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Abstract

In redundancy analysis (RA), the redundancy variates are interpreted in terms of the predictor variables
that have the prominent redundancy loadings. Israels (1986) advocated the rotation of redundancy loadings
to facilitate the interpretation of the rotated redundancy variates. In this paper, the purpose is to obtain the
standard error estimates for rotated redundancy loadings that can facilitate the interpretation of the rotated
redundancy variates. To this end, we modify the original RA-L model (Gu et al., 2023) and specify two
modified RA-L models for orthogonal and oblique rotations, separately. On the basis of the modified RA-L
models, we describe the infinitesimal jackknife (IJ) method that can produce the standard error estimates
for rotated RA estimates. A simulation study is conducted to validate the standard error estimates from
the IJ method, and two real examples are used to demonstrate the use of the standard error estimates for
rotated redundancy loadings. Finally, we summarize the paper and provide additional remarks regarding
the rotation methods and the use of numeric derivatives in the implementation of the IJ method.
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1. Introduction

Canonical correlation analysis (CCA; Hotelling, 1935, 1936) and redundancy analysis (RA; Van Den
Wollenberg, 1977) are two classic multivariate statistical methods that can be used to study the
relationship between two sets of variables. In CCA, the first pair of canonical variates (i.e., linear
combinations of original variables) is created from both sets to maximize the first canonical correlation
(i.e., the correlation between the paired canonical variates), and subsequent pairs of canonical variates
are created to maximize the following canonical correlations while obeying certain within-set and
between-set orthogonality restrictions. One potential disadvantage of CCA is that the canonical variates
may not be representative of the original variables in the sense of the explained variance within the same
set. For instance, if all the canonical variates created from the first set can only explain 5% (or even less) of
the variance of the original variables in the first set and all the canonical variates created from the second
set can only explain 5% (or even less) of the variance of the original variables in the second set, no matter
how large the canonical correlations are, it is impossible to have a big overlap in variance between the
two sets of original variables (Fornell, 1979; Van Den Wollenberg, 1977). As a remedy, RA was proposed
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to create the redundancy variates (i.e., linear combinations of original variables) from only one set of
original variables (say, the predictor variables) with the goal of maximizing the explained variance of
the other set of original variables (say, the criterion variables). Mathematically, the redundancy variates
can also be created from the criterion variables to maximize the explained variance of the predictor
variables, but it is often not necessary to do so for theoretical reasons.

Despite the differences in mathematical goals, the two methods are similar in the sense that
the interpretations of the linear combinations of original variables are often the focus of practical
applications of the two methods. To interpret the canonical variates in CCA, researchers should select
the original variables with prominent canonical loadings (i.e., the correlations between the canonical
variates and the original variables within the same set) to assign meaningful interpretation to each
canonical variate. In a similar way, a redundancy variate should be interpreted in terms of the predictor
variables with prominent redundancy loadings (i.e., the correlations between the redundancy variates
and the predictor variables). Nonetheless, there is no guarantee that meaningful interpretations can
always be found for the canonical/redundancy variates.

To facilitate the interpretations, the idea of rotation that was originally developed to rotate the
common factors in the context of exploratory factor analysis (EFA) has been adapted to rotate the
canonical/redundancy variates. In the CCA context, Cliff and Krus (1976) and Perreault and Spiro
(1978) advocated the rotation of canonical variates, whereas, in the RA context, Israels (1986) discussed
the rotation of redundancy variates. These authors showed that the rotated canonical/redundancy
loading matrix often has a simple structure in the sense of Thurstone (1947), which makes it easier to
interpret the rotated canonical/redundancy variates. Additionally, Cudeck and O’Dell (1994) suggested
the use of standard error estimates to account for the sampling variability of rotated factor loadings
when the rotated common factors are interpreted. Following this suggestion, Gu et al. (2021) developed
the standard error estimates for rotated canonical loadings and other rotated CCA estimates. However,
no work has been done to obtain the standard error estimates for rotated redundancy loadings or other
rotated RA estimates. Therefore, the purpose of this paper is to develop the standard error estimates
for rotated RA estimates. With the availability of standard error estimates, the researcher can better
interpret the rotated redundancy variates by selecting the rotated redundancy loadings that are not only
prominent but also statistically significant.

Because the technical details in this paper are closely related to Gu et al. (2021), it is useful to review
the related work that leads to the standard error estimates for rotated CCA estimates. It is well known
that CCA is almost always used in exploratory data analysis, because the traditional development of
CCA does not provide the inferential information to test the CCA parameters, except the canonical
correlations, of which the significance can be tested under the multivariate normality assumption of the
data. Recently, Gu et al. (2019) provided a model-based approach to CCA that can produce the standard
error estimates for CCA estimates. Particularly, their model-based approach includes four covariance
structure models1 specifically designed for CCA, and one of the models (i.e., the CORR-L model) can
produce the standard error estimates for canonical loadings. Based on the original CORR-L model,
Gu et al. (2021) provided the specification of the modified CORR-L model that can accommodate
the rotated canonical loadings and other rotated CCA estimates; and they further showed that the
infinitesimal jackknife (IJ) method2 (Jennrich & Clarkson, 1980; Jennrich, 2008; Zhang et al., 2012)

1According to Gu et al. (2019), the names of the four models designed for CCA are 1) the COV-W model, 2) the COV-
L model, 3) the CORR-W model, and 4) the CORR-L model. Each name has two parts that are separated by a dash. The
first part is either COV or CORR. If the first part is COV, the model can analyze unstandardized variables (or a covariance
matrix) and produce unstandardized estimates for the unique parameters. If the first part is CORR, the model can analyze
not only unstandardized variables (or a covariance matrix) but also standardized variables (or a correlation matrix) and
produce standardized estimates for the unique parameters. The second part of the name is either W or L, indicating the unique
parameters subsumed by the model. If the second part is W, the model subsumes the weights as the unique parameters. If the
second part is L, the model subsumes the loadings as the unique parameters.

2In the EFA literature, there are two other methods that can be applied to compute the standard error estimates for rotated
EFA estimates. The first method is the delta method (Archer & Jennrich, 1973; Jennrich, 1973), which requires a common

https://doi.org/10.1017/psy.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.8


Psychometrika 185

can be applied with the modified CORR-L model to compute the standard error estimates for rotated
canonical loadings and other rotated CCA estimates. The advantage of the IJ method is that it can handle
non-normal data and produce robust standard error estimates. Thus, we also focus on the IJ method in
this paper. In sum, it is the modified CORR-L model that serves as the basis for applying the IJ method.

Based on the work of Gu et al. (2021) in the CCA context, we can easily outline the work required to
produce the standard error estimates for rotated redundancy loadings and other rotated RA estimates.
First, we need a model that can accommodate the rotated RA estimates. Then, we can apply the IJ
method with the specified model to compute the standard error estimates for rotated RA estimates.
Recently, Gu et al. (2023) developed a model-based approach to RA that can produce the standard error
estimates for RA estimates. Particularly, their model-based approach includes two covariance structure
models3 specifically designed for RA, and one of the models (i.e., the RA-L model) can produce the
standard error estimates for redundancy loadings. Thus, a feasible way to develop a model that can
accommodate the rotated redundancy loadings and other rotated RA estimates is to modify the original
RA-L model. Then, the IJ method can be applied with the modified RA-L model. Hence, the required
work is to specify the modified RA-L model, because the modified RA-L model serves as the basis to
apply the IJ method to compute the standard error estimates for rotated RA estimates.

The organization of this paper is as follows. In Section 2, we first review the original RA-L model;
then, we specify two modified RA-L models to accommodate the rotated RA estimates from orthogonal
and oblique rotations, separately. In Section 3, we describe the IJ method with the two modified RA-
L models estimated by the unweighted least squares (ULS) fitting function. In Section 4, we use a
simulation study to validate the standard error estimates from the IJ method. In Section 5, we use two
real examples to demonstrate the interpretation of rotated redundancy variates. Finally, in Section 6,
we summarize the paper and provide additional remarks regarding the rotation methods and the use of
numeric partial derivatives when applying the IJ method.

2. The original RA-L model and two modified RA-L models

In this section, we first review the original RA-L model and then specify two modified RA-L models for
orthogonal and oblique rotations, separately.

2.1. The original RA-L model
Let x be a p × 1 vector for p predictor variables and y be a q × 1 vector for q criterion variables. With p
predictor variables, one can construct up to p redundancy variates. Let ξ = (ξ1 ξ2 ⋯ ξp)′ be the vector
that includes all p redundancy variates. According to Van Den Wollenberg (1977), ξi (i = 1, 2, . . ., p)
must satisfy two restrictions. First, ξi is uncorrelated with ξj (i ≠ j). Second, ξi has unit variance (i = 1, 2,
. . ., p). With these restrictions, Gu et al. (2023) specified the covariance structure of the original RA-L
model as

Σ = Σ(Dx,Dy,Lxξ,Lyξ,Ryy)

= (Dx 0
0 Dy

)( Lxξ 0
0 Iq

)( Ip L′yξ
Lyξ Ryy

)( L′xξ 0
0 Iq

)(Dx 0
0 Dy

), (1)

factor model whose estimates are the unrotated EFA estimates. The second method is the augmented information matrix
method (Jennrich, 1974), which requires a common factor model whose estimates are the rotated EFA estimates. In principle,
these two methods can also be applied with the original and modified CORR-L models, separately, to produce the standard
error estimates for rotated canonical loadings.

