oscillation 
D (Stable)t (Shift of Stable Point) 

For retrograde case, the shift of two stable equilibrium points may 
randumly mix the oscillation modes related two points by changing of the mass. 
Then, the chaotic oscillation of this system may be generated. 

5. Discussion; We introduce typical time scale and burst energy of this system. 
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From X-ray observations ( van der Klis et al. 1985), the typical frequency 
of quasi-periodic oscillations u = 20 ~ 40 Hz. The typical period of 
oscillation cases is 2td for case (a) and 5td for case (b). If the typical 
radius of this magnetosphere is 1000 km, typical frequencyj)f our model is a 
good agreement with the observational data. This value of u requires surface 
magnetic field log(B(G)))=10. On the other hand, for Rapid Burster, the time to 
following burst spreads from 10s to 1000 s. These time scale requires w > r cm, 
and log(B(G))>15 for explaining with our model. Furthermore, the retrograde 
stellar rotation against that of the disk is important for chaotic behavior of 
Rapid Burster for our model. 
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Figure 2 ;Orbits in phase space (velocity, radius) for cases (c). 
Figure 3 (a);Schematic sketch of the rotation velocity as a function of the 
radius of test circulating ring along experimental orbit. (b);Each absolute 
value of the acceleration on test circular ring by magnetic pressure and 
effective gravity which includes the centrifugal force of rotation motion. The 
subscripts t and 1 of g represent the values for direct and retorograd rotation 
cases. Open circles A, B, C, and D represent dynamical equilibrium points. 
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