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Abstract

Long periodic waves propagating in a closed channel are considered. The fluid consists of
two layers of constant densities separated by a layer in which the density varies continuously.
The numerical results of Vanden-Broeck and Turner {8] are extended. It is shown that their
solutions are particular members of a family of solutions. Solutions are selected by requiring
that the streamfunction takes values on the upper and lower walls which are consistent with
a uniform stream far upstream. The new solutions are qualitatively similar to those of
Vanden-Broeck and Turner [8]. In particular, there are periodic waves characterized by a
train of ripples at their troughs. It is shown numerically that these waves approach solitary
waves with oscillatory tails as their wavelength increases. Moreover special solutions for
which the amplitude of the ripples is almost zero are identified. Such solutions without
ripples were previously found for solitary waves with surface tension.

1. Introduction

The familiar gravity solitary wave on the surface of a fluid in water of finite depth is
characterized by a uniform stream in the far field. When a small amount of surface
tension is introduced, the solitary wave takes the form of a single crest with, on
either side, a small-amplitude oscillation extending to infinity without decrement in
its amplitude. Such waves are sometimes called “generalized solitary waves” to
distinguish them from the familiar solitary waves. Hunter and Vanden-Broeck [3]
calculated long periodic gravity capillary waves with oscillations at their troughs.
Vanden-Broeck [7] extended the numerical results of Hunter and Vanden-Broeck [3].
He showed numerically that the periodic waves of Hunter and Vanden-Broeck [3]
approach generalized solitary waves as their wavelength is increased. In addition he
identified special solutions for which the amplitude of the ripples is essentially zero.
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Beale [2] and Sun [5] proved analytically the existence of generalized gravity capillary
solitary waves.

Akylas and Grimshaw [1] and Sun and Shen [6] considered solitary internal waves
in a density-stratified fluid of shallow depth. By using asymptotics beyond any order,
they showed that solitary waves of mode n > 1 are generalized solitary waves (that is,
they have oscillatory tails of infinite extent, consisting of lower-mode short waves).
Vanden-Broeck and Turner [8], in an independent work, considered long periodic
internal waves. By using a finite difference method in the layer of variable density and
boundary integral equation methods in the layers of constant densities, they computed
periodic waves of mode 2 whose wavelength is large compared to the thickness of
the layer of variable density. They found that these waves are characterized by a
train of periodic waves of mode 1 in their troughs. Since long periodic waves can be
used as an approximation for solitary waves, their findings suggest the existence of
generalized solitary waves for internal waves.

In this paper we consider further the long periodic internal waves of Vanden-Broeck
and Turner [8]. We show that the solutions of Vanden-Broeck and Turner [8] are
particular members of a family of solutions for which the streamfunction can take any
prescribed value on the upper wall. Among this family, the most interesting solution
is the one for which the streamfunction takes values on the upper wall (and also on
the lower wall) which are consistent with a uniform stream far upstream. Therefore
we present a modified scheme in which these conditions on the streamfunction are
imposed. Our numerical solutions are qualitatively similar to those of Vanden-Broeck
and Turner [8], that is, there are long periodic waves with a train of short waves in their
troughs. One main difference is that the new solutions approach a uniform stream
as their amplitude decreases (the solutions of Vanden-Broeck and Turner approach
conjugate flows as their amplitude decreases). We use a procedure similar to the
one developed by Vanden-Broeck [7] to show that the long periodic waves approach
generalized solitary waves as their wavelength is increased. More precisely we show
that starting with a given periodic wave we can generate a new one by increasing its
wavelength by a multiple of the wavelength of the ripples in the trough, leaving the
main crest almost intact. By taking larger and larger multiples of the wavelength of
the ripples, we can generate longer and longer periodic waves. In the limit this gives a
generalized internal solitary wave. We show that the ripples are consistent with linear
theory. Finally we identify special solutions for which the amplitude of the ripples is
almost zero. Such solutions were not computed by Vanden-Broeck and Turner [8].

The numerical procedure is described in Section 2 and the results are presented in
Section 3.

https://doi.org/10.1017/50334270000000862 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000862

{3] Internal solitary waves with stratification in density 565

2. Formulation

In this section we summarize the formulation of the problem. More details can be
found in Vanden-Broeck and Turner [8].

