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ABSTRACT 

In an Earth-fixed reference frame, polar motions (precession, lunisolar 

nutation, free nutation) introduce small apparent forces in the equations 

of motion of an Earth satellite. We discuss the possibilities (a) of 

integrating the orbit in an Earth-fixed frame when tracking data are 

used for geophysical applications, and (b) of determining from orbital 

data a set of unknown parameters describing the long-period wandering 

of the pole. 

1. INTRODUCTION 

In an inertial reference frame the effects of polar motions on the range 

data which allow orbit determination for artificial satellites are mainly 

kinematical, since the observing stations are bound to the Earth. 

On the other hand, for geophysical applications it is easier to study 

the satellite motion with respect to an Earth-fixed reference frame 

because in this case (a) the geopotential does not depend on kinematics 

of Earth rotation, (b) the observational model is very simple because 

the stations have a fixed position (except for lunisolar tides), (c) if 

the satellite orbit is geosynchronous, the motion in a body-fixed frame 

is very slow and this fact improves the stability of the numerical 

integration of the orbit. However, in an Earth-fixed frame apparent 

forces arise due to the fact that the Earth rotates with the angular 

velocity _̂  _̂  
tt(t) = n0+Afi(t) (1) 
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where Q0 is a constant vector directed along the z-axis fixed within the 
bodyC£]0= 7.29 x 10 rad s ),and AQ is a small time-dependent vector 
which contains the contributions of precession and lunisolar nutation, 
free nutation and periodic variations in the length of the day. 
In the following we discuss the difficulties and the advantages of the 
modelling of all these effects by means of apparent forces. 

2. APPARENT FORCES 

The motion of the Earth's rotation axis in an inertial frame can be 
described by a Fourier series giving the components of the angular 
velocity vector 

9 = -Q0j e.sinv. 
\ X (2) 

(f> sin 9 = Q0l £j_ cos V^ 

where Q , A and wj are the Euler angles, v-= n^ t + v ^0 is an angular 
variable with period T- = 2T /n^. In a body-fixed frame the same motion 
of the angular velocity vector can be described by a different Fourier 
series 

fL = A£2 = -nol eisin(V£-^) 
* x i ( 3 ) 

The different frequencies correspond to different physical effects, 
n-j_ = 0 and V- = 0 for lunisolar precession, T^ C^ 40000 yr for planetary 
precession, T- between 18.6 yr and a few days for lunisolar nutation. 
The free nutation of the Earth appears in the body-fixed reference frame 
with periods T- = T-/(l-T^) days,of the order of 1 yr, hence in the 
inertial frame with T^ close to 1 day. 
The acceleration due to apparent forces is 

->. -*--»- -*•-»--»• ->-> 
A = PAfi+2PA«+fiA(PAn) (4) 

-> ->-
where P is the satellite position vector. By ailing AQ the acceleration 
due to fiQ and neglecting the terms proportional to Afi^, we get 

A = A0+PAAfi+2PAA^+2(fi0-Afi)P-(A^«P)^0-(fi0-P)A^ (5) 

Therefore the frequencies of the apparent forces are linear combinations 
of the n^-V with the mean motion n of the satellite. 
Long-period effects arise from terms with long-period 
arguments V.-iJi (like those corresponding to Chandler wobble) and 
from terms with short-periodic arguments V^-^ giving a beat with the 
orbital mean motion. This latter case can be easily illustrated by a 
geosynchronous satellite. We assume an equatorial circular orbit : 
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P(0) = (xo,0,0) , P(0) = (0,0,0) , n
2
0 = Q2

0 = — (0) 

By linearizing in the perturbative parameters e£, if the z-component of 

P(t) is written as 

z(t) = I e i q ( t ) (7) 
we have 

q + Q „ q = x0f30(n0+ili-ni)sin(vi-i(;) (8) 

• 

The solutions of equation (8) show a beat with frequencies (n^-^ +" ) /2 

and (n̂ -ij> - £2 ) /2. ̂ For instance, for the lunisolar precession term 

n-= 0 and &0-ty= 41 cos 6 , so that the z-component of P oscillates 

with nearly diurnal period and amplitude modulated with a period of about 

26000 yr. The lunisolar nutation harmonics with periods longer than 

2 days appear in a body-fixed frame as beats due to a forcing term in 

the second member of equation (8), with a period shorter than 2 days 

(because Ti=T-/(l-Ti) days). 