3Gu et al. (2023) partially inherited the idea from Gu et al. (2019) to name the two models designed for RA. The first part of
the name is always RA, rather than COV or CORR, because RA is defined to analyze standardized variables (or a correlation
matrix) by Van Den Wollenberg (1977). The second part of the name is either W or L, indicating the unique parameters
subsumed by the model. If the second part is W, the model subsumes the weights as the unique parameters. If the second part
is L, the model subsumes the loadings as the unique parameters.
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where Ip and Iq are identity matrices of orders p and q, separately, Dx is a p × p diagonal matrix whose
diagonal elements are the standard deviations of p predictor variables, Dy is a q × q diagonal matrix
whose diagonal elements are the standard deviations of q criterion variables, Lxξ is a p × p square
matrix that includes the redundancy loadings (i.e., the correlations between p predictor variables and p
redundancy variates), Lyξ is a q× p matrix that includes the cross-loadings (i.e., the correlations between
q criterion variables and p redundancy variates), and Ryy is a q× q correlation matrix whose off-diagonal
elements are the correlations of q criterion variables.

To identify the original RA-L model, three types of constraints must be imposed. The first type of
constraints is applicable only when the number of predictor variables exceeds that of criterion variables
by two or more (i.e., p - q ≥ 2). Specifically, let d = p − q be a positive integer. When d ≥ 2, the first type
of constraints requires one to arbitrarily fix d(d − 1)/2 elements in the last d columns of Lxξ . When d = 1
or p ≤ q, the first type of constraints is not applicable. The second type of constraints is

vecdiag(LxξL′xξ)−1p = 0p, (2)

where vecdiag(M) denotes a column vector created with the diagonal elements of M, and 1p denotes a
unit vector of order p, and 0p denotes a null vector of order p. Finally, the third type of constraints is

vecb(L′yξLyξ) = 0, (3)

where vecb(M) denotes a column vector created with the off-diagonal elements below the main diagonal
of M, and 0 denotes a null vector of appropriate order4. The third type of constraints indicate that L′yξLyξ
must be a diagonal matrix, but the number of constraints required by equation (3) depends on the
relative magnitude of p and q. When p ≤ q, all p columns of Lyξ include non-zero cross-loadings. In
this situation, L′yξLyξ has p(p − 1)/2 unique off-diagonal elements that must be 0. When p > q, only the
first q columns of Lyξ include non-zero cross-loadings, while the last d = p - q columns of Lyξ are null
vectors (see Appendix A of Gu et al. 2023). In this situation, the first q × q submatrix of L′yξLyξ has q(q −
1)/2 unique off-diagonal elements that must be 0. This completes the three types of constraints for the
original RA-L model.

To count the number of parameters of the RA-L model, it is obvious that Dx has p standard deviations,
Dy has q standard deviations, and Ryy has q(q − 1)/2 correlations. For Lxξ and Lyξ , however, the number
of parameters in these two matrices also depends on the relative magnitude of p and q. For p ≤ q, Lxξ
has p2 redundancy loadings, and Lyξ has pq cross-loadings. For p > q, Lxξ has p2 − d(d − 1)/2 = (p2 + 2pq
− q2 + p − q)/2 redundancy loadings, and Lyξ has q2 cross-loadings in the first q columns because the
last d columns of Lyξ are null vectors. Finally, given the number of constraints for identification and the
number of parameters, we can verify that the RA-L model is a saturated model regardless of the relative
magnitude of p and q (see Appendix B of Gu et al. 2023).

2.2. Matrix partitions
To specify the two modified RA-L models in the next two subsections, it is necessary to partition some
matrices of the original RA-L model. Let m be a positive integer that indicates the number of redundancy
variates to be rotated. When p ≤ q, m must be equal to or less than p. When p > q, m must be equal to
or less than q, because there is no need to rotate the last d = p − q redundancy variates.

With these settings, we first partition Lxξ as

Lxξ = (Lxξ∣m Lxξ∣u ), (4)

4If possible, a subscript is used to indicate the order of a vector. For the null vector 0 on the right side of equation (3), it can
be either 0p(p − 1)/2 or 0q(q − 1)/2, depending on the relative magnitude of p and q.
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where Lxξ∣m is a p × m matrix, Lxξ∣u is a p × u matrix, and u = p - m. Correspondingly, the submatrices

Ip and Lyξ in ( Ip L′yξ
Lyξ Ryy

) of equation (1) should be partitioned as

Ip = (Im 0
0 Iu

) and Lyξ = (Lyξ∣m Lyξ∣u ), (5)

where Lyξ∣m is a q × m matrix and Lyξ∣u is a q × u matrix.
Based on the partitions in equations (4) and (5), the covariance structure of the original RA-L model

can be re-written as

Σ = Σ(Dx,Dy,Lxξ∣m,Lxξ∣u,Lyξ∣m,Lyξ∣u,Ryy)

= (Dx 0
0 Dy

)((Lxξ∣m Lxξ∣u ) 0
0 Iq

)
⎛
⎜
⎝

(Im 0
0 Iu

) (L′yξ∣m
L′yξ∣u

)

(Lyξ∣m Lyξ∣u ) Ryy

⎞
⎟
⎠

⎛
⎜
⎝
(L′xξ∣m

L′xξ∣u
) 0

0 Iq

⎞
⎟
⎠
(Dx 0

0 Dy
) . (6)

In the next two subsections, we will show the effect of orthogonal and oblique rotations on Lxξ∣m, Im, and
Lyξ∣m in equation (6) and define the two modified RA-L models for orthogonal and oblique rotations,
separately.

2.3. The modified RA-L model for orthogonal rotations
When the first m redundancy variates are rotated with an orthogonal rotation method, Lxξ∣m is
transformed by an m×m orthogonal matrix Torth to produce Lorth

xξ∣m, which is a p×m matrix that includes
the rotated redundancy loadings. That is,

Lxξ∣mTorth = Lorth
xξ∣m. (7)

At the same time, Im and Lyξ∣m are also transformed by Torth. For Im, the transformation is

(Torth)
−1

Im(Torth)
′−1

= (Torth)
−1
(Torth) = Im. (8)

For Lyξ∣m, the transformation is

Lyξ∣m(Torth)
′−1

= Lyξ∣mTorth = Lorth
yξ∣m. (9)

Obviously, Lorth
yξ∣m is a q ×m matrix that includes the rotated cross-loadings. Given equations (7)–(9), the

covariance structure of the modified RA-L model for orthogonal rotations is defined as

Σ = Σ(Dx,Dy,Lorth
xξ∣m,Lxξ∣u,L

orth
yξ∣m,Lyξ∣u,Ryy)

= (Dx 0
0 Dy

)((Lorth
xξ∣m Lxξ∣u ) 0

0 Iq
)
⎛
⎜⎜
⎝

(Im 0
0 Iu

)
⎛
⎝
(Lorth

yξ∣m)
′

L′yξ∣u

⎞
⎠

(Lorth
yξ∣m Lyξ∣u ) Ryy

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

((Lorth
xξ∣m)

′

L′xξ∣u
) 0

0 Iq

⎞
⎟⎟
⎠
(Dx 0

0 Dy
) . (10)

To identify the modified RA-L model for orthogonal rotations, we must impose four types of
constraints. The first three types of constraints are inherited with or without changes from the three
types of constraints for the original RA-L model, whereas the fourth type of constraints is introduced to
remove rotational indeterminacy. The first type of constraints is identical to that for the original RA-L
model. That is, when x has 2 or more variables than y, one should arbitrarily fix d(d − 1)/2 elements in
the last d columns of Lxξ∣u.
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The second type of constraints involves both rotated and unrotated redundancy loadings. That is,

vecdiag[(Lorth
xξ∣m Lxξ∣u )(

(Lorth
xξ∣m)

′

L′xξ∣u
)]−1p = 0p. (11)

Compared to the p constraints in equation (2), the first m constraints in equation (11) are different,
because these constraints are imposed on the rotated redundancy loadings in Lorth

xξ∣m.
To derive the third type of constraints, we must express L′yξLyξ in equation (3) with the partitioned

matrix Lyξ = (Lyξ∣m Lyξ∣u ). That is,

L′yξLyξ = (
L′yξ∣m
L′yξ∣u

)(Lyξ∣m Lyξ∣u )

= (L′yξ∣mLyξ∣m L′yξ∣mLyξ∣u
L′yξ∣uLyξ∣m L′yξ∣uLyξ∣u

) .

