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Skyrmions are stable topological defects with a complex non-coplanar spin structure, which 

distinguishes them from magnetic domain walls and vortices [1-4]. They are promising candidates for 

magnetic memory devices, because of their small size, thermal stability and high mobility. Here, the 

several types of skyrmions, namely Bloch-, Néel-, and Anti-skyrmions, exhibit differences in their 

formation kinetics, their behavior in the presence of geometric boundaries as well as their transport 

properties because of their different spin texture rotation. Accordingly, a thorough understanding of the 

spatial distribution of the skyrmion texture is indispensable to foster the field. Indeed, a substantial 

proportion of magnetic skyrmion textures occur at (very) low temperatures only. This particularly 

includes the recently observed Néel skyrmions in the lacunar spinel GaVa4S8 occurring at 13K [5] but 

also Bloch skyrmions in FeGe stabilizing around 280K [6]. Cryogenic conditions render the direct 

mapping of magnetic spin texture by electron holographic methods challenging, in particular if liquid 

He cooling or tomographic tilt series acquisition is required.  

 

Here, we present our recent cryogenic TEM studies of different skyrmion hosting materials. To address 

the low temperature regime in the lacunar spinels, we employ our dedicated cryogenic JEOL JEM 

2010F IFW special, which allows adjusting and maintaining any temperature ranging from room 

temperature down to 7K for days.   Bulk GaV4Se8 is predicted to show a structural transition from cubic 

to orthorhombic structure (Jahn-Teller-distortion) at a temperature of 42K and Néel type skyrmions 

below 18K under applied magnetic field between 0.10T and 0.45T.[7] Here the latter couple to the 

ferroelectric polarization axis pointing into the [111]-direction of the cubic room temperature phase. In 

order to study this multiferroic coupling, we characterized the cycloidal and skyrmionic phase in thin 

GaV4Se8 lamellas of different crystallographic orientation in dependence of temperature and applied 

magnetic field. We identify magnetic textures that are not considered in the bulk phase diagram (see 

Bordács et al. [7]). We discuss the origins of these in terms of crystal symmetries and strain prevailing 

in the thin film slab geometry.  

 

FeGe is a well-studied skyrmion hosting material with cubic B20 symmetry [6]. Electron tomography 

studies are carried out at a FEI Titan3 microscope at liquid nitrogen temperatures to reveal the formation 

of 3D spin textures at surfaces of FeGe. We acquired cryogenic tilt series of off-axis holograms in order 

to reconstruct the projected in plane magnetic induction of the helical phase under various projection 

angles. In a second step, we compare this data to various surface modulations of the skyrmion texture, 

e.g., the chiral surface twist. Our results suggest the formation of a, to our best knowledge, so far not 

yet predicted and explored surface modulation. 
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a)                                                                          b) 

 

Figure 1. a) Cycloidal phase of GaV4Se8 cut in <111> direction at 10K and 160mT: different sizes of 

the cycloidal phase are clearly visible; b) ferroelectric domains in GaV4Se8 cut in <110> direction: 

ferroelectric domain walls separate cycloidal and skyrmion phase from each other 
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