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EXTREME POINTS OF POSITIVE FUNCTIONALS 
AND SPECTRAL STATES ON REAL BANACH ALGEBRAS 

ANAND SRIVASTAV 

ABSTRACT. Extreme points of positive functionals and spectral states on real com
mutative Banach algebras are investigated and characterized as multiplicative func
tionals extending the well-known results from complex to real Banach algebras. As an 
application a new and short proof of the existence of the Shilov boundary of a real 
commutative Banach algebra with nonempty maximal ideal space is given. 

Introduction. Let A be a complex, commutative Banach* algebra with isometric 
involution and bounded approximate identity. It is well-known that the extreme points 
of the set {/ G A1 :f > 0, \\f\\ < 1} are multiplicative functionals (1). 

The result is valid for complex Banach algebras with unit and arbitrary involutions 
[16]. G. Niestegge showed that the concept of positive functionals can be generalized to 
complex, commutative Banach algebras considering the so called spectral states [14]. It 
turns out that the extreme points of spectral states are multiplicative and on a complex, 
commutative Banach* algebras with a symmetric involution spectral states are precisely 
the positive functionals. 

Both characterizations have nice applications. The extreme-point characterization of 
positive functionals yields a short proof of the classical Riesz-Bochner-Herglotz theo
rem [5] while the analogous characterization of spectral states gives a new proof of the 
existence of the Shilov boundary of a complex, commutative Banach algebra [14]. 

But all these results are valid only for complex algebras. Since N. L. Ailing [ 1 ] showed 
in 1970 that Banach algebras over Klein surfaces are real but not complex, it is a natural 
and interesting question to ask for generalizations of such theorems for real algebras. 

In the first section of this paper the extreme-point characterization of positive func
tionals is extended to real commutative Banach* algebras with an isometric involu
tion and bounded approximate identity. The crucial point is that we have to consider 
real-linear, positive functionals which are in addition hermitian and satisfy the Cauchy-
Schwarz inequality, the so called positive Schwarz functionals. In the second section 
real-linear spectral states are introduced and it is shown that their extreme points are also 
multiplicative. 

Our characterization of real-linear spectral states gives a new proof of the existence 
of the Shilov boundary of a real, commutative Banach algebra with non-void maximal 
ideal space. 
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EXTREME POINTS OF POSITIVE FUNCTIONALS 857 

In the last section the results of Section 1 and 2 are used to obtain extension of positive 
functional and spectral states on real Banach algebras. 

Preliminaries. Let A be a real Banach algebra and x G A. aA(x) (or a(x)) denotes 
the spectrum of x with respect to A and is defined as the spectrum of x regarded as an 
element in the complexification Ac of A [10], [11]. The spectral radius r(x) of x is defined 
as r(x) = infn H^H lln. A real Banach algebra with a unit e is called unital, if ||e|| = 1. 

A is called strictly real, if (— x2) is quasi-invertible for all x G A. If A is commutative, 
then the Gelfand space (or carrier space) of A is the set Q>A of non-trivial, continuous, 
IR-linear, complex-valued and multiplicative functionals on A. The Gelfand space can be 
separated into a real part O^ and a complex part O^ with 

®A = {h e O A : h = h} and 0>£ = {h G O A : h ^ h}. 

We say, h, g G ®A are equivalent if h — g or h — g (the bar denotes complex conju
gation). Let [OA] be the set of all such equivalence classes, then [O^] is isomorphic to 
the space of maximal ideals AA of A. 

Note that for a complex commutative Banach algebra A, A^ is isomorphic to the set 
{h G A! : h ^ 0, h multiplicative} and each maximal ideal is the kernel of such a 
non-trivial, multiplicative functional. Therefore in the complex case we want not to dis
tinguish between these two spaces. Let j : <f>A —> AAC defined by 

j(h)(x + iy) := h(x) + ih(y) (x,y£A,he O A ) 

and 
c: AAc —• AA 

defined by 
c(M) = MHA (MGAAc). 

For x G A and N e AA define x(N) as the image of x inA/N. By the Gelfand-Mazur 
theorem A/N is an extension of R with degree 1 or 2 and is mapped into C by exactly 
two distinct homomorphism either a or [3 with (3(t) = a{t) for all t G A/N. Endow A^ 
with the weak topology such that all functions |Jc|: A^ —> R with \x\(N) = \x(N)\ are 
continuous. If A ĉ has the usual weak topology, then c is a continuous and surjective 
map. 