Given the constraints required by equation (3), we can see that L′yξ∣mLyξ∣m and L′yξ∣uLyξ∣u must be
diagonal matrices and L′yξ∣uLyξ∣m must be a null matrix. Thus, we can re-write equation (3) as

⎡⎢⎢⎢⎢⎢⎣

vecb(L′yξ∣mLyξ∣m)
vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLyξ∣m)

⎤⎥⎥⎥⎥⎥⎦
= 0,

where vec(M) denotes a column vector created with all elements of M. With orthogonal rotations, Lyξ∣m

should be substituted with Lorth
yξ∣m =Lyξ∣mTorth so that the first and last components in the above expression

must be changed as follows:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vecb[(Lorth
yξ∣m)

′
Lorth

yξ∣m]
vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLorth

yξ∣m)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vecb[(Torth)′L′yξ∣mLyξ∣mTorth]
vecb(L′yξ∣uLyξ∣u)

vec(L′yξ∣uLyξ∣mTorth)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

It is easy to verify that vecb(L′yξ∣uLyξ∣u) and vec(L′yξ∣uLyξ∣mTorth) remain to be null vectors after orthogo-
nal rotations, but vecb[(Torth)′L′yξ∣mLyξ∣mTorth]may not be a null vector, because (Torth)′L′yξ∣mLyξ∣mTorth

in general is an m ×m symmetric matrix. It means that rotation violates the first m(m − 1)/2 constraints
required by equation (3). Therefore, the third type of constraints for the modified RA-L model for
orthogonal rotations is

⎡⎢⎢⎢⎢⎣

vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLorth

yξ∣m)

⎤⎥⎥⎥⎥⎦
= 0. (12)

In the fourth type of constraints, the results derived by Archer and Jennrich (1973) are adapted to
remove rotational indeterminacy for orthogonal rotations. That is, the fourth type of constraints requires
(Lorth

xξ∣m)
′ ∂horth

∂Lorth
xξ∣m

to be a symmetric matrix, where horth = horth (Lorth
xξ∣m) denotes the simplicity function of

Lorth
xξ∣m for a particular orthogonal rotation criterion, and this type of constraints includes m(m − 1)/2

constraints. Formally, we can write the fourth type of constraints as

vecb
⎡⎢⎢⎢⎢⎢⎣
(Lorth

xξ∣m)
′ ∂horth

∂Lorth
xξ∣m

− ∂horth

∂(Lorth
xξ∣m)

′ L
orth
xξ∣m

⎤⎥⎥⎥⎥⎥⎦
= 0m(m−1)/2. (13)

This completes the four types of constraints for the modified RA-L model for orthogonal rotations.
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It can be seen that the number of parameters of the modified RA-L model for orthogonal rotations is
the same as that of the original RA-L model, because orthogonal rotations do not increase the number
of parameters. As for the number of constraints, equation (12) has m(m − 1)/2 fewer constraints than
equation (3), while equation (13) introduces m(m − 1)/2 new constraints. Therefore, the modified RA-L
model for orthogonal rotations is still a saturated model.

2.4. The modified RA-L model for oblique rotations
When the first m redundancy variates are rotated with an oblique rotation method, Lxξ∣m is transformed

by an m × m nonsingular matrix Tobli that must satisfy the restriction diag[(Tobli)′Tobli]
−1
= Im to

produce Lobli
xξ∣m, which is a p × m matrix that includes the rotated redundancy loadings. That is,

Lxξ∣mTobli = Lobli
xξ∣m. (14)

At the same time, Im and Lyξ∣m are also transformed by Tobli. For Im, the transformation is

(Tobli)
−1

Im(Tobli)
′−1

= [(Tobli)
′
Tobli]

−1
=Φ, (15)

where is Φ a m×m correlation matrix5 of the rotated redundancy variates. For Lyξ∣m, the transformation
is

Lyξ∣m(Tobli)
′−1

= Lobli
yξ∣m, (16)

where Lobli
yξ∣m is a q × m matrix that includes the rotated cross-loadings. Based on equations (14)–(16),

the covariance structure of the modified RA-L model for oblique rotations is defined as

Σ = Σ(Dx,Dy,Lobli
xξ∣m,Lxξ∣u,Φ,Lobli

yξ∣m,Lyξ∣u,Ryy)

= (Dx 0
0 Dy

)((Lobli
xξ∣m Lxξ∣u ) 0

0 Iq
)
⎛
⎜⎜
⎝

(Φ 0
0 Iu

)
⎛
⎝
(Lobli

yξ∣m)
′

L′yξ∣u

⎞
⎠

(Lobli
yξ∣m Lyξ∣u ) Ryy

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

((Lobli
xξ∣m)

′

L′xξ∣u
) 0

0 Iq

⎞
⎟⎟
⎠
(Dx 0

0 Dy
) . (17)

Note that equation (17) has m(m − 1)/2 more parameters than equations (6) due to the off-diagonal
elements of Φ.

To identify the modified RA-L model for oblique rotations, we also need to impose four types of
constraints. The first type of constraints is that when x has 2 or more variables than y, one should
arbitrarily fix d(d − 1)/2 elements in the last d columns of Lxξ∣u in equation (17).

The second type of constraints involves not only the rotated and unrotated redundancy loadings but
also the correlations of the rotated redundancy variates. That is,

vecdiag[(Lobli
xξ∣m Lxξ∣u )(

Φ 0
0 Iu

)((Lobli
xξ∣m)

′

L′xξ∣u
)]−1p = 0p. (18)

Compared to the p constraints in equation (2), the first m constraints in equation (18) are
different, because these m constraints involve the rotated redundancy loadings in Lobli

xξ∣m and the
correlations in Φ.

5Φ is a correlation matrix due to the restriction imposed on Tobli. That is, diag[(Tobli)′Tobli]−1 = Im.
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The derivation of the third type of constraints for the modified RA-L model for oblique rotations is
similar to that for the orthogonal rotations. Recall that equation (3) requires

⎡⎢⎢⎢⎢⎢⎣

vecb(L′yξ∣mLyξ∣m)
vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLyξ∣m)

⎤⎥⎥⎥⎥⎥⎦
= 0.

With oblique rotations, Lyξ∣m should be substituted with Lobli
yξ∣m = Lyξ∣m(Tobli)′−1 so that the first and last

components in the above expression must be changed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vecb[(Lobli
yξ∣m)

′
Lobli

yξ∣m]
vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLobli

yξ∣m)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vecb[(Tobli)′L′yξ∣mLyξ∣mTobli]
vecb(L′yξ∣uLyξ∣u)

vec(L′yξ∣uLyξ∣mTobli)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

It is easy to verify that vecb(L′yξ∣uLyξ∣u) and vec(L′yξ∣uLyξ∣mTobli) remain to be null vectors after
oblique rotations, but vecb[(Tobli)′L′yξ∣mLyξ∣mTobli] may not be a null vector, because (Tobli)′

L′yξ∣mLyξ∣mTobli in general is an m ×m symmetric matrix. Therefore, the third type of constraints for the
modified RA-L model for oblique rotations is

⎡⎢⎢⎢⎢⎣

vecb(L′yξ∣uLyξ∣u)
vec(L′yξ∣uLobli

yξ∣m)

⎤⎥⎥⎥⎥⎦
= 0. (19)

In the fourth type of constraints, the results derived by Jennrich (1973) are adapted to remove
rotational indeterminacy for oblique rotations. That is, the fourth type of constraints requires
(Lobli

xξ∣m)
′ ∂hobli

∂Lobli
xξ∣m

Φ−1 to be a diagonal matrix, where hobli = hobli (Lobli
xξ∣m) denotes the simplicity function

of Lobli
xξ∣m for a particular oblique rotation criterion, and this type of constraints includes m(m − 1)

constraints. Formally, we can write the fourth type of constraints as

veco
⎡⎢⎢⎢⎢⎣
(Lobli

xξ∣m)
′ ∂hobli

∂Lobli
xξ∣m

Φ−1
⎤⎥⎥⎥⎥⎦
= 0m(m−1), (20)

where veco(M) denotes a column vector created with all off-diagonal elements of M. This completes the
four types of constraints for the modified RA-L model for oblique rotations.

It can be seen that the modified RA-L model for oblique rotations has m(m − 1)/2 more parameters
(i.e., the off-diagonal elements of Φ) than the original RA-L model, equation (19) has m(m − 1)/2 fewer
constraints than equation (3), and equation (20) introduces m(m − 1) new constraints. Therefore, the
modified RA-L model for oblique rotations is still a saturated model.

3. The infinitesimal jackknife method

In this section, we describe the IJ method with the modified RA-L models estimated by the ULS fitting
function. Computationally, the IJ method requires the pseudo values, which are obtained from two
quantities: 1) the Jacobian matrix of the estimating equations with respect to the estimates and 2) the
partial differentials of the estimating equations with respect to the sample covariance matrix S.
The Jacobian matrix and the partial differentials are described first, followed by the descriptions of the
pseudo values and the IJ estimate of the asymptotic covariance matrix.
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3.1. Notations of the parameter vectors
Strictly speaking, we should use θorth and θobli to denote the parameter vectors for the two modified
RA-L models, separately. With these notations, we have Σ(θorth) =Σ(Dx,Dy,Lorth

xξ∣m,Lxξ∣u,Lorth
yξ∣m,Lyξ∣u,Ryy)

and Σ(θobli) =Σ(Dx,Dy,Lobli
xξ∣m,Lxξ∣u,Φ,Lobli

yξ∣m,Lyξ∣u,Ryy). However, to avoid repetitive descriptions in this
section, we use θ as a generic symbol to denote the parameter vector for both modified RA-L models.
As such, Σ(θ) is used to refer to either Σ(θorth) or Σ(θobli).

