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Abstract

The central area of investigation is in the isolation of conditions on mappings which leave invariant
the classes of locally finite-dimensional metric spaces and strongly countable-dimensional metric
spaces. Examples of such properties are open and closed with discrete point-inverses, open and
finite-to-one, or open, closed, and countable-to-one.
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We shall be concerned principally with conditions on mappings which leave
invariant two classes of infinite-dimensional metric spaces. The first of these
classes is that of strongly countable-dimensional spaces; J. Nagata [see 6] defined
a space to be strongly countable-dimensional (abbreviated scd) if and only if it is
the countable union of finite-dimensional closed subspaces. The other class is that
of locally finite-dimensional spaces [see 9]; a space is locally finite-dimensional
(abbreviated Ifd) if and only if each point has a finite-dimensional neighborhood.
Every finite-dimensional space is Ifd, and every Ifd space is scd, but the converse
of neither is true [see 9].

All spaces will be understood to be metric, and all functions or mappings are
continuous surjections. The term dimension (or the abbreviation dim) will refer to
the covering dimension of Lebesgue [see 7, p. 9]. All neighborhoods are assumed
to be open.
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121 Invariance of infinite-dimensional classes of spaces 77

The following known results are stated here for later reference:

THEOREM 1. X is locally finite-dimensional if and only if X has a locally finite
closed cover consisting of locally finite-dimensional ( or finite-dimensional) subsets [9,
Theorem 5].

THEOREM 2. X is strongly countable-dimensional if and only if X has a o-locally
finite closed cover consisting of strongly countable-dimensional {or finite-dimen-
sional) subsets [9, Theorem 6 and Corollary 10].

THEOREM 3 (K. Morita). Let f: X -* Y be a closed map, and let n be a
non-negative integer such that d i m / " 1 ^ ) «£ n for each y e Y. Then dim X <
dim Y + n [4, Theorem 2].

Theorem 3, due to K. Morita, has natural analogues for lfd and scd spaces,
which we establish in Theorem 4 below after establishing the following notational
conveniences and elementary observations:

Let / : X -» y be a continuous surjection. If &\s a cover of X, then f[&\ =
{/[ir] | .Fe.F}isacoverofXIf^isacoverof y then / " 1 ^ ] = {/"H^UGe ^ }
is a cover of X and ff'1^] = 'S. If/is closed and^is closed then so i s / [ ^ ] . If
$ is closed then f'x\S\ is closed. Corresponding remarks hold with closed
replaced by open. If S? is countable, locally finite, or a-locally finite, then so is
f~\^S\ respectively countable, locally finite, or a-locally finite. If JHs countable
then so is f\&\ If / is closed then f\^\ is closure-preserving whenever J^is
closure-preserving.

THEOREM 4. Let f: X -* Y be a closed map and let n be a non-negative integer
such that dim f~\y) < n for each y e Y. Then X is lfd if Y is lfd, and X is scd if Y
is scd.

PROOF. If Y is lfd, then by Theorem 1, Y has a locally finite closed cover &
consisting of finite-dimensional sets. For each F e &,f\f~l[F] (the restriction of
/ t o the set/"1!/"]) is a closed map and dim(f\f'l[F])'1(y) ^nforyeF. Thus
by Theorem 3 dim/"1!/] < d imF+ n < oo. But f~\&\ is a locally finite
closed cover of X, so X is lfd by Theorem 1.

If Y is scd, then we choose the cover ̂ t o be a a-locally finite closed cover and
proceed as above, using Theorem 2 instead of Theorem 1.

If A"in Theorem 4 is locally compact,/need not be closed.
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THEOREM 5. Let X be locally compact and f: X -> Y a map such that there is a
non-negative integer n such that dim f~\y) < n for each y e Y. Then X is Ifd if Y
is Ifd, and X is scd if Y is scd.

PROOF. Let i^be a locally finite cover of X by compact sets. Each member of
f\&\ is Ifd (scd) when Y is Ifd (scd). For each f e ^ , f\F is closed, so it follows
from Theorem 4 that each member of ^ i s Ifd (scd) wheny is Ifd (scd), and the
theorem follows from Theorems 1 and 2.

THEOREM 6. Let F: X -* Y be an open and closed function such that for each
y e Y,f'\y) is not dense-in-itself. Then Y is Ifd ifXis Ifd, and Y is scd ifXis scd.