An important fact is the following. Let h G A ĉ and define T{K) by r(h)(x + iy) = 
h(x) — ih(y) (x,y G A). Then r(h) G A ĉ and for each N G AA there is an h G AAc such 
thatc~1(A0 = {KTQI)}. 

Now let A be a real Banach* algebra. The sets AH = {x G A : x* = x} and Aj = 
{x G A : x* — —x} denote the hermitian and skew-hermitian part of A. A// and Aj are 
real vector spaces and each x G A has a unique decomposition x = u + v with u £ AH 
and v G Ay. 

A is called symmetric, if for all x G A, <J(X*JC) Ç IRJ, hermitian if for all x G A//, 
cr(x) Ç 1R and skew-hermitian if a(x) contains no non-zero real number for all x G Aj. 
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By a famous theorem of J. W. M. Ford, T. W. Palmer and S. Shirali A is symmet
ric if and only if A is hermitian and skew-hermitian. For a detailed discussion of real 
Banach* algebras and their representations see P. Fijalkowski [8], K. R. Goodearl [9], 
L. Ingelstam [10], S. H. Kulkarni and B. V. Limaye [11], and A. Srivastav [17], [18]. 

I. Positive real-linear functionals. We say that a real-linear functional/: A —> C 
on a real Banach* algebra A is 

positive, iff(x*x) > 0 for all JCEA, 

hermitian, if /(**) = f(x) for all x G A, and 

weak hermitian, if/(**y) = f(yx*) for all x G A. 
If A is a complex Banach* algebra and/ is a C-linear positive functional on A, then/ 

is automatically weak hermitian and satisfies the Cauchy-Schwarz inequality [f(x*y)\2 < 
f(x*x)f(y*y) for all jc,y G A ([16], Theorem 11.31). 

But this is false for real Banach* algebras and real-linear functionals, even if A pos
sesses an identity: Take for example the set of complex numbers as a real Banach* algebra 
with unit and define functionals/, g by 

f(x + iy) := x + ity and g(x + iy) := y (JC,y G R, t > 0). 

Obviously/,g are positive, but g is not hermitian and/ does not satisfy the Cauchy-
Schwarz inequality. 

Therefore we say that a real-linear, weak-hermitian functional/ on a real Banach* 
algebra,/: A —•» C, is a Schwarz functional, if/ satisfies the Cauchy-Schwarz inequality 

\f(x*y)\2 <f(x*x)f(y*y) for all x,y G A. 

It would be of interest to know whether a real-linear, positive functional on a real 
Banach* algebra satisfying the Cauchy-Schwarz inequality is automatically weak her
mitian or not. For real-valued/ this is true. If/:A —> R is a real-linear, positive and 
weak-hermitian functional, then/ is a Schwarz functional and if in addition the algebra 
has a unit e and is commutative, then ||/|| = f{e) ([9], Proposition 14.3). For a Schwarz 
functional/ the number f(x*x) is real and by the Cauchy-Schwarz inequality either/ or 
(—/) is positive. 

Let A be a real Banach algebra and define 

F(A, C) := {/: A —-» C : / real-linear and continuous}. 

Denote by A' the norm dual of A, i.e. the space of all real-linear, real-valued and contin
uous functionals on A. 

On F(A, C) we consider the weak topology O(F{A, C), A) and on A' the usual weak* 
topology <7(A', A). 

Define the sets 

Px
s — {/*: A —• C : / is a positive Schwarz functional with ||/|| < 1} 

Ms — {/": A —» C : / is IR-linear, positive, weak-hermitian and multiplicative} 
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For a complex Banach* algebra A define 

PA = {f: A —> C : / if C-linear and positive} 

and 
pl

A = ifeA'npA:\\f\\<i}. 

The first lemma states that a positive Schwarz functional can be extended to a positive 
functional on the complexification. This fact constitutes an important step in the proof 
of the main theorem of this section. 

LEMMA 1.1. Let A be a real Banach* algebra andf'.A —> C a positive Schwarz 
functional. Then there is a complex-linear, positive and unique extension f off to the 
complexification Ac of A defined by 

fix + iy) = f(x) + ifiy) (x, y G A) 

PROOF. Obviously/ is well-defined, complex-linear and unique. Let x,y G A and 
define 

a := Rtf(x*y), f3 := Imf(x*y), r : = f(x*x) and s :=f(y*y). 

f is a Schwarz functional, hence by the Cauchy-Schwarz inequality 

0 < a2 + (32 < rs. 