3.2. Jacobian matrix and partial differentials
For both modified RA-L models, the ULS fitting function is defined as

F = 0.5tr[S−Σ(θ)]2. (21)

Then, the estimating equations have the following form

g(θ,S) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂F
∂θ

φ1 (θ)
φ2 (θ)
φ3 (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (22)

where φ1 (θ), φ2 (θ), and φ3 (θ) represent the second, third, and fourth type of constraints for
either modified RA-L model. Specifically, φ1 (θ) includes p constraints from either equation (11) for
orthogonal rotations or equation (18) for oblique rotations, φ2 (θ) includes p(p − 1)/2 − m(m − 1)/2
or q(q − 1)/2 − m(m − 1)/2 constraints, depending on the relative magnitude of p and q, from either
equation (12) for orthogonal rotations or equation (19) for oblique rotations, and φ3 (θ) includes either
m(m − 1)/2 constraints from equation (13) for orthogonal rotations or m(m − 1) constraints from
equation (20) for oblique rotations.

Given equation (22), the Jacobian matrix of g(θ,S) with respect to θ is

J(θ,S) = ∂g(θ,S)
∂θ′

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2F
∂θ∂θ′
∂φ1(θ)
∂θ′

∂φ2(θ)
∂θ′

∂φ3(θ)
∂θ′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

where ∂2F
∂θ∂θ′ is the Hessian matrix of the ULS fitting function, and the remaining components are the

partial derivatives of the constraints with respect to θ.
Let ∂2g(θ,S) (dS) be the partial differential of g(θ,S) with respect to S evaluated at (θ,S), and we

define kn as

kn = ∂2g(θ,S) [(zn−z)(zn−z)′]

=
⎛
⎜⎜⎜⎜
⎝

−∂{vec[Σ(θ)]}
∂θ

′
vec[(zn−z)(zn−z)′]

0
0
0

⎞
⎟⎟⎟⎟
⎠
, (24)

where n = 1, 2, . . ., N, N is the sample size, zn is a column vector for the nth observation of all predictor
and criterion variables, and z is a column vector of the sample means of all predictor and criterion
variables. The last three components in equation (24) are null vectors, because φ1 (θ), φ2 (θ), and φ3 (θ)
are not functions of S.
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3.3. Pseudo values and asymptotic covariance matrix of parameter estimates
Given the Jacobian matrix and the partial differentials, the pseudo values for each observation can be
computed. Let λn (n = 1, . . ., N) be a column vector collecting the pseudo values for the nth observation,
and it can be solved from

J(θ,S)λn = −kn. (25)

Note that J(θ,S) defined in equation (23) has more rows than columns so that the system of equations
in equation (25) appears to be over-determined. Thus, we apply the QR decomposition to J(θ,S) to
solve for λn.

After λn is obtained for all observations, the IJ estimate of the asymptotic covariance matrix of θ̂ is

acovIJ (θ̂) = scov(λn), (26)

where scov(λn) is the sample covariance matrix of all λn. Finally, the standard error estimates for θ̂ are
obtained from dividing the square roots of the diagonal elements of acovIJ (θ̂) by

√
N.

4. A simulation study

In this section, we use a simulation study to validate the standard error estimates from the IJ method
under both multivariate normality and multivariate nonnormality and at different sample sizes.

4.1. Data generation
Two factors are manipulated in this simulation study. The first factor is the data distribution, including 1)
multivariate normality and 2) multivariate nonnormality. The second factor is the sample size, including
1) 200, 2) 400, and 3) 600. In total, there are 6 combinations of data distribution and sample size. At each
combination, we use the following population covariance matrix to generate 1000 random data sets:

Σ0 = (Σxx Σ′yx
Σyx Σyy

),

where the first eight variables are the predictor variables and the last eight variables are the criterion
variables6. The submatrices of Σ0 are

Σxx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.00
.71 1.00
.72 .72 1.00
.73 .73 .73 1.00
.74 .74 .74 .74 1.00
.20 .10 .10 .10 .20 1.00
.10 .20 .20 .20 .10 .52 1.00
.20 .10 .10 .10 .20 .53 .53 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

6By reviewing the RA literature, we found that most methodological articles often use a small number of predictor/criterion
variables for illustrative purposes. For example, the artificial example used by Van Den Wollenberg (1977) has 4 predictor
variables and 4 criterion variables, whereas Takane and Hwang (2005) set the minimum numbers of predictor and criterion
variables to be 2 and 1, separately. As for the psychological examples analyzed by RA, the number of predictor/criterion
variables can range from small to large. For example, Fornell (1979) used 14 predictor variables in the first example (i.e.,
Case One) but only 6 criterion variables in the second example (i.e., Case Two), while van Dam and van Trijp (2011) used RA
to analyze 15 predictor variables and 10 criterion variables. Based on these findings, we choose to use 8 predictor variables
and 8 criterion variables in our simulation study, which can be considered as a middle ground in the RA literature.
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Σyx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.40 .50 .35 .50 .40 .05 .04 .03

.35 .35 .40 .40 .35 .04 .02 .01

.50 .40 .50 .35 .50 .03 .01 .04

.35 .35 .40 .40 .35 .02 .03 .02

.40 .50 .35 .50 .40 .01 .05 .05

.01 .01 .02 .02 .03 .40 .30 .35

.02 .03 .01 .03 .02 .35 .40 .30

.03 .02 .03 .01 .01 .30 .35 .40

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

Σyy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.00
.51 1.00
.52 .52 1.00
.53 .53 .53 1.00
.54 .54 .54 .54 1.00
.20 .00 .20 .00 .20 1.00
.00 .20 .00 .20 .00 .52 1.00
.20 .00 .20 .00 .20 .53 .53 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To generate the multivariate normal data, the RANDNORMAL function in SAS PROC IML is used.
To generate the multivariate non-normal data, we use the procedure developed by Qu et al. (2020).
This procedure is implemented by the MNONR package in R, which requires the user to specify the
population values of multivariate skewness and multivariate kurtosis. In this simulation study, we set
the values of multivariate skewness and multivariate kurtosis to 10 and 400, respectively7.

4.2. Data analysis and evaluation criteria
By applying RA to Σ0, we obtain the population values of the unrotated redundancy loadings and
unrotated cross-loadings:

Lxξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.8401 .1341 −.2650 −.1836 .0465 .0428 .2225 .3447

.8901 .1721 .0814 −.2285 .0159 −.0920 .1257 −.3077

.8316 .1220 −.3780 .2809 −.0830 .1485 .0850 −.1886

.9066 .1797 .1418 .2203 −.1025 −.0981 −.1493 .1872

.8402 .1346 −.2597 −.1343 .2253 .0643 −.3674 −.0258

.0103 .8084 −.1790 .1924 .5022 .0500 .1456 .0374

.0121 .8119 −.1419 −.0416 −.2345 −.5073 −.0606 −.0527

.0123 .8081 −.1880 −.1739 −.2621 .4449 −.1104 .0502

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

7Qu et al. (2020) conducted a simulation study, where the number of variables is 2, 4, and 6, the values of multivariate
skewness are 0, 1, 3, and 15, and the values of multivariate kurtosis are 10, 32, 61, and 91 (p. 943). They chose to report the
results from three representative combinations of multivariate skewness and multivariate kurtosis, which were referred to as
small, medium, and large nonnormality (p. 944). Qu et al. (2020) showed that both multivariate skewness and multivariate
kurtosis are functions of the number of variables (equations 5 and 6) and that the value of multivariate kurtosis has a lower
bound that depends on not only the number of variables but also the value of multivariate skewness (equations 17). Because we
use 16 variables in this simulation study, which is about 3 times of the maximum number of variables (i.e., 6) used by Qu et al.
(2020), we set the value of multivariate skewness to be 10, which is also about 3 times of multivariate skewness in medium
nonnormality (i.e., 3) used by Qu et al. (2020). As for multivariate kurtosis, we decide to choose a number that is about 4
times of the maximum multivariate kurtosis (i.e., 91) used by Qu et al. (2020). Overall, the values we choose for multivariate
skewness and multivariate kurtosis in our simulation study can be considered as a middle ground between medium and large
nonnormality. The percentiles of multivariate skewness and multivariate kurtosis of the 16 variables and the percentiles of
univariate skewness and univariate kurtosis of individual variables can be found from the Supplementary Materials of this
paper.
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Lyξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.5159 .0848 .2053 −.0324 .0356 −.0033 .0099 −.0000

