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This paper derives the limit distribution of the rescaled sum of the absolute value of
an integrated process with continuously distributed innovations raised to a negative
power less than −1, and of the analogous statistic that is obtained using the
same function of an integrated process but only considering positive values of the
integrated process. We show that the limit behavior of this statistic is determined by
the values of the integrated process that are closest to 0, and find the limit behavior
of the values of the integrated process that are closest to 0.

1. INTRODUCTION

Pötscher (2013) studied statistics of the form
∑n

t=1 |xt|−q for q > 1 and an inte-
grated process xt satisfying some regularity conditions, and established the order
of magnitude of such statistics. Among other results, Pötscher (2013) showed that
n−q/2 ∑n

t=1 |xt|−q = Op(1) for q > 1. This paper will show that n−q/2 ∑n
t=1 |xt|−q

converges in distribution for q > 1 under regularity conditions, and provides a
characterization of the limit distribution. Therefore, the rate established in Pötscher
(2013) was indeed the best possible one. Note that in order to prevent a division
by zero issue, a regularity condition ensuring the continuity of the distribution of
xt is needed to analyze such statistics.

As Pötscher (2013) noted, the asymptotic behavior of expressions of the form
rn

∑n
t=1 f (knxt), for deterministic sequences rn and kn, has been the subject of

a number of articles in recent years. In Econometrics, Park and Phillips (1999)
started the interest in this topic. The work of Pötscher (2004) and de Jong (2004)
contained results that showed that for rn = n−1, kn = n−1/2, n−1/2x[rn] ⇒ λW(r)
for r ∈ [0,1], W(·) Brownian motion, λ2 a variance parameter, and f (·) absolutely
integrable on finite intervals, the limit

∫ 1
0 f (λW(r))dr can be found under regularity

conditions. Therefore, because for 0 < q < 1, |x|−q satisfies
∫ b

a |x|−qdx < ∞ for

any a,b ∈ R, a ≤ b, it follows that n−1+q/2 ∑n
t=1 |xt|−q d−→ ∫ 1

0 |λW(r)|−qdr. This
result does not follow immediately from the continuous mapping, because the pole
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at 0 renders the mapping noncontinuous. Such results however are not informative
about the case where f (·) has a nonintegrable pole, such as f (x) = |x|−q for q ≥ 1.

For the case q = 1, Pötscher (2013) showed that n−1/2(log(n))−1 ∑n
t=1 |xt|−1 =

Op(1) under regularity conditions, and Michel and de Jong (2020) showed that

n−1/2(log(n))−1
n∑

t=1

|xt|−1 d−→ 2λ−1|Z| (1)

under regularity conditions, where Z ∼ N(0,1).
Note that the above results all have one-sided equivalents that are obtained by

only summing over the values of t for which xt is positive or negative. Other
papers considering statistics of the form rn

∑n
t=1 f (knxt) are Borodin and Ibragimov

(1995), Jeganathan (2004), de Jong and Wang (2005), Berkes and Horváth (2006),
and Christopeit (2009).

The plan of this paper is as follows. Section 2 outlines the idea of the proof of
the main result. In Section 3, we first set out to find convergence in distribution
results for the occupation times for small intervals. Note that Akonom (1993,
Thm. 2 and Lem. 1) established results for occupation times of the integrated
process, but this author’s results are not sufficiently tailored to the “small” interval
situation to be of use here. We apply these results to show convergence results
for min{t:1≤t≤n,xt>0} xt and min1≤t≤n |xt|. In Section 4, we consider multivariate
convergence in distribution results for occupation times and convergence results
for the order statistics of |xt| and the positive values of xt. Section 5 then derives the
limit distribution for the statistics of n−q/2 ∑n

t=1 |xt|−q and n−q/2 ∑n
t=1 x−q

t I(xt > 0)

for q > 1. We conclude with Section 6, where we give simulation results for
the distributions of min{t:1≤t≤n,xt>0} xt,min1≤t≤n |xt|, n−1 ∑n

t=1 x−2
t I(xt > 0), and

n−1 ∑n
t=1 x−2

t .