It follows 

/ 3 < r l / 2 J l / 2 < L t £ 
M - - 2 

and by (1) (see Introduction) 

f{ix + iy)\x + iy)) = r + s - 2j3 > 0 • 

To ensure that there are extreme points of Ps we prove (with respect to the Krein-
Milman theorem) that Pl

s is a non-empty, convex and compact set. 

LEMMA 1.2. Let Abe a real Banach * algebra, 
(i) Let Fs Ç F(A, C) the set of all positive functional for which the Cauchy-Schwarz 

inequality holds. Then Fs is convex, 
(ii) If(i^F(A, C), A) is the weak topology on F(A, C), then P{

s is a non-empty, convex 
and compact subset ofF(A, C). 

PROOF, (i) Let/, g e Fs,0 < t < I and h := tf + (1 — i)g. Obviously h is positive 
and continuous. We show that h satisfies the Cauchy-Schwarz inequality. Let x,y G A 
and 

ocx + i<*2 -=f(x*y), (3\ + Ï/?2 := g(x*y), ax :=f(x*x)9 

uy '-=f(y*y)> fix := g(x*x\ py := giy*y) 

with a\9(X2,l3\,l32,ax,ay,(3x,l3y ER. 
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Since/, g satisfy the Cauchy-Schwarz inequality, we have 

\h(x*y)\2 < t2axay + (1 - t)2(5xf3y + 2t(l - t)[ax^ + a2(32l 

Furthermore 2{ot\(3\ + ccifii) < ocx/3y + ay/3x and the assertion is proved. 
(ii) Compactness of P\ is a consequence of the Banach-Alaoglu theorem. P\ is non

empty since 0 G P\. • 

THEOREM 1.3. Let Abe a real, commutative Banach* algebra with isometric invo
lution and bounded approximate identity (u\). Then 

exOpi) = Ms. 

PROOF. Let || • \\c be the usual complexification norm on Ac defined as in 
C. E. Rickart ([15], Theorem 1.3.2). (Ac, || • \\c) is a complex Banach* algebra and the 
embedding of A intoAc is an isometry. Define a second norm || • ||i on Ac by 

||x + ry||i := max{||.x +ry||c : ||** - / / | | c } -

Then (Ac, || • ||i) is a Banach* algebra with an isometric involution and the two norms 
|| • ||c and || • ||i are equivalent. Obviously (u\) is a bounded approximate identity for 
(Ac, || • || i). Let 7T be the map TT: Pl

Ac —• Pl
s with 

*(f):=f/A (feP{
Ac). 

We show that TT is bijective. It is trivial that ix is one-to-one. By Lemma 1.1 each 
/ G P\ possesses a complex-linear, positive extension/ on Ac and \\f\\ — \imx f(ux) 
([7], Proposition 2.15). Since ||KA|| < 1 for all A, and |[/|| < 1, we have \\f\\ < 1. Hence 
/ G Pl

A and TT is surjective. 

The convexity of Pl
s implies that TT is an affine bijection. By Theorem (1) in the intro

duction 
ex(/>ic) = {f E P\c : / i s multiplicative}, 

and therefore 

ex(F^) - ™(TT(P1
AC)) = TT({f e Pl

Ac : / is multiplicative}) C Ms. 

Let h G M5-\{0}. Then h with h(x + iy) := h(x) + ih(y), x,y G A, defines a multiplicative, 
non-trivial extension of h on Ac and by Bonsall-Duncan ([3], Chapter II, §16, Proposi
tion 3) h is continuous with \\h\\ < 1. 

Hence Ms C ir({f GP{ : / is multiplicative}). • 
Let A be a real Banach* algebra with unit e and set 

Px := {/: A —> C : / is a Schwarz functional with 0 <f(e) < 1. } 

Then we can deduce from Theorem 1.3 the following corollary for algebras with a 
unit. 

https://doi.org/10.4153/CJM-1992-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-051-9


EXTREME POINTS OF POSITIVE FUNCTIONALS 861 

COROLLARY 1.4. Let A be a real, commutative, unital Banach* algebra. Then we 
have 

PROOF. Since f(e) > 0, each/ G P1 is positive. Define a new norm || • ||i on A by 

|W|i:=max{||a:*||,|W|} (x G A). 