.4209 .0139 −.0475 .1029 −.0095 .0014 .0053 .0001

.4729 −.0492 −.3565 −.0723 .0294 .0048 −.0001 .0000

.4203 .0119 −.0564 .0895 −.0406 −.0023 −.0053 −.0001

.5159 .0779 .1938 −.0580 −.0221 .0004 −.0098 .0000
− .0568 .4327 −.0045 .0378 .0801 .0614 −.0040 −.0000
− .0536 .4222 −.0495 .0030 .0102 −.1050 −.0006 .0000
− .0577 .4204 −.0616 −.0390 −.0908 .0434 .0045 −.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the first two population redundancy indices are .1399 and .0698, while the subsequent population
redundancy indices are less than .03. Thus, for each random data set, we only rotate the first two
columns of redundancy loadings. In terms of the rotation method, we use a widely accepted oblique
rotation method: QUARTIMIN (Browne, 2001; Carroll, 1953) with Kaiser’s normalization (1958).
In general, oblique rotations are more flexible than orthogonal rotations in the sense that oblique
rotations can accommodate correlations among rotated factors/variates. If the rotated factors/variates
are indeed uncorrelated, the resulting correlations from oblique rotations would be small and negligible.
By applying QUARTIMIN to the first two columns of unrotated redundancy loadings, we obtain the
population values of rotated redundancy loadings, rotated cross-loadings, and correlation of rotated
redundancy variates:

Lobli
xξ∣m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.8525 −.0097

.9028 .0199

.8440 −.0203

.9194 .0240

.8525 −.0092
− .0011 .8087
.0006 .8119
.0008 8080

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Φ = (1.0000
.1826 1.0000), Lobli

yξ∣m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

.5228 .0921

.4172 .0199
4578 −.0425
.4162 .0178
.5216 .0852
.0170 .4318
.0184 .4214
.0140 .4195

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The normalized QUARTIMIN rotation is implemented by SAS PROC FACTOR, and the IJ method is
implemented by customized code written in SAS PROC IML.

After the analyses are completed, we compute the means, standard deviations, and average standard
error estimates across 1000 replications at each combination of data distribution and sample size. The
standard deviations are used as the true standard errors to evaluate the performance of the IJ method.
The first evaluation criterion we use is the relative bias of the average standard error estimate, which is
calculated as

Relative bias = Avg SE−SD
SD

.

According to Hoogland and Boomsma (1998), the standard error estimate is acceptable when the
absolute value of relative bias is less than .1. Additionally, we use the estimate and the associated standard
error estimate to construct a symmetric 95% confidence interval (CI) and evaluate if the population
value is included in the symmetric 95% CI. Thus, the second evaluation criterion is the coverage rate
for each parameter across 1000 replications.

4.3. Results
Because our purpose is to validate the standard error estimates from the IJ method, the means of rotated
estimates are omitted in this section but can be found from the Supplementary Materials. Instead, we
show the standard deviations, average standard errors, relative biases, and coverage rates in Tables 1
and 2 under multivariate normality and multivariate nonnormality, separately. It is observed that 1) the
means are getting closer to their population values as the sample size increases, 2) all the absolute values
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Table 1. Results from simulations under multivariate normality

Parm N = 200 N = 400 N = 600

SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%)

lx11 .0604 .0603 −.0008 95.20 .0421 .0413 −.0190 94.80 .0315 .0332 .0530 96.60

lx21 .0471 .0492 .0447 95.70 .0319 .0325 .0207 95.80 .0258 .0258 .0018 95.50

lx31 .0657 .0653 −.0060 94.70 .0440 .0440 −.0008 95.30 .0360 .0355 −.0144 95.00

lx41 .0442 .0462 .0453 95.90 .0282 .0306 .0821 96.50 .0241 .0241 −.0019 95.30

lx51 .0616 .0604 −.0203 95.10 .0399 .0406 .0180 95.40 .0323 .0330 .0229 95.60

lx61 .0680 .0682 .0035 95.70 .0482 .0478 −.0097 95.00 .0395 .0390 −.0114 94.80

lx71 .0666 .0677 .0177 95.20 .0476 .0478 .0045 96.20 .0396 .0390 −.0140 94.20

lx81 .0672 .0674 .0034 94.90 .0472 .0476 .0085 95.40 .0371 .0387 .0424 96.20

lx12 .0680 .0681 .0021 94.50 .0475 .0482 .0147 93.60 .0389 .0394 .0124 94.70

lx22 .0730 .0752 .0291 94.80 .0549 .0534 −.0269 93.80 .0466 .0440 −.0549 93.40

lx32 .0786 .0792 .0075 94.00 .0531 .0552 .0391 94.70 .0441 .0454 .0292 94.60

lx42 .0797 .0802 .0067 93.40 .0589 .0573 −.0268 93.20 .0492 .0475 −.0344 93.60

lx52 .0627 .0656 .0463 95.40 .0458 .0457 −.0016 94.40 .0364 .0375 .0304 94.80

lx62 .0840 .0879 .0461 95.30 .0595 .0582 −.0228 94.00 .0469 .0474 .0107 96.00

lx72 .0813 .0849 .0434 94.70 .0575 .0567 −.0139 94.30 .0441 .0457 .0366 95.10

lx82 .0816 .0869 .0650 95.90 .0571 .0582 .0200 95.60 .0483 .0480 −.0055 93.80

(Continued)
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Table 1. (Continued)

Parm N = 200 N = 400 N = 600

SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%)

ϕ21 .0942 .0937 −.0050 94.40 .0636 .0617 −.0292 94.90 .0509 .0501 −.0151 94.20

ly11 .0558 .0559 .0017 95.20 .0392 .0393 .0030 94.80 .0322 .0320 −.0065 96.60

ly21 .0580 .0594 .0238 95.70 .0415 .0423 .0194 95.80 .0348 .0344 −.0116 95.50

ly31 .0683 .0687 .0056 94.70 .0465 .0488 .0496 95.30 .0394 .0400 .0156 95.00

ly41 .0596 .0597 .0004 95.90 .0417 .0422 .0137 96.50 .0342 .0345 .0079 95.30

ly51 .0535 .0550 .0276 95.10 .0388 .0389 .0026 95.40 .0327 .0317 −.0296 95.60

ly61 .0764 .0758 −.0079 95.70 .0511 .0529 .0348 95.00 .0419 .0429 .0256 94.80

ly71 .0791 .0763 −.0362 95.20 .0535 .0532 −.0053 96.20 .0425 .0434 .0205 94.20

ly81 .0792 .0762 −.0379 94.90 .0514 .0534 .0393 95.40 .0430 .0436 .0153 96.20

ly12 .0870 .0894 .0276 94.50 .0611 .0610 −.0019 93.60 .0500 .0495 −.0091 94.70

ly22 .0755 .0790 .0472 94.80 .0545 .0544 −.0015 93.80 .0449 .0442 −.0167 93.40

ly32 .1136 .1152 .0140 94.00 .0803 .0807 .0057 94.70 .0669 .0667 −.0031 94.60

ly42 .0765 .0798 .0432 93.40 .0541 .0548 .0126 93.20 .0430 .0445 .0348 93.60

ly52 .0865 .0875 .0116 95.40 .0599 .0599 −.0002 94.40 .0498 .0487 −.0228 94.80

ly62 .0628 .0615 −.0208 95.30 .0422 .0420 −.0060 94.00 .0344 .0344 .0004 96.00

ly72 .0611 .0633 .0365 94.70 .0447 .0436 −.0244 94.30 .0365 .0356 −.0253 95.10

ly82 .0617 .0628 .0188 95.90 .0432 .0438 .0127 95.60 .0359 .0358 −.0014 93.80

Note: Parm = parameter, SD = standard deviation, Avg SE = average standard error, lx denotes the element of L
obli
xξ∣m, ϕ denotes the element of Φ, ly denotes the element of L

obli
yξ∣m, and the subscript after lx, ϕ, and ly

refers to the location of the element in the corresponding matrix.
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Table 2. Results from simulations under multivariate nonnormality

Parm N = 200 N = 400 N = 600

SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%)

lx11 .0678 .0662 −.0237 94.40 .0471 .0453 −.0391 94.00 .0364 .0369 .0157 94.80

lx21 .0482 .0509 .0558 97.00 .0324 .0336 .0379 95.80 .0255 .0265 .0404 96.50

lx31 .0689 .0691 .0039 95.40 .0479 .0474 −.0109 95.10 .0405 .0386 −.0461 93.90

lx41 .0452 .0489 .0835 97.40 .0310 .0311 .0025 94.60 .0242 .0248 .0233 95.80

lx51 .0655 .0647 −.0128 95.10 .0432 .0443 .0240 96.20 .0379 .0365 −.0389 94.90

lx61 .0681 .0696 .0226 96.00 .0489 .0489 −.0009 94.90 .0384 .0399 .0389 96.10

lx71 .0690 .0701 .0160 95.50 .0503 .0495 −.0150 95.10 .0405 .0406 .0012 94.70

lx81 .0655 .0679 .0377 95.30 .0494 .0473 −.0438 93.70 .0397 .0389 −.0212 93.70

lx12 .0660 .0683 .0347 95.00 .0476 .0484 .0164 95.50 .0375 .0396 .0568 95.50

lx22 .0766 .0741 −.0320 93.30 .0561 .0539 −.0375 92.60 .0459 .0443 −.0366 93.00

lx32 .0802 .0800 −.0023 93.80 .0544 .0565 .0370 95.70 .0453 .0458 .0107 95.20

lx42 .0840 .0810 −.0354 92.60 .0598 .0580 −.0298 93.30 .0491 .0478 −.0261 93.10

lx52 .0641 .0656 .0238 94.60 .0458 .0459 .0018 95.20 .0361 .0378 .0450 96.10

lx62 .0920 .0961 .0448 95.30 .0655 .0631 −.0369 93.60 .0528 .0519 −.0184 94.50

lx72 .0859 .0895 .0412 95.00 .0548 .0572 .0434 94.80 .0470 .0470 −.0004 95.20

lx82 .0891 .0886 −.0053 94.40 .0576 .0592 .0274 94.40 .0482 .0478 −.0074 95.10

ϕ21 .0954 .0973 .0201 95.40 .0672 .0642 −.0440 93.80 .0537 .0521 −.0308 94.70

(Continued)
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Table 2. (Continued)