We consider a periodic wave moving to the left at a constant velocity ¢ in a fluid
bounded above and below by horizontal walls (see Figure 1). The fluid consists of
two layers of constant densities p; > p, separated by a region of linear stratification
in density. We assume that the fluid is inviscid, incompressible, and nondiffusive.
We choose Cartesian coordinates moving with the wave so that the whole flow is
steady. The x axis is on the horizontal bottom and the y axis passes through a crest
of the wave. We also assume that the acceleration of gravity g acts in the negative y
direction.

L U W W VN VA VA O W W W W VO N . VO O W N . V. N p=p+a

x
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FIGURE 1. Sketch of the wave and of the coordinates.

We denote by u and v the x and y components of the velocity, and by ¥ (x, y) the
streamfunction, so that
u=1y,,
v = —Y,.
Let ¥y = 0 and ¥ = « be the two streamlines bounding the region in which the

density varies linearly with ¥, and let —y and « + B be the values of 3 on the
lower and upper horizontal walls, respectively. Then, we have the following density

(D

distribution
o1, when —y < ¥ <0,
p=3p+(—p)V¥/a, whenO < ¢ < a, ?)
P2, whenao < ¢ < a + B.
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We introduce dimensionless variables by choosing a/c as reference length, ¢ as
reference velocity, and p, as reference density. Thus, we define the following new

variables
x' = cx/e, Yy =cy/a, V' =v/q, 3)
p'=p/p, V' =vle, B =8l
and rewrite (2) in terms of the variables (3). This gives, after dropping the primes,
1, when —y < ¢ <0,
p=31+(-1Dy¥, whenO<y <1, (5)
P2, whenl < ¢ < 14 8.

The streamfunction  satisfies Long’s [4] equation. This equation can be written
in terms of the function y = f(x, ¥) as

p A1+ f? d [ f 12 11 1\ _
sar o (5) o (Gfm iz z) = e oA

Here, A = ga/c? is a dimensionless quantity (see Vanden-Broeck and Turner [8] for
a derivation of (6)). The equation (6) holds for 0 < ¥ < 1. For future reference we
note that f = ¥ + y is a solution of (6). This corresponds to a uniform stream with
constant velocity ¢ characterizedby y = y on y = 0.

We assume that the wave is symmetric about the y axis and we denote by [ the
wavelength of the wave. Then the symmetry and periodicity of the wave gives us the
boundary conditions:

=0, O0<vy <1, x=0,

l Q)
=0, O<1/f<1,x=§.

As in Vanden-Broeck and Turner [8] it may be shown that the components (ur(x),
vr(x)) and (u3(x), vg(x)) of the velocity on the streamlines { = 1 and ¥ = O satisfy

ur(x) =1 —ivr(x)

2 5
=7 / ur () — 1 — ivr(x)]
0

2rx’ 2nf(x, 1) P2rx 2nf(x, 1) -t
x[e"p(z T )_e"p(z T

X exp (i27tx’ B 2 f(x', 1)) (1 +i8f(x’/, 1)) A’

) ) ox
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[

+ %/i[ur(x') S 4ivr ()
0

—i2nx' 2mf(x',1) rx 2nf(x, D\
x[exp( ] - ] — exp T ] )]

—i2rx’  2af(x’,1) Of(x', 1) ,
X exp ] - ] 1- IT dx

2 [
- —/ fur(x) =1 +ivr(x)]
0

l
2rx’  2nf(x',1) 4mh 2nx  2nf(x, D\
X | exp + - — exXp -
1 l l l l
‘2 ' ’ 4 ’
X exp i2nx +27rf(x,1)_ mh 1_iaf(x,l) dx’
[ l l ox’

2 1
- 7[ [ur(x) — 1 —ivr(x)]
0

[ (—i2ﬂx' 2rf(x’, 1) 4yrh) (i2nx 271f(x,1)):|—l
x | exp + - —~ exp -

; I ! ! :
—i2 ’ 2 1 4 !
Xexp( i2nx | 2mf 1) nh) (1+iigc:_l))dx’, ®

l l {

ug(x) — 1 —ivg(x)
2 3
= 7/ [up(x’) — 1 —ivg(x")]
0

. , , . ~1
g I:exp<—l7}7rx + 27tf(lx ,0)) —exp( t?nx + 27tf§x,0)>]

con (L L) S

2 1k
T f s () — 1 + ivp(x)]
0

: ' ’ 3 -1
g [exp (1271rx + 271f(lx ,0)) 3 exp( t?nx + 27tf§x,0)):|

2rx’ 2 0 of (x', 0
xexp(l 7;x + nf(lx )) (l—i“_fg;, )>d"’