2. MAIN IDEA OF THE PROOF

Let xt be an integrated process that is a recurrent random walk with i.i.d. innova-
tions. In this paper, our approach is to write

n−q/2
n∑

t=1

|xt|−q =
n∑

t=1

|n1/2xt|−q =
n∑

t=1

Z−q
nt , (2)

where Znt is the tth smallest value of n1/2|xt|, t = 1, . . . ,n. We then show
the joint convergence of (Zn1, . . . ,Znm)′ for any integer m, and prove that
n−q/2 ∑n

t=1 |xt|−q is asymptotically close to
∑m

t=1 Z−q
nt . We find the limit distri-

bution of n−q/2 ∑n
t=1 |xt|−q based on those results. For n−q/2 ∑n

t=1 x−q
t I(xt > 0),

the reasoning is similar, by noting that

n−q/2
n∑

t=1

x−q
t I(xt > 0) =

n∑
t=1

(n1/2xt)
−qI(xt > 0) =

Mn∑
t=1

Y−q
nt , (3)
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where Mn is the number of positive xt and Ynt is the tth smallest positive value of
n1/2xt, t = 1, . . . ,n.

We will first focus on the case m = 1 and Zn1 = n1/2 min1≤t≤n |xt|. Note that of
course, from the functional central limit theorem it follows that

n−1/2 min
1≤t≤n

|xt| d−→ inf
r∈[0,1]

|W(r)| = 0, (4)

but beyond that, the functional central limit theorem is not informative about
min1≤t≤n |xt|.

The behavior of n1/2 min1≤t≤n |xt|, but also more general order statistics of this
type, can be related to occupation times of integrated processes for small intervals,
where “small” here means that the width of the interval is O(n−1/2). Define Sn(y) =∑n

t=1 I(|xt| ≤ yn−1/2). Then for all y ∈ R,

P(Zn1 ≤ y) = P(Sn(y) > 1/2). (5)

If we can now show the convergence in distribution of Sn(y) to some limit S(y) for
all y ∈ R, by noting that 1/2 is necessarily a continuity point of the distribution of
S(y) because the distribution of S(y) will only put probability mass on the integers,
we also find

lim
n→∞P(Zn1 ≤ y). (6)

A similar argument can be used for Yn1 = n1/2 min{t:1≤t≤n,xt>0} xt. Defining Rn(y) =∑n
t=1 I(0 < xt ≤ yn−1/2) we can also note that for all y ∈ R,

P(Yn1 ≤ y) = P(Rn(y) > 1/2). (7)

Therefore, the next section will first establish results on the limit behavior of the
occupation times for small intervals.

3. OCCUPATION TIMES FOR SMALL INTERVALS

Let xt be an integrated process. In this section, we will show that Rn(y) and
Sn(y) converge in distribution under regularity conditions. To show this, we first
establish that all positive integer moments E(Rn(y))p and E(Sn(y))p converge.
In the lemma below and everywhere in this paper, Ft(·) and ft(·) denote the
distribution function and density function of t−1/2xt, respectively (and therefore,
the existence of ft(·) is assumed for all t). Let φ(·) denote the density function of the
standard normal distribution. For the results of this paper, we need the following
assumption:

Assumption 1.. �xt is i.i.d., supx∈R |fn(x) − φ(x)| → 0, and supt≥1,x∈R |f ′
t (x)|

< ∞.

Note that the condition supx∈R |fn(x) − φ(x)| → 0 implies that a variance
rescaling to 1 has been imposed.

https://doi.org/10.1017/S026646662100013X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662100013X


342 NESLIHAN SAKARYA AND ROBERT M. DE JONG

Akonom (1993) considers the case where �xt has characteristic function ψ(r)
and is i.i.d., x0 = 0, E�xt = 0, E(�xt)

2 < ∞. From the arguments in Akonom
(1993, p. 61–62), it follows that Assumption 1 is then implied by E(�xt)

2 = 1
and

∫ ∞
−∞ |r||ψ(r)|dr < ∞. Akonom (1993) also shows that if for some β > 0,

limr→∞ |r|β |ψ(r)| = 0, then there exists an integer t∗ such that supt≥t∗,x∈R |f ′
t (x)| <

∞. For this paper, we use Assumption 1, which avoids having to split up a number
of summations in the proofs into the t < t∗ and t ≥ t∗ cases, but there does not
seem to be a fundamental difficulty with this generalization. Pötscher (2013) used
boundedness of density conditions for t ≥ t∗ for some t∗.