PROOF. We assume X is Ifd, and let y e Y. It suffices to show that y has a
finite-dimensional neighborhood, so we need only examine the case where {y} is
not open in Y.

If In t / 'Hy) # 0 , then {y} = f[lntf-\y)] is an open set. Hence, I n t / ' ^ j )
= 0 and consequently f~\y) = Bdryf~\y). Since X and Y are metric spaces
and/is closed, Bdry/'H.y) is compact (see [8, Theorem VI.12, p. 214]).

Each x ef~\y) has a finite-dimensional neighborhood, and, since f'\y) is
compact, finitely many of these neighborhoods cover f~l(y). Thus, f'l{y) is
contained in a finite-dimensional open set U.

Since/is closed, there is a neighborhood Voly such tha t /" 1 ^) c f'l[V] c U.
Hence/I / '^F] is an open and closed map onto V with each of its point inverses
not dense-in-itself. Since dim f'l[V] < dimf/ < oo, by a theorem of R. E. Hodel
[2, Theorem 3.4], d imF< d\mf'l[V] < oo. Thus y has a finite-dimensional
neighborhood.

We now assume X is scd, so X = U ^ Zn where each Zn is a finite-dimensional
closed subset of X, and we shall prove Y is scd. For each / = 1,2,... we let
Xi = {x\d{x,f-\f{x))-{x})> \), r, = / [* , ] , and g ,= / | * , , Hodel has
shown [2, proof of Theorem 3.2, where Y need not be locally compact if / is
assumed to be continuous] that g,: X,, -» Yt is a closed, locally one-to-one (that is,
every point of Xt has a neighborhood N for which g,|iV is one-to-one) mapping,
Y = U~ 1r i , and each Yt is a closed subset of Y. If Xin = Xt n Zn it follows [2,
Lemma 3.1 where again Y need not be locally compact if / is continuous] that
Yj n = gi[Xi n] is closed in Y and has dimension < dim Xt „ < dim Zn < oo, so

COROLLARY 7. Lef/: A' -» Y be an open and closed map such that f~l(y) is not
dense-in-itself and dim f~*(y) = Oforeachy e Y. Then X is Ifdif andonly if is Ifd,
and X is scd if and only if Y is scd.
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PROOF. The necessity follows from Theorem 6, and the sufficiency from
Theorem 4.

LEMMA 8. Let A be a closed subset of X such that dim X - A < oo. Then X is lfd
if and only if A is lfd, and X is scd if and only if A is scd.

PROOF. If A is lfd, it has a locally finite cover J^of finite-dimensional subsets [9,
Lemma 1] and ^"is locally finite in X since A is closed. Hence, &rU{A) is a
locally finite cover of X consisting of finite-dimensional subsets of X, so X is lfd
[9, Lemma 1 again].

Now let A be scd. Since A - A is open, it is the countable union of closed
finite-dimensional subsets of X, so X = A U (X - A) is scd (see [9, Theorem 8]).

COROLLARY 9. Let f: X -* Y be an open, closed, and countable-to-one mapping.
Then X is lfd if and only if Y is lfd, and X is scd if and only if Y is scd.

PROOF. The sufficiency follows as in Corollary 7. For the necessity, let
A = {y G Y\{y] is not open in Y}. The set A is closed, and it follows as in the
proof of Theorem 6 tha t / I / " 1 ^ ] is open and closed with compact point inverses.
But a countable compact subset of a metric space cannot be dense-in-itself, so A
is lfd (scd) by Theorem 6. By Lemma 8, then, Y is lfd (scd).

The following adjustments can be made to Corollary 7 when the mapping is not
required to be closed.

THEOREM 10. Letf: X -» Y be an open map such that f~l(y) is discrete for each
y e Y. Then X is lfd if Y is lfd, and X is scd if Y is scd.

PROOF. Let i^be a closed cover of Y. Then, for each F e Jf, f\f'l[F] is an
open map onto F with discrete point inverses. Hence, by [2, Theorem 2.9],
dim f~\F\ < dim F for each f e J . The theorem now follows from Theorems 1
and 2.

THEOREM 11. Let f: X -* Y be an open, finite-to-one map. Then X is lfd if and
only if Y is lfd, and X is scd if and only if Y is scd.

PROOF. The sufficiency is clear from Theorem 10. Now let X be lfd and let
j e l Choose a point x e f~\y) and a finite-dimensional open neighborhood U
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of x. Then f\Uis an open and finite-to-one map onto/[{/], so dim f[U] = dimU
[5, Theorem 4.1]. Thus/[t/] is a finite-dimensional neighborhood of y.