1

2 32
-7 f s () — 1 + ivp ()]
0
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—i2nx’  2nf(x',0) —2rx  2nf(x,0)
X | exp ] - ] — exp ] + ]

x exp (—i2nx’ B 2nf(x’, 0)) <1 _ i8f(x’, O))dx’

l { ax’

- Efi[ua(x’) — 1 —ivp(x)]
7 Js

i2nx’  2nf(x’,0) —i2rx  2nf(x, 0\
X | exp T ] — exp ] + ] )

) B ’ ’
xexp(l X _27tf(x,0)> (1+iaf(x’0))dx'.
l l ax’

The parameter A is the dimensionless value of y on the upper wall.
On the top and bottom walls, we have the boundary conditions

the value of steamfunction i on the top wall = 1 4 8,

the value of steamfunction ¥ on the bottom wall = —y.

(6]

I

9)

(10)

Next, by denoting the real parts of the right-hand sides of (8) and (9) by Rr and Ry

and by using the identities

ur(x) = [fy(x, DI,
vr(x) = [fe(x, DILfy (x, D17,
up(x) = [fy(x,0017",
vp(x) = [fi(x, I fy (x, 0]

we obtain the integro-differential equations

[flﬁ(xv 1)]—1 -1= RT’
[fy(x, 001" — 1 =Rs.

We define the amplitude a of the wave by

a=f(x,1)—1—y.

)
(12)
(13)
(14)

15)
(16)

a7

The mathematical problem we are considering is the following: for given values of
the parameters a, p,, h, B, y and [, we want to solve the partial differential equation

(6) in the domain

l
0<x<§, 0<y <,
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with the four boundary conditions (7), (10), (15) and (16). The parameter A is to be
found as part of the solution.

The problem solved by Vanden-Broeck and Turner [8] differs from ours, because
they do not use the conditions (10). Since the parameter 8 appears only in (10), their
scheme converges to solution for which a particular value of 8 is found as part of the
solution. Therefore their solutions are particular solutions of the general mathematical
problem defined in the previous paragraph.

Since the Bernoulli’s head was chosen such that the uniform stream is a solution
of Long’s equation (see remark after equation (6)), the most interesting solutions are
the ones for which the value of 8 is consistent with a uniform stream. Therefore we
consider in this paper solutions satisfying the condition

B=h—-1-y. (18)

The numerical procedure follows closely Vanden-Broeck and Turner [8]. We first
introduce the mesh points

x=[U-1)y/CM =-D)l, I=1,...,M,
¥y =[(J—-1)/(N-1)] J=1,...,N,

and the unknowns
fiu=fn,v), I=1,....M; J=1,...,N.

We satisfy the partial differential equation (6) at the mesh points (x;, ¥;); I =
2,...,M—1; J=2,..., N—1, and boundary conditions (7)aty;, J =1,..., N.

The boundary equations (15) and (16) are imposed at the midpoints x/» = (x; +
xe)/2, I=1,...,M-3

The last three equations come from (10) and (17). For given values of a, p,, 8,
y and [, the system of M N + 1 equations for the MN + 1 unknowns &, f;;, [ =
l,...,M, J=1,..., N is solved by Newton’s method.

In Vanden-Broeck and Turner’s [8] scheme, the equations (10) were not used and
(15) and (16) were satisfied at the midpoints x,, I =1,..., M — 2.

The left hand sides of (10) are evaluated by first calculating (u, v) in the irrotational
parts of the flow in terms of the unknowns by using the Cauchy integral equation
formula. We then integrate numerically u = ,.