Let �(·) denote the gamma function and let �kμp denote the kth difference of
μp. We can show the convergence of all positive integer-valued moments of Rn(y)
and Sn(y) and deduce convergence in distribution from that, giving the following
result:

LEMMA 1. Under Assumption 1,

1. for all y ∈ R, there exists a random variable R(y) with moments μp satisfying
μ1 = y

√
2/π and, for p ≥ 2,

�p−1μp = p!yp2−p/2/�(p/2+1), (8)

such that

Rn(y)
d−→ R(y); (9)

2. for all y ∈ R, there exists a random variable S(y) with moments νp satisfying
ν1 = 2y

√
2/π and, for p ≥ 2,

�p−1νp = p!yp2p/2/�(p/2+1), (10)

such that

Sn(y)
d−→ S(y). (11)

Note that the distributions of R(y) and S(y) do not depend on the distribution of
�xt.

One might incorrectly conjecture, based on the standard FCLT plus continuous
mapping theorem reasoning and the occupation times formula, that

Rn(y) =
n∑

t=1

I(0 < xt ≤ yn−1/2)
d≈ n

∫ 1

0
I(0 < W(r) ≤ yn−1)dr

= n
∫ ∞

−∞
I(0 < s ≤ yn−1)L(1,s)ds

d≈ yL(1,0)
d= y|Z|, (12)
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where
d≈ denotes “having a roughly similar distribution as n → ∞,” L(t,s) denotes

Brownian local time, and Z ∼ N(0,1). Note that the equivalence L(1,0)
d= |Z|

follows from Akonom (1993, p. 58). If that were the case, then the second
moment of R(y) would have to be E(yZ)2 = y2. However, by Equation (8),
we find

μ2 = μ1 + y2 = y
√

2/π + y2, (13)

and therefore this conjecture is false and R(y) is not distributed as y|Z|.
Using the previous lemma, convergence results for Yn1 = n1/2 min{t:1≤t≤n,xt>0} xt

and Zn1 = n1/2 min1≤t≤n |xt| now can be proven:

THEOREM 1. Under Assumption 1,

1. limn→∞ P(Yn1 ≤ y) is well-defined for all y ∈ R, and the limit is Lipschitz
continuous for y ∈ R. Furthermore, Y−1

n1 converges in distribution.
2. limn→∞ P(Zn1 ≤ y) is well-defined for all y ∈ R, and the limit is Lipschitz

continuous for y ∈ R. Furthermore, Z−1
n1 converges in distribution.

Since the limit results of Theorem 1 are based on the observation of Equations
(5) and (7), the limits found in Theorem 1 do not depend on the distribution of
�xt, because the distributions of R(y) and S(y) do not depend on the distribution
of �xt.

Theorem 1 does not rule out the possibility that some of the probability mass of
Yn1 or Zn1 escapes to infinity asymptotically. Therefore, the limit measures of Yn1

and Zn1 are not necessarily probability measures. This is the reason that Theorem 1
is not formulated as a convergence in distribution result. However, Theorem 1
implies that any continuous and bounded function of Yn1 or Zn1 converges in
distribution.

Chung (2001, p. 85) uses the term “vague convergence” for the concept of
convergence of a sequence of probability measures to a limit measure that is not
necessarily a probability measure. Therefore, the result of Theorem 1 implies that
Yn1 and Zn1 converge vaguely in Chung’s sense.

Note that not all probability mass of Yn1 and Zn1 escapes to infinity.
After all, if all probability mass of Yn1 escaped to infinity, we would have
limn→∞ P(Yn1 ≤ y) = 0 for all y > 0, implying that for all y > 0, by Equation (7) and
Lemma 1,

0 = lim
n→∞P(Yn1 ≤ y) = P(R(y) > 1/2) = 0, (14)

and because R(y) ∈ N, this would imply that R(y) = 0 almost surely, which
contradicts our earlier finding that μ1 > 0 for y > 0. The same argument holds
for Zn1.
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4. JOINT CONVERGENCE OF OCCUPATION TIMES FOR SMALL
INTERVALS

In this section, we derive multivariate equivalents to the results from the previous
section. Consider (Yn1,Yn2)

′, where Yn1 is as before and Yn2 is n1/2 times the second
smallest positive value for xt. Assume that n is large enough for {xt : xt > 0,t =
1, . . . ,n} to have at least two elements, so that (Yn1,Yn2)