We now assume X is scd, and for all n = 1,2,... we define Wn = {y e
Y\f'1(y) consists of exactly n points}, Zn = f~l[Wn], and/n = / |Z n ; we note/,,:
Zn -» Wn is an open, exactly n-to-one mapping. Now if y e Y then y & Wn for
some «, so/-x(j>) = {x, *„}. For each / = l, . . . ,n we choose a neighbor-
hood Ut of xt such that 17^^= 0 whenever / # j , and define the neighbor-
hood F of y by F = n,"=1/n[f^]; then /„ is a homeomorphism from each
Ut n / ^ [ F ] onto F, so Fand therefore Wn is scd (see [9, Theorem 7]).

Since/is open it is not difficult to see that each union U°°=nW^ is open in Y\
this implies each union U"=1 Wn is closed, hence each Wn is an Fa subset of Y. Let
Wn = \JJ=1WnJ where each Wnj is closed. Clearly each Wnj is scd, so Y =
U"= i Wn = U"'7_! Wnj is scd.

A space is called countable-dimensional if it is the countable union of finite-di-
mensional subspaces (here the subspaces need not be closed). A. V. Arhangel'skii
[1] and J. Nagata [6] have developed analogues to Theorems 10 and 11 for the
class of countable-dimensional spaces.

Other invariances can be given in terms of the order of a closed map (if / :
X -* Y, then ord / < n if and only if f'\y) consists of at most n points for each
y e Y). We first state the following theorem of K. Morita [3] and prove a slight
generalization.

THEOREM 12 (K. Morita). Letf: X -> Ybe a closed map such that ord / < k + 1
for some non-negative integer k. Then dim Y < dim X + k.

THEOREM 13. Let f: X -» Y be a closed map and let k be a non-negative integer
such that for each x e X there is an open neighborhood Uxfor which ordf\Ux < k
+ 1. Then dim X < dim Y < dim X + k.

PROOF. For each x e X, choose an open neighborhood Ux such that ord f\Ux <
k + 1. Then {Ux\x ^ X) has a locally finite closed refinement &. Since f\F is
closed and ord f\F < k + 1 for each F e J5", by Theorem 12 dim f[F] < dim F
+ k for each F &.&. Also, since dim/"x(^) = 0 for each y e Y, d imF<
dim f[F] for each F e J^by Theorem 3. Because ^"and f\&r\ are both closure-
preserving, the Sum Theorem [7, page 18] gives dim X = sup (dim F\F e &) <
sup{dim/[/1] |FeJf) = d i m 7 < s u p { d i m / ' | F e ^ } + A: = dim X + k.

COROLLARY 14. Let f: X -* Y be a closed map and let k be a non-negative integer
such that for each y e Y, there is an xy e f'l{y) and a neighborhood Uy of xy with
ord f\Uy < k + 1. Then dim Y < dim X + k.
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PROOF. Let A = U{£/ c X\U is A"-open and ord f\U < k + 1}. Then A is open
and by hypothesis f[A] = 7. Since an open set is an Fa, there are A'-closed sets
CVC2,... such that U = U ^ C , . For each i, / | C , satisfies the hypothesis of
Theorem 13, so dim /[C,] < dim C, + A: < dim X + k, thus dim Y =
dimU°°=i/[CJ < dim X + k.

It need not be the case in Corollary 14 that dim X < dim Y. Let (Z, T) be any
topological space with dim Z = 1, and let p be any point not in Z. Let X = Z U
{ p } , and as a basis for the topology of X use r U {{/>}}. Then the constant map
from X onto {p} satisfies the hypothesis of Corollary 14, but dim X > dim {p} .

In a previous work [10] the author and J. W. Walker made the following
definitions. We say a map / : X -* Y has strong local order if and only if for each
x & X there is a neighborhood Ux and a positive integer nx such that ord f\Ux <
Hj. The map has weak local order if and only if for each y e Y there is a point
x,, e / " 1 ^ ) , a neighborhood Uy of x,, and a positive integer n^ such that
ord f\Uy < n r These properties generalize those given in the hypotheses of
Theorems 13 and 14 above, and provide new invariance theorems given below as
Theorems 15 and 17.

THEOREM 15. Letf.X^Y be a closed map with strong local order. Then X is
Ifd if and only if Y is Ifd.