3. Discussion of results

Vanden-Broeck and Turner [8] presented solutions fora = 0.32, o, = 0.5,y = 10
and A = 21. We repeated their calculations and substituted their solutions into (10).
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We found that the second of the conditions (10) is approximately satisfied. For
example, the values of the left hand side of the second of the conditions (10) takes the
values —10.35, —10.49, —9.9 and —9.2 for the solutions presented in their Figures
4a-4d. On the other hand, substituting their solutions into the left hand side of the
second of the conditions (10) gives B = 3.73, 8 = 4.94, 8 = 9.71 and 8 = 11.79
for their solutions in Figures 4a-4d. Therefore the solutions of Vanden-Broeck and
Turner [8] do not in general satisfy (18).

9 ' T
PO A

88 (0)

8.6
84}

82F

18

76

7.4

12 14 16 18 20 4
FIGURE 2. Values of A versus wavelength [ witha = 0.32, p, = 0.5, 8 = 10.0, ¥ = 10.0 for three
families of solutions. The broken curve was obtained by translating the portion (a)-(b) of family (A).

We used the scheme described in the previous section to compute solutions which
satisfy (18). Solutions were computed for various values of a, p,, 8, y. It was found
that that the new solutions are qualitatively similar to those of Vanden-Broeck and
Turner [8]. In particular there exist long periodic internal waves with a train of short
waves in their troughs. We found that for each value of the amplitude a, there are many
different families of solutions. Each family is characterized by the two parameters
A and . For sufficiently long waves, the families are almost parallel curves. This is
illustrated in Figure 2 where we present values of A vs [ with a = 0.32, p, = 0.5,
B = y = 10.0 for three families. In the following discussion we denote these families
by (A), (B) and (C) (see Figure 2). The families (A), (B) and (C) were computed with
N =20and M =47, M = 57 and M = 67 respectively. We checked that the results
do not change within graphical accuracy when N and M are doubled. Typical profiles
of the waves for families (B), (A) and (C) are shown in Figures 3, 4 and 5. The 20
curves on each profile correspond to the streamlines ¢, = (J—1)/19, J =1,...,20.
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The streamlines v, and v separate the region of variable density from the regions of
constant densities. In these Figures the Cartesian coordinates X =x, ¥ = y — y are
used, and only one-half of a wavelength is shown. We note that on one wavelength,
the waves of family (C) have one more wavelength of short waves in their tail than
the waves of family (B) and two more wavelengths than the waves of family (A).
We expect that there are an infinite number of families of solutions and therefore an
infinite number of parallel curves in Figure 2. As one moves to the right from a curve
to the next parallel curve, the central part of the wave remains almost unchanged and
one more wavelength of short waves appears in the tail. Therefore by jumping to the
right from curves to curves, we obtain in the limit a wave with an infinite oscillatory
tail, that is, a generalized solitary wave.

We check these ideas by showing that the curve (C) in Figure 2 can be obtained from
the curve (A), by translating the curve (A) by twice the wavelength of the short waves.
Since the short waves are of small amplitude, we can use linear theory. Following
Vanden-Broeck and Turner [8], we write

y=fx¥)=y+y+wk ), 19)

1.4 T T T T

1.2 B ]

0.8

Y - azis

0.6

T
1

0.4

0.2 b -

- W

-0.2 - -

-0.4 | ! L I

FIGURE 3A. Computed profile for a wave of family (B) witha = 0.32, p, = 0.5, y = 10, A =7.55.
This profile corresponds to the point (a) on the family (B) of Figure 2.
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FIGURE 3B. Same as 3A with A = 8.568. This profile corresponds to the point (b) on the family (B)

of Figure 2.
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0 2 4 6 8 10

FIGURE 3C. Same as 3A with A = 8.765. This profile corresponds to the point (c) on the family (B)
of Figure 2.
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FIGURE 3D. Same as 3A with A = 8.47. This profile corresponds to the point (d) on the family (B) of
Figure 2.
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FIGURE 3E. Same as 3A with A = 8.18. There are essentially no short waves in the trough. This
profile corresponds to the point (e) on the family (B) of Figure 2.
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FIGURE 3F. Same as 3A with A = 7.9. This profile corresponds to the point (f) on the family (B) of
Figure 2.
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FIGURE 4A. Computed profile for family (A) with @ = 0.32, p, = 0.5, y = 10, A = 8.775. This
profile corresponds to the point (a) on the family (A) of Figure 2.
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FIGURE 4B. Same as 4A with A = 8.47. This profile corresponds to the point (b) on the family (A) of