Parm N = 200 N = 400 N = 600

SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%) SD Avg SE Relative Bias Coverage Rate (%)

ly11 .0693 .0641 −.0752 94.40 .0485 .0472 −.0269 94.00 .0388 .0387 −.0030 94.80

ly21 .0679 .0645 −.0491 97.00 .0486 .0476 −.0207 95.80 .0408 .0395 −.0318 96.50

ly31 .0804 .0785 −.0241 95.40 .0585 .0578 −.0120 95.10 .0476 .0479 .0056 93.90

ly41 .0676 .0646 −.0451 97.40 .0498 .0470 −.0554 94.60 .0396 .0388 −.0202 95.80

ly51 .0631 .0611 −.0327 95.10 .0438 .0444 .0129 96.20 .0368 .0362 −.0171 94.90

ly61 .0754 .0746 −.0105 96.00 .0526 .0527 .0011 94.90 .0431 .0429 −.0060 96.10

ly71 .0778 .0753 −.0315 95.50 .0525 .0528 .0055 95.10 .0445 .0432 −.0290 94.70

ly81 .0774 .0752 −.0276 95.30 .0550 .0532 −.0318 93.70 .0445 .0434 −.0253 93.70

ly12 .0895 .0916 .0245 95.00 .0610 .0632 .0370 95.50 .0512 .0512 .0003 95.50

ly22 .0813 .0814 .0018 93.30 .0559 .0556 −.0064 92.60 .0468 .0450 −.0383 93.00

ly32 .1188 .1196 .0071 93.80 .0857 .0847 −.0123 95.70 .0699 .0694 −.0076 95.20

ly42 .0811 .0817 .0074 92.60 .0560 .0558 −.0026 93.30 .0465 .0452 −.0269 93.10

ly52 .0875 .0907 .0360 94.60 .0633 .0624 −.0145 95.20 .0514 .0502 −.0228 96.10

ly62 .0696 .0683 −.0195 95.30 .0510 .0485 −.0488 93.60 .0418 .0399 −.0439 94.50

ly72 .0714 .0693 −.0304 95.00 .0468 .0480 .0276 94.80 .0417 .0396 −.0522 95.20

ly82 .0674 .0674 −.0005 94.40 .0472 .0469 −.0058 94.40 .0401 .0387 −.0353 95.10

Note: Parm = parameter, SD = standard deviation, SE = standard error, lx denotes the element of L
obli
xξ∣m , ϕ denotes the element of Φ, ly denotes the element of L

obli
yξ∣m, and the subscript after lx, ϕ, and ly refers to the

location of the element in the corresponding matrix.
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of relative biases are less than 0.1, and 3) all the coverage rates are close to 95%. Therefore, we conclude
that the IJ method performs well under both multivariate normality and multivariate nonnormality.

5. Two real examples

In this section, we use two real examples to demonstrate the interpretation of rotated redundancy
variates. In the first example, the dimensionality was determined by a previous study, and we apply
the normalized VARIMAX (Kaiser, 1958) for rotation. In the second example, we use the new criterion
proposed by Gu et al. (2023) to determine the dimensionality and apply the normalized QUARTIMIN
(Browne, 2001; Carroll, 1953) for rotation. The data and code for Example 1 can be found from the
Supplementary Materials, and those for Example 2 can be requested from the first author.

5.1. Example 1
In the first example, we use the data from van Dam and van Trijp (2011), who collected 851 survey
responses from the light users of sustainable products and applied RA to predict 10 variables measuring
the motivational structure of sustainability by 15 variables that include psychographic variables and
purchase behavior. The 10 motivational structure variables are healthiness (y1), price (y2), convenience
(y3), naturalness (y4), taste (y5), local production (y6), environment friendliness (y7), fair trade (y8), animal
friendliness (y9), and waste (y10). The 15 predictor variables are concern for future consequences (x1),
prevention focus (x2), promotion focus (x3), altruistic value (x4), biospheric value (x5), egoistic value (x6),
NEP8scale (x7), connectedness to nature (x8), environment affect (x9), ethical orientation (x10), health
prevention (x11), health promotion (x12), social SVO9 (x13), individual SVO (x14), and competitive SVO
(x15). More details of these variables can be found from van Dam and van Trijp (2011).

By applying RA, we find that the first three redundancy indices are .2503, .0357, and .0074, which
are exactly the same as those reported by van Dam and van Trijp (2011, p. 736), and all subsequent
redundancy indices are smaller than .005. According to van Dam and van Trijp (2011), the first two
redundancy indices are meaningful, and the third and subsequent redundancy indices can be ignored.
Thus, we focus on the first two columns of the redundancy loadings and the cross-loadings.

To obtain the standard error estimates for unrotated RA estimates, we fit the original RA-L model.
The estimation method we use include maximum likelihood (ML), which requires the multivariate
normality assumption of the data, and ML with the Satorra–Bentler correction (referred to as MLSB
hereafter), which does not require any distribution assumptions of the data. Table 3 shows the first two
columns of Lxξ and Lyξ and the associated standard error estimates from ML and MLSB, separately.

By applying the normalized VARIMAX, we obtain Lorth
xξ∣m and Lorth

yξ∣m. To obtain the standard error
estimates for rotated RA estimates, we fit the modified RA-L model for orthogonal rotations estimated
by ULS, and apply the IJ method described in this paper. Table 4 shows Lorth

xξ∣m, Lorth
yξ∣m, and the associated

standard error estimates from the IJ method.
Using the standard error estimates, we can test if the absolute value of a rotated redundancy loading

in Lorth
xξ∣m is larger than some cutoff value. Because the rotated redundancy loadings are correlations, we

take .3 as the cutoff value, which means that at least 9% of the variance of a predictor variable must
be shared with a rotated redundancy variate. Because we need to test the statistical significance of 30
rotated redundancy loadings simultaneously, it is necessary to adjust the typical significance level of .05.
For convenience, we use the Bonferroni adjustment so that the adjusted significance level is .00167. It
means that we will select a rotated redundancy loading if the associated p-value is smaller than .00167.

Based on the selected rotated redundancy loadings, we use the corresponding predictor variables to
interpret the rotated redundancy variates. Specifically, the first rotated redundancy variate should be

8NEP stands for New Ecological Paradigm. It is a scale to measure pro-environmental orientation.
9SVO stands for social value orientation. It is a scale that allocates people based on the number of choices that maximize

the own gain (individual), the joint gain (social), or the difference between own and other’s gain (competitive).
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Table 3. The first two columns of unrotated redundancy loadings and unrotated cross-loadings and the associated standard

error estimates from ML and MLSB

Point estimate SE from ML SE from MLSB

ξ1 ξ2 ξ1 ξ2 ξ1 ξ2

First two columns of unrotated

redundancy loadings in Lxξ∣m

x1 −.0792 −.2800 x1 .0453 .0782 x1 .0502 .0924

x2 .0038 −.0711 x2 .0448 .0771 x2 .0503 .0794

x3 .0490 .1530 x3 .0447 .0729 x3 .0499 .0822

x4 .6192 .4499 x4 .0326 .0525 x4 .0372 .0571

x5 .8088 −.0372 x5 .0205 .0523 x5 .0238 .0561

x6 −.0060 .2280 x6 .0452 .0754 x6 .0493 .0826

x7 .5128 .0689 x7 .0354 .0711 x7 .0388 .0753

x8 .7351 .0416 x8 .0250 .0564 x8 .0277 .0568

x9 .5215 .0277 x9 .0349 .0667 x9 .0418 .0666

x10 .7901 −.3497 x10 .0229 .0492 x10 .0257 .0558

x11 .5938 .4012 x11 .0334 .0591 x11 .0382 .0644

x12 .1680 −.0729 x12 .0440 .0792 x12 .0538 .0877

x13 .1290 −.0224 x13 .0440 .0733 x13 .0449 .0718

x14 −.1274 .0619 x14 .0440 .0732 x14 .0462 .0713

x15 −.0136 .0573 x15 .0445 .0722 x15 .0436 .0758

ξ1 ξ2 ξ1 ξ2 ξ1 ξ2

First two columns of unrotated

cross-loadings in Lyξ∣m

y1 .4749 .2177 y1 .0287 .0315 y1 .0329 .0351

y2 .1132 .3267 y2 .0383 .0326 y2 .0462 .0341

y3 −.0256 .2974 y3 .0385 .0357 y3 .0469 .0387

y4 .6012 −.0103 y4 .0220 .0238 y4 .0262 .0294

y5 .2069 .2904 y5 .0365 .0319 y5 .0447 .0329

y6 .5684 −.0922 y6 .0235 .0271 y6 .0249 .0346

y7 .6677 −.1256 y7 .0192 .0224 y7 .0209 .0282

y8 .6591 −.0100 y8 .0196 .0274 y8 .0210 .0293

y9 .5933 −.0063 y9 .0224 .0260 y9 .0252 .0265

y10 .5522 −.0724 y10 .0241 .0269 y10 .0261 .0313

Note: SE = standard error estimate, ML =maximum likelihood, MLSB =maximum likelihood with the Satorra–Bentler correction.