We need the following results before proceeding.

LEMMA 15.1. Let f: X -» Y be closed, and define B = U{Bdry/-1(.y)|.y ^ Y}.
Then Y - f[B] is open, dim(Y - f[B]) < 0 andf\B is a perfect map.

PROOF. Since all spaces are metric, point inverses ior f\B must be compact (see
[8, Theorem VI.12, p. 214]). Now let >- e Y - f[B], and note that f~l(y) is open
in X; since/is closed, this implies y is an isolated point of Y. Hence Y — f[B] is
open and discrete, so dim(7 - f[B]) < 0.

LEMMA 15.2. / / / : X -* Y is a perfect map and & is a locally finite (a-locally
finite) collection of subsets of X, then f\&\ is a locally finite (a-locally finite)
collection of subsets of Y.

PROOF. Let J G 7 . Each x e f~\y) has an open neighborhood Ux which
intersects at most finitely many elements of &. Since f~\y) is compact, finitely
many of these neighborhoods cover f'1(y). Thus there is an open set U which
contains f~l(y) and intersects at most finitely many elements of !F.
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Since / is closed, there is an open set V in Y such that f'\y) c f'l[V] c U.
Then Fis a neighborhood of y which intersects at most finitely many elements of
f\&\, since V n f[F] # 0 implies/"1!*'] ^F* 0 for any F

PROOF OF THEOREM 15. Suppose Y is lfd. Since a discrete set is O-dimensional,
it is sufficient by Theorem 4 to show that point inverses under / are discrete. Let
y e Y, and let xl e / " 1 ( j ) . There is an open neighborhood C/j of xx and a
positive integer n1 such that ord f\Ux < n^ Thus/" 1 ^) n Ux contains at most Mj
elements, say f~\y) n Ux = {xv x2,...,xk), 1 < A: < /ij. Then K= f/x -
{ J C J , . . . , ^ } is A"-open and Vn f~\y) = {jc^.Thus {xt} i sopenin/^O) , and
S O / ' ^ J O is discrete.

Conversely, suppose A' is lfd. Let B = U{Bdry/~1(.y)|>' e y} . By Lemmas
15.1 and 8 it is sufficient to show that/[2?] is lfd. Thus without loss of generality
we may assume that X = B and/is a perfect map.

By Theorem 1, X has a locally finite closed cover ̂ "consisting of finite-dimen-
sional sets. From the paracompactness of X and the definition of strong local
order, there is a locally finite closed cover of 9 of X such that for each C e ?
there is an integer nG such that ord f\G < nG.

Let Jf = {F n G\F e & and G e S?}. By Lemma 15.2 / [^f] is a locally finite
closed cover of y. For each H e .Pf,/[//] is finite-dimensional, since/|# satisfies
the hypothesis of Theorem 12 and / / is finite-dimensional. Thus Y is lfd by
Theorem 1.

COROLLARY 16. Letf: X -» y 2>e a c/aserf map wiY/i *fro«g local order. Then X is
scd if and only if Y is scd.

PROOF. If JHs a countable closed cover of X consisting of lfd subsets, then
is a countable closed cover of Y by lfd subsets by Theorem 15. Hence Y is

scd by Theorem 2.
Conversely, let 9 be a countable closed cover of Y consisting of lfd subsets.

Since <9 = ff~\'9\, f~l{.&) is a countable closed cover of X by lfd subsets by
Theorem 15, so X is scd by Theorem 2.

THEOREM 17. Let f: X -* Y be a closed map with weak local order. If X is scd,
then Y is scd.

PROOF. Let A = (J{U c X\U is open and ord f\U < oo}. Then A is open, f\A
has strong local order, and by the definition of weak local order f[A] = Y. Since
A is an Fa subset of X, there are ^-closed sets CVC2,C2,... such that ̂ 4 = UJ11C,-.
But for each i,/|C, satisfies the hypotheses of Corollary 16, so/[C,] is scd since Ct

is scd. But each/[C,] is closed in Y, so Y = \J*Llf[Ci] must be scd.
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Comparison with Theorem 15 might lead one to expect a converse to Theorem
17, but none is available. For example, let (Z , T ) be a space which is not scd,
p £ Z, and A" = Z U {/?} with the topology generated by T U {{p}} (as in the
example following Corollary 14). Then the constant map from X onto p is closed
and has weak local order, but X is not scd.
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