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In [1], a condition was sought on a commutative Noetherian ring R such that
whenever R satisfied the condition and R was cyclically pure in an /?-algebra S, then R
was necessarily pure in 5. Such a condition was found and turned out not only to be a
sufficient condition but also a necessary condition. Rings satisfying this condition were
called approximately Gorenstein. In this paper, we give new equivalent conditions for a
ring to be approximately Gorenstein. Our conditions involve a certain metric topology
defined on the lattice of ideals of a commutative Noetherian ring as well as the concept of
a principal system. The notion of principal systems was defined in [9] and was suggested
by Macaulay's theory of inverse systems [7]. These ideas have proved to be useful in many
research probems in commutative algebra.

Throughout this paper all rings are commutative and have a multiplicative identity.
In general we adopt the ring terminology of [5] and [8] (in particular, a local ring is
Noetherian). Let R be a local ring with maximal ideal m. For an ideal a of R, we define
Qa to be the set of all irreducible m-primary ideals of R which contain a (an irreducible
ideal is an ideal which cannot be expressed as the intersection of two strictly larger
ideals). A metric d (called the m-adic metric) can be defined on the lattice of ideals of R,
%(R), as follows (where mQ = R):

d(a,b) = 0 if a + m" = b + m" for every natural number n;

and otherwise,

d{a,b) = 2-s(a'h) where s{a,b) = sup{« | a + m" = b + mn}.

The m-adic metric gives rise to the m-adic topological completion of the lattice ££{R) of
ideals of R [3] and occurs naturally in various ring theoretic situations (e.g. [2] and [4]).

The following definition of principal system was given by Northcott and Rees in [9].
A proper ideal a of a local ring R with maximal ideal m is a principal system if for every
m-primary ideal q containing a, there exists an irreducible m-primary ideal q' of R
satisfying ac.q' c.q. We will later use the following result.

LEMMA 1. Let a be an ideal in a local ring R with maximal ideal m. A necessary and
sufficient condition for a to be a principal system in R is that a is a limit point of Qa in the
m-adic topology on the lattice of ideals Z£(R) of R.

Proof. Assume that a is a principal system in R and that e > 0. Choose a positive
integer N so that 2"^ < e. Then a + mN is an m-primary ideal of R containing a since
Rad(a + mN) 3 Rad(m'v) = m. So there exists an irreducible m-primary ideal q' of R such
that acq' ca + mN. Thus, a + mN = q' + mN, so it follows that q' e Qa and d{a,q')<
2~N<s. Thus, a is a limit point of Qa in the m-adic topology on Z£(R). Conversely,
assume that a is a limit point of Qa in the m-adic topology on 3!(R). Further assume that
q is an m-primary ideal of R containing a. Choose a positive integer K such that mK <^q.
By hypothesis there exists q' eQa such that d(a, q')<2~K, and so a + mK = q' + mK. So
acq' cq' + mK = a + mKcq. Thus, a is a principal system in R, which completes the
proof.
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Let R be a local ring with maximal ideal m. Following [5], we will call R Gorenstein
if its injective dimension is finite. Furthermore, we will say that R is approximately
Gorenstein [1] if for every positive integer N there is an ideal q of R such that q c mN and
R/q is Gorenstein. We first give our characterizations of approximately Gorenstein local
rings. These characterizations use the properties of the m-adic topology on the lattice of
ideals 3!{R) of a local ring R as well as the concept of principal systems discussed above.

THEOREM 2. Let R be a local ring with maximal ideal m. Then the following are
equivalent:

2.1. R is approximately Gorenstein.
2.2. For every positive integer k, there exists an irreducible m-primary ideal q of R

such that q cmk.
2.3. {0} is a limit point of the set of all irreducible m-primary ideals of R in the m-adic

topology on J£(R).
2.4. {0} is a principal system in R.

Proof. The equivalence of 2.1 and 2.2 was shown in [1, (2.2) Corollary]. In addition,
by Lemma 1, we have that 2.3 and 2.4 are equivalent. We now show that 2.2 implies 2.4.
Suppose 2.2 holds. Suppose further that q is an m-primary ideal of R. Pick a positive
integer k such that mk c q. Using 2.2, there exists an irreducible m-primary ideal q' of R
such that q' c.mk. Hence, q' c.q and thus {0} is a principal system in R. Therefore, 2.2
implies 2.4. To complete the proof, we show that 2.2 follows from 2.3. Suppose 2.3 holds.
Suppose further that A: is a positive integer. Then by 2.3, there exists an irreducible
m-primary ideal q of R such that d({0}, q) < 2~k. It follows that q c.q + mk = {0} + mk =
mk. Hence, 2.3 implies 2.2, which completes the proof of the theorem.

For a local ring R, we let R* denote the ring completion of R in its natural topology
[8]. Since the zero ideal of R is a principal system in R if and only if it is a principal system
in R*, one immediately obtains the following corollary.

COROLLARY 3. Let R be a local ring. Then R is approximately Gorenstein if and only
if R* is approximately Gorenstein.

A Noetherian ring R is said to be approximately Gorenstein if the local ring Rm is
approximately Gorenstein for every maximal ideal m of R [1]. We now proceed to
globalize our previous results and give characterizations of arbitrary Noetherian ap-
proximately Gorenstein rings. These characterizations are also in terms of principal
systems and certain topologies on particular ideal lattices.

THEOREM 4. Let R be a Noetherian ring. Then the following are equivalent:

4.1. R is approximately Gorenstein.
4.2. For every maximal ideal m of R, {0} is a principal system in Rm.
4.3. For every maximal ideal m of R, {0} is a limit point of the set of all irreducible

mRm-primary ideals of Rm in the mRm-adic topology on

Proof. This is easily seen to follow from Theorem 2 and the definition of a
Noetherian approximately Gorenstein ring.
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Let R be a Noetherian ring. Then R is a Zariski ring with respect to the Jacobson
radical of R. We let R* denote the completion of R in the Jacobson radical topology. The
following theorem extends the local case result of Corollary 3.

THEOREM 5. Let R be a Noetherian ring. Then R is approximately Gorenstein if and
only if R* is approximately Gorenstein.

Proof. Let Max(fl) denote the collection of all maximal ideals of R. Let Max(7?*)
denote the collection of all maximal ideals of R*. By [6, §24A], note that Max(/?*) =
{mR* | m e Max(/?)}. From the definition of approximately Gorenstein given above and
Corollary 3, we have that R is approximately Gorenstein if and only if for each
m € Max(/?), (Rm)* is approximately Gorenstein. Similarly, we have that R* is approxim-
ately Gorenstein if and only if for all m e Max(#), (R^R*)* is approximately Gorenstein.
Furthermore, from [6, §24.D], it follows that for each m e Max(R), (Rm)* is isomorphic to
(RmR')*- By combining these observations, we obtain the desired result.
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