In conclusion the orbit of a satellite can be integrated in a body-fixed 

frame by using the apparent forces given by equation (5), where^" and 

AC must include nearly diurnal variations coming from precession and 

lunisolar nutation, in addition to the effects of the lone-period 

wandering of the pole. In order to obtain AC and AC the angular 

astronomical data must be differentiated twice. This can be easily done 

if the angular data are represented by a Fourier series (as in analyti

cal theories) or by a polynomial fit. The differentiation does not necessa-

rily provide a good fit to the actual behaviour of AC and AC . However, 

we assume that in the integration of the equations of motion an algorithm 

is used which handles in a stable way perturbations with a timescale of 

about one day (this is anyway needed in most cases). Then precession and 

lunisolar nutation are reproduced in the integrated orbit with about the 

same accuracy as that of the available data. 

A similar treatment applies to length-of-day variations by deducing AC z 
and AC z from UT measurements, then calculating the apparent forces. 

Integration of the equations of motion with this term added will give -

on the same assumptions as before - the correct longitude drift and 

acceleration. 

3. DETERMINATION OF POLAR MOTION 

The method currently used to determine polar motion by satellite tracking 

is kinematical, i.e., the orbit is integrated in an inertial frame with 

polar motion affecting only the station positions. 

In a body-fixed frame, polar motion can be determined by a different 

method. It can be modelled by a suitable fitting depending on a set of 
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unknown parameters, while precession and nutation are modelled from 
observational data. Then the unknown parameters will appear in the equations 
of motion via the apparent forces. Therefore they can be determined by a 
differential corrections iterative process, with the same method used to 
determine any other set of solve-for parameters appearing in the force 
model (e.g. ,geopotential coefficients). We remark that for polar motion 
determinations a high satellite orbit is better, while in general for 
geophysical studies low orbits are more useful. 

We are studying the possibility of using this approach to analyse laser 
range data from the LASSO system which will be carried by the geosynchro
nous satellite SIRIO 2, to be launched by ESA in 1981 (Serene and Alberti-
noli, 1980; Bertotti et al. , 1980). In this case the acceleration due to 

—s — 2 • • 
polar motion is of the order of 2 x 10 J cm s , mainly in the z direction. 
To estimate the attainable accuracy, this value must be compared with 
the "true" dynamical perturbations. Among these, some are well known 
(e.g.,Earth's oblateness, lunisolar gravitational forces) and others 
produce effects with a different signature (e.g. resonant harmonics of 
the geopotential, which cause a semimajor axis libration - Kamel et al., 
1973). The most critical perturbation is due to solar radiation pressure 
because (a) it cannot be accurately modelled neither in direction, nor 
in absolute value (b) its z-component has an annual period, hence it 
masks the Fourier components of polar motion with similar periods. 

2 -1 For a satellite of an area-to-mass ratio of 0.05 cm g , the solar 
radiation pressure produces an acceleration of the order of about 
3 x 10 cm s . The z-component will have a maximum of about 
10 D cm s . If we assume for this component a 20% uncertainty, apparent 
forces due to polar motion cannot be determined better than 1%. 
As a matter of fact, the accuracy limits depend mainly on the precision 
and geometry of the available range data. At present the laser method 
(as applied in the LASSO mission) seems capable of about the same accuracy 
in polar motion determinations as that of the traditional methods However, 
more advanced laser systems are planned and the attainable accuracy 
will be improved. 
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