Then || • ||i is a Banach algebra norm equivalent to the original norm and the involution 
is an isometry with respect to the || • ||i-norm. According to Theorem 1.3 the assertion 
is proved if we can show that Pl = Pl

s. Let/ G Pl and \\f\\\ the norm of/ with respect 
to the || • || i-norm. By ([16], Theorem 11.31) the positive extension/ of/ to Ac satisfies 
11/11 =/(*) =/(e) . Hence \\f\\i < \\f\\ < \\f\\ = /(*) < 1 and/ G Pl

s. Since the inclusion 
P<s — ^>1 *s triA îal, the Corollary is proved. • 

If the algebra is symmetric, then the set of extreme points of Px is the union of the 
carrier space and the trivial functional. Corollary 1.4 gives 

COROLLARY 1.5. Let A be a real, commutative, symmetric and unital Banach* al
gebra. Then we have 

ex(P1) = OAU{0}. 

Finally, for strictly-real commutative Banach algebras with unit we have an involu
tion-free characterization of positive functionals. 

COROLLARY 1.6. Let Abe a strictly-real, commutative and unital Banach algebra. If 
P is the set of real-linear, real-valued functionals f which satisfy f(e) < 1 and fix2) > 0 
for all x G A, then 

ex(P) = $% U {0}. 

PROOF. Take the identity map on A as an involution. With this involution Ay = {0} 
and every real-linear, real-valued functional on A is hermitian. Let/ be a real-linear and 
real-valued functional with fix2) > 0 for all x G A. By Lemma 1.1 / is a Schwarz 
functional with \\f\\= fie). This fact implies P C P{ iPl defined as above). Let x G A. 
The decomposition 4x = (JC + e)2 — ix — e)2 implies that/(A) C R for every real-linear 
and positive functional; hence P = Pl. Since the algebra A is strictly-real, O^ = OjJ and 
every x G A has real spectrum ([10], Proposition 6.7 (b)). Hence A is symmetric and the 
corollary follows with Corollary 1.5. • 

Let us proceed to the analysis of spectral states extending the concept of positive 
functionals to real commutative Banach algebra without involutions. 
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II. Spectral states on real Banach algebras. For complex commutative Banach 
algebras the theory of spectral states was founded by R. T. Moore, F. F. Bonsall and 
J. Duncan [2]. 

G. Niestegge investigated in [14] the extreme points of spectral states, showed that 
they are multiplicative and gave a new proof of the existence of the Shilov boundary of 
complex commutative Banach algebras. The existence of the Shilov boundary for real 
commutative Banach algebras was not proved until N. L. Ailing claimed it in 1970 in his 
work on real Banach algebras over compact Klein surfaces [1]. But the proof of Ailing, 
which is the same as the proof for the complex case given by C. E. Rickart [15], could 
not be justified. Five years later B. V. Limaye and R. R. Simha gave a correct proof for 
the existence of the Shilov boundary [12]. 

In the following we will extend the definition of spectral states to real commutative 
Banach algebras. With methods from convex analysis (see [14]) we will prove an ex
treme point characterization of real spectral states which yields the existence of the Shilov 
boundary for general real commutative Banach algebras with non-empty maximal ideal 
space. In particular the spectral states on a real Banach* algebra with bounded approx
imate identity and symmetric and isometric involution are exactly the positive Schwarz 
functionals and therefore satisfy the Cauchy-Schwarz inequality. 

Let A be a real, commutative Banach algebra. A real-linear functional/: A —• C is 
called a spectral state iff(x) G co a(x) for all x G A where co a(x) is the convex hull 
of a(x). Obviously a spectral state/ is continuous with ||/|| < 1. Let Q(A) be the set of 
all spectral states on A. This definition extends the usual notation of spectral states on 
complex, commutative Banach algebras as introduced by R. T. Moore, F. F. Bonsall and 
J. Duncan [2]. 

DEFINITION 2.1. Let A be a real, commutative Banach algebra. A subset S Ç A^ is 
called a boundary for A, iff for all x G A 

pHoo = sup|i(A0|. 
Nes 

Since a maximal ideal N £ Sis the equivalence class [g], where g G O^, the canonical 
extension g of g to Ac and rg are in AAC . Hence for x,y G A we have 

max(|s(*)|,|sO0|) < \g(x+iy)\ < \g(x)\ + \g(y)\. 