interpreted in terms of biospheric value (x5), NEP scale (x7), connectedness to nature (x8), environment
affect (x9), and ethical orientation (x10); however, all the rotated redundancy loadings are smaller than
.3 in the second column of Lorth

xξ∣m. Accordingly, the first rotated redundancy variate can be interpreted as
people’s concern for environmental sustainability.

It is worth noting that if we only compared the absolute values of rotated redundancy variates against
.3 but did not consider the sampling variability, we would select two more rotated redundancy loadings
in the first column of Lorth

xξ∣m (i.e., .5698 and .5495) that correspond with altruistic value (x4) and health
prevention (x11). Nevertheless, the significance tests indicate that the rotated redundancy loadings on
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Table 4. Rotated redundancy loadings, rotated cross-loadings, and the associated standard error

estimates from the IJ method

Point estimate SE from IJ

ξ1 ξ2 ξ1 ξ2

Rotated redundancy loadings in L
obli
xξ∣m x1 −.0501 −.2867 x1 .0548 .0963

x2 .0110 −.0703 x2 .0490 .0806

x3 .0330 .1572 x3 .0475 .0846

x4 .5698 .5110 x4 .0962 .1056

x5 .8084 .0459 x5 .0258 .1306

x6 −.0293 .2261 x6 .0514 .0826

x7 .5030 .1211 x7 .0476 .0852

x8 .7269 .1167 x8 .0345 .1268

x9 .5159 .0810 x9 .0468 .0932

x10 .8217 −.2669 x10 .0513 .1591

x11 .5495 .4600 x11 .0888 .1164

x12 .1746 −.0553 x12 .0519 .0914

x13 .1306 −.0090 x13 .0438 .0689

x14 −.1331 .0485 x14 .0462 .0698

x15 −.0194 .0556 x15 .0432 .0765

ξ1 ξ2 ξ1 ξ2

Rotated cross-loadings in L
obli
yξ∣m y1 .4501 .2652 y1 .0565 .0834

y2 .0792 .3365 y2 .0750 .0364

y3 −.0559 .2932 y3 .0636 .0387

y4 .5991 .0513 y4 .0280 .1035

y5 .1761 .3101 y5 .0666 .0404

y6 .5749 −.0335 y6 .0258 .1076

y7 .6770 −.0565 y7 .0212 .1111

y8 .6566 .0576 y8 .0241 .1217

y9 .5908 .0545 y9 .0276 .1014

y10 .5567 −.0154 y10 .0259 .0942

Note: SE = standard error estimate, IJ = infinitesimal jackknife. The rotated redundancy loadings whose absolute
values are significantly larger than .3 are in boldface.

these two variables are not really larger than .3, and their magnitude observed in this example just
appears to be larger than .3 due to randomness. If these two variables would be used to interpret the
first rotated redundancy variate, it would totally change the current interpretation of the first rotated
redundancy variate. This reflects the advantage of the use of standard error estimates in selecting the
rotated redundancy loadings.

5.2. Example 2
In the second example, we use the data from Jurukasemthawee et al. (2021) that collected responses
from 424 young adults (mean age = 19.97, standard deviation of age = 1.64) on 9 psychological variables,
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Table 5. Results of the individual redundancy indices and cumulative redundancy for the real example

Individual redundancy Cumulative 95% CI for cumulative 95% CI for cumulative

index redundancy redundancy from ML redundancy from MLSB

1 .3116 .3116 (.2728, .3504) (.2696, .3536)

2 .0458 .3574 (.3197, .3951) (.3165, .3982)

3 .0341 .3915 (.3545, .4285) (.3524, .4306)

4 .0086 .4001 (.3633, .4369) (.3606, .4396)

5 .0062 .4063 (.3698, .4428) (.3672, .4454)

6 .0017 .4080 (.3715, .4445) (.3688, .4472)

7 .0002 .4081 (.3717, .4446) (.3689, .4474)

Note: CI = confidence interval, ML = maximum likelihood, MLSB = maximum likelihood with the Satorra–Bentler
correction.

serving as the predictor variables, and 7 spiritual well-being variables, serving as the outcome variables.
The 9 predictor variables are family and environment background (x1), crisis in life that contributed to
self-development (x2), positive personal predisposition (x3), good role models (x4), faith activities (x5),
mindfulness and self-regulation (x6), voluntary activities (x7), self-reflection (x8), and listening to positive
experience (x9). The 7 spiritual well-being variables are: inner peace (y1), acceptance in diversity (y2),
compassion (y3), self-transcendence (y4), value in self (y5), meaning in life (y6), and insight in learnings
(y7). Each of the predictor and outcome variables is computed from the sum of item scores that are
measured on a Likert scale ranging from 0 to 6. The number of items used for each of the predictor and
outcome variables is from 5 to 12 items. More details of these items can be found from Jurukasemthawee
et al. (2021).

To determine the dimensionality in this example, we apply a new criterion proposed by Gu et al.
(2023), which relies on the inferential information of redundancy indices. Specifically, we need to
compare the lower limit of the 95% confidence interval (CI) for cumulative redundancy with some
cutoff value. As a result, the smallest cumulative redundancy, of which the lower limit is larger than
the specified cutoff value, can be identified. The identified cumulative redundancy determines the
dimensionality in RA. In other words, we should retain the individual redundancy indices that constitute
the identified cumulative redundancy. As for the cutoff value, we choose .3, meaning that at least 30%
of the variance of criterion variables must be explained. To apply this new criterion, we need to fit the
original RA-L model. As for the estimation method, we still use ML and MLSB.

Table 5 shows the results of the individual redundancy indices and cumulative redundancy for this
example. By examining the lower limit of the 95% CI of cumulative redundancy, we find that the second
cumulative redundancy is the smallest cumulative redundancy whose lower limit is larger than .3. It
means that we should retain the first two individual redundancy indices. In addition, we notice that the
second and third redundancy indices have comparable magnitude and both of them are distinctively
larger than the fourth and subsequent redundancy indices, all of which are smaller than .01. Thus, we
further study the difference between the second and third redundancy indices and their sum10. The
results in Table 6 show that the 95% CI for the difference includes 0, indicating that the second and third
redundancy indices are not significantly different; simultaneously, the lower limit of the 95% CI for their
sum is larger than .06 and the upper limit is nearly .10, indicating that the second and third redundancy
indices can explain about 6–10% of the variance of criterion variables. Based on these results, we decide

10Gu et al. (2023) showed that individual redundancy indices are functions of the parameters of the original RA-L model.
Thus, the difference between the second and third redundancy indices and their sum are also functions of the parameters of
the original RA-L model. This allows us to apply the multivariate delta method to obtain the relevant inferential information.

https://doi.org/10.1017/psy.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.8


Psychometrika 203

Table 6. Difference between the 2nd and 3rd individual redun-

dancy indices and sum of the 2nd and 3rd individual redundancy

indices

95% CI from ML 95% CI from MLSB

Difference = .0116 (−.0054, .0287) (−.0059, .0292)

Sum = .0799 (.0630, .0968) (.0615, .0983)

Note: Difference= the 2nd individual redundancy index− the 3rd individual
redundancy index, Sum = the 2nd individual redundancy index + the 3rd
individual redundancy index, CI= confidence interval, ML=maximum like-
lihood, MLSB =maximum likelihood with the Satorra–Bentler correction.

to retain the first three redundancy variates. The unrotated redundancy loadings and unrotated cross-
loadings of the first three redundancy variates are shown in Table 7.

By applying the normalized QUARTIMIN, we obtain Lobli
xξ∣m, Lobli

yξ∣m, and Φ. To obtain the standard
error estimates for rotated RA estimates, we fit the modified RA-L model for oblique rotations estimated
by ULS, and apply the IJ method described in this paper. Table 8 shows Lobli

xξ∣m, Lobli
yξ∣m, and Φ, and the

associated standard error estimates from the IJ method.
Using the standard error estimates, we can test if the absolute value of a rotated redundancy loading

in Lobli
xξ∣m is larger than some cutoff value. Again, we take .3 as the cutoff value. Because we need to test

the statistical significance of 27 rotated redundancy loadings simultaneously, it is necessary to adjust the
typical significance level of .05. We use the Bonferroni adjustment again so that the adjusted significance
level is .00185. It means that we will select a rotated redundancy loading if the associated p-value is
smaller than .00185.