′ are well-defined. The
joint distribution of (Yn1,Yn2)

′ then satisfies, for all y1,y2 ∈ R,

P(Yn1 ≤ y1,Yn2 ≤ y2) = P(Rn(y1) > 1/2,Rn(y2) > 3/2). (15)

Analogously, assuming that n is large enough for {xt : xt > 0,t = 1, . . . ,n} to have
at least m elements, defining Yni as the ith smallest positive value for n1/2xt for
i = 1, . . . ,m, for all y1,y2, . . . ,ym ∈ R

P(Yn1 ≤ y1, . . . ,Ynm ≤ ym) = P(Rn(yi) > i−1/2 ∀i ∈ {1, . . . ,m}). (16)

A similar observation can be made for Zni, which is defined as the ith smallest
value of n1/2|xt|. With these definitions and observations in place, we can now find
the following joint convergence result for the occupation times of Yni and Zni:

LEMMA 2. Under Assumption 1,

1. for all (y1,y2, . . . ,ym)′ ∈ R
m there exists a random variable (R(y1),R(y2), . . . ,

R(ym))′ such that

(Rn(y1),Rn(y2), . . . ,Rn(ym))′ d−→ (R(y1),R(y2), . . . ,R(ym))′; (17)

2. for all (y1,y2, . . . ,ym)′ ∈ R
m there exists a random variable (S(y1),S(y2), . . . ,

S(ym))′ such that

(Sn(y1),Sn(y2), . . . ,Sn(ym))′ d−→ (S(y1),S(y2), . . . ,S(ym))′. (18)

Inspecting the proof of Lemma 2 again reveals that the distributions of
(R(y1),R(y2), . . . ,R(ym))′ and (S(y1),S(y2), . . . ,S(ym))′ do not depend on the
distribution of �xt.

Our multivariate results for (Yn1, . . . ,Ynm)′ and (Zn1, . . . ,Znm)′ are as follows:

THEOREM 2. Under Assumption 1,

1. limn→∞ P(Yn1 ≤ y1,Yn2 ≤ y2, . . . ,Ynm ≤ ym) is well-defined for all (y1, . . . ,ym)′ ∈
R

m, and the limit is Lipschitz continuous for (y1, . . . ,ym)′ ∈ R
m. Furthermore,

(Y−1
n1 ,Y−1

n2 , . . . ,Y−1
nm )′ converges in distribution.

2. limn→∞ P(Zn1 ≤ y1,Zn2 ≤ y2, . . . ,Znm ≤ ym) is well-defined for all (y1, . . . ,ym)′ ∈
R

m, and the limit is Lipschitz continuous for (y1, . . . ,ym)′ ∈ R
m. Furthermore,

(Z−1
n1 ,Z−1

n2 , . . . ,Z−1
nm )′ converges in distribution.
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Similarly to Theorem 1, the limits found in Theorem 2 do not depend on
the distribution of �xt because they are induced by the limit distributions
(R(y1),R(y2), . . . ,R(ym))′ and (S(y1),S(y2), . . . ,S(ym))′.

5. SUMMATIONS OF NEGATIVE POWERS

This section considers statistics

n−q/2
n∑

t=1

x−q
t I(xt > 0) (19)

and

n−q/2
n∑

t=1

|xt|−q (20)

for q > 1. These statistics have also been considered by Pötscher (2013); in this
section, we will find their limit distributions using Theorem 2 of the previous
section. The idea here is that the statistic n−q/2 ∑n

t=1 x−q
t I(xt > 0) can be written as∑Mn

t=1 Y−q
nt , where Mn is the number of positive xt, and that the last statistic is asymp-

totically close to
∑m

t=1 Y−q
nt for large m. By the joint convergence in distribution

result of Theorem 2, and letting (Y−1
1 , . . . ,Y−1

m )′ denote a random variable that has

the limit distribution of (Y−1
n1 , . . . ,Y−1

nm )′, we find that
∑m

t=1 Y−q
nt

d−→ ∑m
t=1 Y−q

t , and
since m was arbitrary, we find the limit distribution as

∑∞
t=1 Y−q

t . A similar result
holds for n−q/2 ∑n

t=1 |xt|−q, defining (Z−1
1 , . . . ,Z−1

m )′ analogously. This argument
then leads to the following result:

THEOREM 3. For q > 1, under Assumption 1,

n−q/2
n∑

t=1

x−q
t I(xt > 0)

d−→
∞∑

t=1

Y−q
t (21)

and

n−q/2
n∑

t=1

|xt|−q d−→
∞∑

t=1

Z−q
t , (22)

and the limit distributions do not depend on the distribution of the innovations �xt.