Figure 2.
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FIGURE 5A. Computed profile for family (C) with a = 0.32, p, = 0.5, y = 10, » = 8.765. This
profile corresponds to the point (a) on the family (C) of Figure 2.
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FIGURE 5B. Same as 5A with A = 8.47. This profile corresponds to the point (b) on the family (C) of
Figure 2.
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FIGURE 5C. Same as 5A with A = 8.18. There are essentially no short waves on the tail. This profile
corresponds to the point (c) on the family (C) of Figure 2.
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HE /_\’/\/\ ]
) ﬁ .
-05 L 1 1 ] 1
0 2 4 6 8 10 12
X —aris
FIGURE SD. Same as SA with A = 7.9. This profile corresponds to the point (d) on the family (C) of
Figure 2.

where w(x, ¥) is a small perturbation. We assume that w(x, ¥) is a periodic wave
satisfying w(x, ¥) = h(y¥) cos Kx, where K = 27/l . We also require w, wy, wy to
be continuous across ¥ = 0 and ¥ = 1. Substituting (19) into the nonlinear equations
of Section 2 and retaining only the terms linear in w, we obtain

(k'Y — pK?h =Xp'h,0 < ¥ < 1,

" —K*h=0,—-y<y¢y <0andl <¢ <1+ 8,
h=0,ony =—-yandy =1+ 8,

h(0-) = h(0,),
h(1-) = h(1,),
K'(0.) = H'(0y),
K1) =Hh(1y). (20)

For a given value of K, (20) defines an eigenvalue problem with eigenvalues
0<Xi(K) <AK)y<M(K)<...,

and eigenfunctions h,(¥), n = 1,2,.... We refer to the solution h,(y)cos Kx,
corresponding to the eigenvalue A, (K), as a periodic wave of mode n.

For each value of A between the points (a) and (b) on the family (A) of Figure 2, we
use the system (20) to calculate the wavelength [’ of small periodic waves of mode 1.
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FIGURE 6. Computed profile for a wave of small amplitude witha = 0.02, p, = 0.5, $ =100, y =
10, and A = 11.6. This solution corresponds to the cross in Figure 7.

This was done by discretizing (20) and solving the resultant algebraic equations by
Newton’s method. After we get the values of I/, we add twice the value of I’ to the
wavelength [ of the solutions of family (A) to do the translation. This yields the
broken curve of Figure 2. The almost perfect fitting between the broken curve and
the (a)-(b) part of family (C) shows that the short waves in the tail of solutions are
periodic waves of mode 1. This also implies that the long periodic waves of Figures
3, 4 and S are good approximations of generalized solitary waves. Therefore we may
use the family (B) to describe the properties of generalized solitary waves.

Figure 3A shows that our solitary waves bifurcate from a periodic train of waves
(this is to be contrasted with the solutions of Vanden-Broeck and Turner [8] which
bifurcate from conjugate flows). As we move along the branch the main crest emerges
from the train of periodic waves and we obtain a generalized solitary wave. The
amplitude of the short waves first decreases and then increases. Atsome pointalong the
curve, the amplitude of the short waves is essentially zero and the generalized solitary
wave becomes very close to a familiar solitary wave (see Figure 3E). Such generalized
solitary waves with essentially no short waves in the trough were previously found
for surface waves with surface tension (see [7]).

We also calculated internal waves of small amplitude fora = 0.02, p, =0.5, 8 =
y = 10.0 . One typical profile is shown in Figure 6. The values of A vs [ are shown
in Figure 7. The curve ultimately terminates around A = 14.36. We also found that
when the amplitude is small, the wave tends to be sine-like. The dotted line in Figure 7
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145
A
135}
13
125}
12}
115
n
105
10}
9'?4.5 l:‘» Ts 1‘6 |(;.5 1.1 1';.5 1;3 18.‘5 19

FIGURE 7. Values of A versus the wavelength [ with a = 0.02, p, = 0.5, 8 = 10.0, y = 10.0 for
one family of solutions. The dotted line was computed from (20).

is calculated from (20). The fitting between them constitutes a check on the accuracy
of our scheme.
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