Using this fact B. V. Limaye and R. R. Simha showed: 

LEMMA 2.2 ([ 12], PROOF OF PROPOSITION 1.0). Let A be a real, commutative Banach 

algebra and S Ç AA a boundary of A. Then c~x(S) is a boundary for Ac. 

Notice that the map c: A ĉ —• A^ is continuous, and hence c~l(S) is closed, if S is 
closed. 
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LEMMA 2.3. Let A be a real, commutative Banach algebra and S Ç A^ a closed 
boundary. Then we have for allx G A 

(i) If A has a unit, da(x) Ç {h(x) : h G c~l(S)} 
(ii) In general, dcr(x) Ç {h(x) : h G c~l(S)} U {0}. (da(x) denotes the toplogical 

boundary of a(x)). 

PROOF. Without using the existence of the Shilov boundary for Ac one can prove 
as in ([15], pp. 142-143) that da(z) Ç z(Sf) U {0} for any closed boundary S' of Ac and 
z G Ac. Lemma 2.3 now follows from Lemma 2.2. 

THEOREM 2.4. Let A be a real, commutative Banach algebra, 

(i) If S is any closed boundary of A, then £l(A) — CO(C~X(S)/A U {0}) and 
ex£l(A)Cc-l(S)/AU{0}. 

(ii) If A possesses a unit, then £2(A) = CO(C_ 1(^)/A) andt\Q.(A) Ç c~~x(S)/ A-

(Hi) IfAA is non-void, then (c o/)(ex Q(A)) is non-void and is the Shilov boundary of 
A. 

PROOF. We modify the arguments of [ 14] : 
(i) Let S be a closed boundary of A and put S' := c_1(5)/yiU{0}. Since c is continuous, 

c~l(S) is closed. Furthermore Q(A) is compact and convex in F(A, C), hence co(S') Ç 
Q(A). 

Assume that there is a g G Q(A)\co(S')- The Hahn-Banach theorem gives xo G A such 
that max{Re/*(;co) ' h G coOS7)} < Reg(jto). By Lemma 2.3 we get the contradiction 
Reg(;to) > max{ReA : À G coa(xo)}. Then Q(A) = co(S') and Milman's theorem ([6], 
Corollary 25.14) yields ex Q(A) C S'. 

(ii) Define Sf := C~X(S)/A and argue as in (i). 
(iii) Since C~1(AA)/A Q £2(A) the assumption Â  n (c oy)(exQ(A)) = 0 and the 

Krein-Milman theorem imply Q(A) = {0} in contradiction to the fact that each element 
of AAc = c~x(AA) is non-zero. 

We prove that S" := AA H (C o/)(ex Q(A)) is a boundary for A. Let JC G A. We can 
assume ||i||oo ¥" 0 (otherwise |jc| possesses a maximum point in S"). Define a function 
H: Q(A) —• IR by 

Htf)=\f(x)\, fen(A). 

H is convex and continuous and by the maximum principle of H. Bauer ([6], Theo
rem 25.9) there is a/o G ex Q(A) such that 

l/b(*)| = max [/•(*)| > pHoo, 

hence 

\fo(x)\ = Halloo-

But with N := c(/(/b)) we have by definition 

l/b(*) = | W 
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and S" is a boundary of A. By (i) and (ii) S" is contained in any boundary of A and this 
proves the assertion of (iii). • 

Let A be a real, commutative Banach* algebra with symmetric involution. Each 
/ G £l(A) is positive and hermitian. The fact that/ is a Schwarz functional can be proved 
with Theorem 2.4. It would be interesting to give a direct and elementary proof. 

LEMMA 2.5. Let Abe a real, commutative Banach* algebra. Then Q(A) Ç P\, i.e. 
each spectral state is a Schwarz functional. 

PROOF. By Theorem 2.4 the extreme points of £2(A) are multiplicative. Let 
/ i G e x Çl(A). h is positive, hermitian and, since multiplicative, a Schwarz functional. 
Lemma 1.2 ensures that each h G cofex Q(A)) satisfies the Cauchy-Schwarz inequality. 
But since Q(A) is the closure of co(exQ(A)) in the weak topology a(F(A, C),A), each 
spectral state satisfies the Cauchy-Schwarz inequality. 

THEOREM 2.6. Let A be a real, commutative Banach* algebra with symmetric invo
lution and unit e. Then £2(A) = P\. 