6. SIMULATION RESULTS

We conducted a small simulation experiment to illustrate the main theorems.
We simulated min{t:1≤t≤n,xt>0} xt, min1≤t≤n |xt|, n−1 ∑n

t=1 x−2
t I(xt > 0) and n−1∑n

t=1 x−2
t for various values on n and i.i.d. N(0,1) distributed �xt, and reported

the percentage points in Tables A1–A4. For all four statistics, the convergence of
the distribution was rapid. Note that the “NA” for n = 100 in Table A1 for the 95th
percentage point corresponds to the occurrence in more than 5% of cases of an
integrated process that was always negative.
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APPENDICES

A. Simulation results

Table A1. Simulation results for n1/2 min{t:1≤t≤n,xt>0} xt

n No. of 5% 10% 25% 50% 75% 90% 95%

replications

100 107 0.070 0.146 0.419 1.142 2.990 8.296 NA

1,000 106 0.067 0.139 0.401 1.103 2.924 7.896 16.065

10,000 105 0.067 0.138 0.396 1.095 2.884 7.766 15.664

100,000 105 0.066 0.137 0.396 1.094 2.920 7.828 15.835

Table A2. Simulation results for n1/2 min1≤t≤n |xt|
n No. of 5% 10% 25% 50% 75% 90% 95%

replications

100 107 0.035 0.073 0.209 0.571 1.489 3.888 7.122

1,000 106 0.033 0.070 0.201 0.553 1.460 3.943 7.919

10,000 105 0.034 0.070 0.199 0.550 1.460 3.917 7.854

100,000 105 0.033 0.069 0.199 0.550 1.462 3.962 7.922

Table A3. Simulation results for n−1 ∑n
t=1 x−2

t I(xt > 0)

n No. of 5% 10% 25% 50% 75% 90% 95%

replications

100 107 0.000 0.045 0.256 1.399 7.958 54.230 219.790

1,000 106 0.012 0.041 0.267 1.517 8.767 59.559 242.223

10,000 105 0.010 0.041 0.271 1.553 9.019 61.381 243.012

100,000 105 0.010 0.040 0.265 1.559 9.001 61.915 254.565

Table A4. Simulation results for n−1 ∑n
t=1 x−2

t

n No. of 5% 10% 25% 50% 75% 90% 95%

replications

100 107 0.072 0.184 1.029 5.632 31.939 217.331 877.243

1,000 106 0.044 0.162 1.066 6.073 34.930 239.072 968.151

10,000 105 0.042 0.160 1.071 6.155 35.852 237.745 939.627

100,000 105 0.039 0.155 1.068 6.218 35.930 244.387 995.949
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B. Mathematical proofs

In this appendix, for brevity we will set It1 = I(0 < xt ≤ yn−1/2) and It2 = I(|xt| ≤ yn−1/2).
We will also define It,y,1 = I(0 < xt ≤ yn−1/2) and It,y,2 = I(|xt| ≤ yn−1/2) whenever three
instead of two arguments are used for I.

Proof of Lemma 1
The proof of Lemma 1 relies on Lemmas 3–10 below.

LEMMA 3. A random sequence Xn ∈ R converges in distribution to a random variable

X with moments ζp if (1) EXp
n converges to a limit ζp for all p ∈ N; and (2)

∑∞
p=1 ζ

−1/(2p)
2p= ∞.

Proof of Lemma 3. This result follows from Fréchet and Shohat (1931) as quoted on
page 2 of Lin (2017), together with Lin’s Theorem 1 and condition (h7). �

LEMMA 4. As n → ∞, for p ≥ 2,

n−p/2
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)t−1/2
1 (t2 − t1)−1/2 . . . (tp − tp−1)−1/2

→
∫ 1

0

∫ sp

0
. . .

∫ s2

0
s−1/2
1 (s2 − s1)−1/2 . . . (sp−1 − sp−2)−1/2(sp − sp−1)−1/2ds1 . . . dsp.