Based on the selected rotated redundancy loadings, we use the corresponding predictor variables
to interpret the three rotated redundancy variates. Specifically, the first rotated redundancy vari-
ate should be interpreted in terms of positive personal predisposition (x3), voluntary activities (x7),
self-reflection (x8), and listening to positive experience (x9); the second rotated redundancy variate should
be interpreted in terms of family and environment background (x1), crisis in life that contributed to self-
development (x2), and Mindfulness and Self-Regulation (x6); and the third rotated redundancy variate
should be interpreted in terms of faith activities (x5). Accordingly, the first rotated redundancy variate
can be interpreted as positive personal predispositions that facilitated attention to positive experiences,
self-reflection, and voluntary activities; the second rotated redundancy variate can be interpreted as
safe family and environmental backgrounds that facilitated the use of mindfulness and self-regulation in
transforming crisis into self-development; and the third rotated redundancy variate can be interpreted as
engagement in activities that were related to own faiths. Also, we found that the correlation between the
first and second rotated redundancy variates is .7029 (with standard error estimate = .0265), suggesting
that the first and second rotated redundancy variates share almost 50% of their variance. It implies
that positive personal predispositions and safe family and environmental backgrounds are closely and
significantly related. It should be noted that only oblique rotations can produce correlated rotated
redundancy variates and the resulting correlations may bring more meaningful interpretations and
insights to the study than the orthogonal rotations.

It is worth noting that if we only compared the absolute values of rotated redundancy variates against
.3 but did not consider the sampling variability, we would select one more rotated redundancy loading
in the third column of Lobli

xξ∣m (i.e., .3102) that corresponds with voluntary activities (x7). Nevertheless,
the significance test indicates that the rotated redundancy loading on this variable is not really larger
than .3. If this variable would be used to interpret both the first and third rotated redundancy variates,
it would cause some inconvenience in the interpretation, which in turn reflects the advantage of the use
of standard error estimates in selecting the rotated redundancy loadings.
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Table 7. The unrotated redundancy loadings and unrotated cross-loadings for the first three redundancy variates

Point estimate SE from ML SE from MLSB

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

First three columns of unrotated redundancy loadings in Lxξ∣m x1 .5734 −.1988 −.0432 x1 .0421 .0807 .1126 x1 .0479 .0894 .1433

x2 .7946 −.2552 .1235 x2 .0268 .0784 .1129 x2 .0289 .0927 .1198

x3 .9231 .1773 −.1194 x3 .0145 .0647 .0770 x3 .0150 .0756 .0878

x4 .6062 .1196 .0278 x4 .0397 .0790 .0938 x4 .0444 .0921 .1097

x5 .5404 .0012 .7650 x5 .0455 .3001 .0450 x5 .0483 .3251 .0500

x6 .8144 −.3140 −.0987 x6 .0251 .0705 .1361 x6 .0271 .0925 .1558

x7 .6313 .3061 .2998 x7 .0387 .1351 .1331 x7 .0396 .1710 .1501

x8 .6755 .2733 −.2178 x8 .0360 .1084 .1222 x8 .0396 .1412 .1291

x9 .6753 .2858 .2208 x9 .0358 .1053 .1213 x9 .0367 .1108 .1410

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

First three columns of unrotated cross-loadings in Lyξ∣m y1 .6652 −.3248 .0221 y1 .0289 .0353 .1164 y1 .0302 .0378 .1324

y2 .4895 .1067 −.3511 y2 .0401 .1553 .0486 y2 .0488 .1823 .0502

y3 .5849 .3443 −.0615 y3 .0350 .0448 .1135 y3 .0352 .0513 .1309

y4 .5261 .0816 .0785 y4 .0356 .0504 .0471 y4 .0407 .0513 .0511

y5 .2846 −.2592 −.2134 y5 .0491 .0991 .0887 y5 .0548 .0986 .0995

y6 .6250 −.0803 .1263 y6 .0302 .0667 .0433 y6 .0333 .0809 .0455

y7 .6393 .0681 .2091 y7 .0297 .0975 .0438 y7 .0337 .1185 .0460

Note: SE = standard error estimate, ML =maximum likelihood, MLSB =maximum likelihood with the Satorra–Bentler correction.
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Table 8. Results of the rotated redundancy loadings, the rotated cross-loadings, and the correlations of the three rotated

redundancy variates

Point estimate SE from IJ

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

Rotated redundancy loadings in L
obli
xξ∣m x1 .0327 .5860 −.0044 x1 .0506 .0412 .0802

x2 .0280 .7620 .1847 x2 .0607 .0636 .0624

x3 .7291 .3137 −.1069 x3 .0557 .0549 .0529

x4 .4573 .1880 .0412 x4 .1072 .1065 .0719

x5 .0870 .2054 .8249 x5 .0234 .0261 .0200

x6 .0133 .8776 −.0424 x6 .0294 .0314 .0586

x7 .6529 −.0719 .3102 x7 .0616 .0576 .0479

x8 .7570 .0629 −.2290 x8 .0374 .0248 .0385

x9 .6671 −.0106 .2309 x9 .0854 .0782 .0738

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

Rotated cross-loadings in L
obli
yξ∣m y1 .4762 .7345 .2226 y1 .0376 .0245 .0490

y2 .4895 .4401 −.1660 y2 .0467 .0499 .0508

y3 .6741 .4235 .1500 y3 .0284 .0423 .0472

y4 .5142 .4545 .2501 y4 .0397 .0415 .0454

y5 .1542 .3727 −.1209 y5 .0535 .0504 .0552

y6 .5390 .6018 .3197 y6 .0377 .0320 .0463

y7 .6126 .5559 .4097 y7 .0322 .0343 .0365

ξ1 ξ2 ξ3 ξ1 ξ2 ξ3

Correlations between rotated

redundancy variates in Φ
ξ1 1.0000 ξ1 N/A

ξ2 .7029 1.0000 ξ2 .0265 N/A

ξ3 .3218 .2234 1.0000 ξ3 .0345 .0289 N/A

Note: SE = standard error estimate, IJ = infinitesimal jackknife. The rotated redundancy loadings whose absolute values are significantly
larger than .3 are in boldface.

6. Discussions

In this paper, we specify two modified RA-L models for orthogonal and oblique rotations, separately, and
describe the IJ method with the ULS fitting function to produce the standard error estimates for rotated
RA estimates. Then, a simulation study is conducted to validate the performance of the IJ method.
Additionally, two real examples are used to demonstrate the use of standard error estimates for rotated
redundancy loadings when the rotated redundancy variates are interpreted. It was observed that the
use of standard error estimates refines the selection of the rotated redundancy loadings and provides
meaningful interpretations of the rotated redundancy variates in both examples.

Regarding the rotation method, one can use any of the rotation methods from the Crawford–
Ferguson family (Crawford & Ferguson, 1970), while the choice of rotation method only changes one
thing in the implementation of the IJ method. Specifically, the choice of rotation method determines the
simplicity function (i.e., horth in equation 13 or hobli in equation 14) used in the fourth type of constraints
of the modified RA-L model, and the fourth type of constraints determines the last component of the
Jacobian matrix (i.e., ∂φ3(θ)

∂θ′ ) in equation (23). In other words, if a different rotation method is used, it
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is only the partial derivatives of the constraints in equation (13) or (14) that must be changed in the
implementation of the IJ method.

Regarding the computation of partial derivatives, Lord (1975) and Browne and Du Toit (1992)
recommended the use of numeric derivatives for nonstandard problems and models. Also, Jennrich
(2008) reported good performance of numeric derivatives in the implementation of the IJ method. In
our simulation study, we used numeric derivatives and obtained satisfactory results from the IJ method.
Admittedly, one can argue that, in equations (23) and (24), the use of numeric derivatives is not as
efficient/fast as the use of analytic derivatives. But this is a minor limitation in practical data analysis,
because the difference in speed is trivial if there are only a few data sets to be analyzed. If there are a
large number of data sets to be analyzed such as in simulation studies, then the difference would become
noticeable. However, it is quite challenging to derive the necessary formulas for partial derivatives of
different kinds of simplicity functions if the analytic derivatives must be used.

Finally, we would like to point out that the IJ method is a very general method for standard error
estimation, but it is under-utilized in psychometrics. Historically, Jennrich and Clarkson (1980) first
developed this method in the context of EFA. Later, Jennrich (2008) extended this method to the general
framework of covariance structure analysis and referred to this method as the IJ method. Nonetheless,
there are only two studies that applied the IJ method: Zhang et al. (2012) and Gu et al. (2021). We hope
that our work would draw the attentions of not only the researchers but also the software developers
who can develop accessible software programs to better promote the use of the IJ method.

Supplementary material. To view supplementary material for this article, please visit http://doi.org/10.1017/psy.2024.8.
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