PROOF. Due to Lemma 2.5 we have only to show that P\ Ç £l(A). By Corollary 1.5 
ex P\ Ç OA, hence ex P\ Ç Çl(A) and by the Krein-Milman theorem 

P\ = côëxPj Ç Q(A). 

REMARK. The result of Theorem 2.6 can be extended to real, commutative Banach* 
algebras with an isometric and symmetric involution and approximate identity in the 
same way. 

In the last section we consider the extension of positive functional and spectral states. 

III. Extensions of positive functionals. Let A be a real, commutative Banach* al
gebra with isometric involution and bounded approximate identity, and Ao a closed * sub-
algebra of A. With P\(A) (resp MS(A)) we indicate that the sets Pl

s and Ms are over A. 
Then the following extension result holds. 

THEOREM 3.1. Let A be a real, commutative Banach* algebra with isometric invo
lution and bounded approximate identity (u\) andAo be a closed *subalgebra of A con
taining (u\). A positive Schwarz functional on Ao can be extended to a positive Schwarz 
functional on A if and only if a multiplicative, positive and weak-hermitian functional on 
Ao can be extended to a multiplicative, positive and weak hermitian functional on A. 

PROOF. First let us suppose that each h G MS(AQ) has an extension H G Ms(A). By 
Theorem 1.3 ex(P^(Ao)) = Ms(Ao) and by the Krein-Milman theorem 

Pl
s(A0) = coMs(A0). 

Let/ G Pl
s(Ao) and ha G coMs(Ao) with/ = \imaha (pointwise convergence). Define 

F := \imaHa with Ha G Ms(A) and Ha/AQ = ha. Then F G /^(A) is an extension of/. 
The reverse conclusion can be proved as in ([13], Corollary p. 503). • 
Theorem 3.1 generalizes the well-known result in the complex case [13]. The method 

given in the proof of Theorem 3.1 can also be used to prove extension properties of 
spectral states. 
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THEOREM 3.2. Let Abe a real, commutative Banach algebra with identity e andAo a 
closed subalgebra of A with e G A$. A spectral state on AQ can be extended as a spectral 
state to A if and only if a maximal ideal in the Shilov boundary ofAo can be embedded 
into a maximal ideal in the Shilov boundary of A. 

PROOF. Let S (resp. So) be the Shilov boundary of A (resp. A0), S' = c~l(S)/A and 
So = C~1(SO)/A0- By Rickart([15],p. 33) wehaveco(aA(x)) = CO(CTA0(JC)) for all x G Ao 
(*). 

Define for h G S'0, Xh := {g G Q(A) : g/Ao = h}. 
The same arguments as in the proof of Theorem 3.1 and the property (*) show that h 

has an extension H G S' if and only if each/ G Cl(Ao) has an extension F G £2(A). 
But (coj)(h) (resp. (coj)(H)) are maximal ideals in So (resp. S); so the extension prop

erty of S'Q and S' implies the extension property for So and S. Since the reverse conclusion 
is immediate, the proof is complete. • 

If A is a complex commutative Banach algebra then each spectral state on Ao admits 
an extension to a spectral state on A ([14], Theorem 3(i)). With the help of Theorem 2.4 
we have the same property in the real case. 

LEMMA 3.3. Let A be a real commutative Banach algebra andf G £l(A). Then f 
withf(x + iy) =f(x) + ifiy) (x,y G A) is a C-linear functional on Ac withf G CI(AQ). 

PROOF. By Theorem 2.4/ is the limit of convex sums of multiplicative functional 
and since co a(x + iy) is compact for all x, y G A, f(x + iy) G co a(x + iy). u 

With Lemma 3.3, Theorem 3.2 and the extension property of complex linear spectral 
state ([14], Theorem 3(i)) we get 

COROLLARY 3.4. Let A be a real commutative Banach algebra with identity e and 
AQ a closed subalgebra of A with e G A. Then we have 

(i) Each spectral state on Ao admits an extension to a spectral state on A. 
(ii) Each maximal ideal in the Shilov boundary ofAo can be extended to a maximal 

ideal in the Shilov boundary of A. 

With some more work Corollary 3.4 can be proved for real commutative Banach al
gebras without unit. We omit the proof, because it would be the same as in [14]. 

REMARK. In this paper we considered only commutative algebras. But it seems that 
the results of Section 1 can be extended to non-commutative, real Banach* algebras if 
the set of multiplicative functionals is replaced by the set of pure states. 
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