Proof of Lemma 4. Note that, by letting [.] denote the floor function and setting t1 = j1
and ti − ti−1 = ji for i = 2, . . . ,p, and then ji = nxi +1 for i = 1, . . . ,p,

n−p/2
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)t−1/2
1 (t2 − t1)−1/2 . . . (tp − tp−1)−1/2

= n−p/2
n∑

j1=1

. . .

n∑
jp=1

I(1 ≤ j1 + j2 ≤ n). . . I(1 ≤ j1 +·· ·+ jp ≤ n)j−1/2
1 j−1/2

2 . . . j−1/2
p

= n−p/2
∫ n+1

j1=1
. . .

∫ n+1

jp=1
I(1 ≤ [j1]+ [j2] ≤ n). . .

× I(1 ≤ [j1]+·· ·+ [jp] ≤ n)[j1]−1/2[j2]−1/2 . . . [jp]−1/2dj1 . . . djp

= np/2
∫ 1

x1=0
. . .

∫ 1

xp=0
I(1 ≤ [nx1 +1]+ [nx2 +1] ≤ n). . .

I(1 ≤ [nx1 +1]+·· ·+ [nxp +1] ≤ n)

× [nx1 +1]−1/2[nx2 +1]−1/2 . . . [nxp +1]−1/2dx1 . . . dxp. (23)

Pointwise for (x1, . . . ,xp) ∈ (0,1]p,

np/2I(1 ≤ [nx1 +1]+ [nx2 +1] ≤ n). . . I(1 ≤ [nx1 +1]+·· ·+ [nxp +1] ≤ n)

× [nx1 +1]−1/2[nx2 +1]−1/2 . . . [nxp +1]−1/2
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→ I(x1 + x2 ≤ 1). . . I(x1 +·· ·+ xp ≤ 1)x−1/2
1 x−1/2

2 . . . x−1/2
p

and therefore, by the dominated convergence theorem, it suffices to find an integrable
dominating function. To find the dominating function, note that because [x+1] ≥ x

np/2I(1 ≤ [nx1 +1]+ [nx2 +1] ≤ n). . . I(1 ≤ [nx1 +1]+·· ·+ [nxp +1] ≤ n)

× [nx1 +1]−1/2[nx2 +1]−1/2 . . . [nxp +1]−1/2

≤ x−1/2
1 x−1/2

2 . . . x−1/2
p ,

which is integrable. Therefore, the limit of the statistic of Equation (23) is

∫ 1

0
. . .

∫ 1

0
I(x1 + x2 ≤ 1). . . I(x1 +·· ·+ xp ≤ 1)x−1/2

1 x−1/2
2 . . . x−1/2

p dx1 . . . dxp

=
∫ ∞
−∞

. . .

∫ ∞
−∞

I(0 ≤ x1 ≤ 1). . . I(0 ≤ xp ≤ 1)I(x1 + x2 ≤ 1). . . I(x1 +·· ·+ xp ≤ 1)

× x−1/2
1 x−1/2

2 . . . x−1/2
p dx1 . . . dxp.

Now set x1 = s1, x1 + x2 = s2, x1 + x2 + x3 = s3, etc. Then the last expression can be
rewritten as∫ 1

0
. . .

∫ 1

0
I(0 ≤ s1 ≤ 1)I(s1 ≤ s2 ≤ 1)...I(sp−1 ≤ sp ≤ 1)

×s−1/2
1 (s2 − s1)−1/2 . . . (sp − sp−1)−1/2ds1 . . . dsp

=
∫ 1

0

∫ sp

0
. . .

∫ s2

0
s−1/2
1 (s2 − s1)−1/2 . . . (sp−1 − sp−2)−1/2(sp − sp−1)−1/2ds1 . . . dsp,

which is the result as stated in the lemma. �

LEMMA 5. For p ≥ 1, setting s0 = 0,

∫ sp=1

sp=0

∫ sp

sp−1=0
. . .

∫ s1=s2

s1=0
(sp − sp−1)−1/2(sp−1 − sp−2)−1/2 . . . (s2 − s1)−1/2s−1/2

1

×ds1 . . . dsp

= (�(1/2))p/�(p/2+1).

Proof of Lemma 5. Equations (2.2) and (2.3) on p. 44 and 45 of Miller and Ross (1993)
state the following two properties of the Riemann–Liouville fractional integral:

(R1) For α > 0, D−α
t f (t) = (�(α))−1

∫ t
0(t − τ)α−1f (τ )dτ .

(R2) For α > 0 and β > −1, D−α
t tβ = �(β +1)tα+β/�(α +β +1).

https://doi.org/10.1017/S026646662100013X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662100013X


NEGATIVE POWERS OF INTEGRATED PROCESSES 349

For p = 1, we use (R1) and (R2) using α = 1, β = −1/2, and f (τ ) = τ−1/2, find that∫ 1

0
s−1/2
1 ds1 = �(1)D−1

t t−1/2|t=1 = �(1/2)/�(3/2) = 2.

For p = 2, we have∫ 1

0

∫ s2

0
(s2 − s1)−1/2s−1/2

1 ds1ds2 =
∫ 1

0
�(1/2)D−1/2

s2 s−1/2
2 ds2

= �(1/2)D−1
t D−1/2

t t−1/2|t=1,

by applying (R1) twice (with α = 1/2, t = s2, τ = s1, f (τ ) = τ−1/2 and with α = 1, τ = s2,

f (τ ) = D−1/2
τ τ−1/2). Setting α = 3/2 and β = −1/2, we apply (R2) to the above expression

and find that it equals

�(1/2)�(1/2)t/�(2)|t=1 = (�(1/2))2/�(2) = π .

For p = 3, note that∫ 1

0

∫ s3

0
(s3 − s2)−1/2

∫ s2

0
(s2 − s1)−1/2s−1/2

1 ds1ds2ds3

=
∫ 1

0

∫ s3

0
(s3 − s2)−1/2�(1/2)D−1/2

s2 s−1/2
2 ds2ds3.

Applying (R1) twice (with α = 1/2, t = s3, τ = s2, f (τ ) = D−1/2
τ τ−1/2 and with α = 1,

τ = s3, f (τ ) = D−1
τ τ−1/2) gives∫ 1

0

∫ s3

0
(s3 − s2)−1/2�(1/2)D−1/2

s2 s−1/2
2 ds2ds3

=
∫ 1

0
(�(1/2))2D−1

s3
s−1/2
3 ds3 = (�(1/2))2D−2

t t−1/2|t=1.

By setting α = 2 and β = −1/2, (R2) implies that the expression is equal to

(�(1/2))2�(1/2)t3/2/�(5/2)|t=1 = (�(1/2))3/�(5/2) = 4π/3.

Reasoning accordingly, we now find that the p-fold integral is∫ 1

0
(�(1/2))p−1D−p/2+1/2

sp s−1/2
p dsp = D−1

t (�(1/2))p−1D−p/2+1/2
t t−1/2|t=1,

by (R1). By setting α = p/2 + 1/2 and β = −1/2, (R2) implies that the above expression
is equal to

(�(1/2))p−1�(1/2)tp/2/�(p/2+1)|t=1 = (�(1/2))p/�(p/2+1),

thereby completing the proof. �

LEMMA 6. Assume Assumption 1 holds. Then we have

lim
n→∞E

⎛
⎝ n∑

t=1

It1

⎞
⎠ = y

√
2/π
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and

lim
n→∞E

⎛
⎝ n∑

t=1

It2

⎞
⎠ = 2y

√
2/π

and for p ≥ 2,

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,1 . . . Itp,1)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p!yp2−p/2/�(p/2+1)

and

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,2 . . . Itp,2)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p!yp2p/2/�(p/2+1).

Proof of Lemma 6. We will first show the first assertion of the lemma. By the Taylor
expansion, for some intermediate value ξtny ∈ [0,yt−1/2n−1/2],

μ1 = lim
n→∞E

⎛
⎝ n∑

t=1

It1

⎞
⎠ = lim

n→∞
n∑

t=1

(Ft(yt−1/2n−1/2)−Ft(0))

= lim
n→∞yn−1/2

n∑
t=1

t−1/2ft(ξtny)

= 2yφ(0) = y
√

2/π

because n−1/2 ∑n
t=1 t−1/2 → 2 and because supx∈R |f ′

t (x)| < ∞ and supt≥1,x∈R |ft(x) −
φ(x)| → 0 by assumption. The result for limn→∞ E(

∑n
t=1 It2) follows analogously.

To show the second assertion of the lemma, note that since there are p! possible orderings
of {t1,t2, . . . ,tp},

n∑
t1=1

. . .

n∑
tp=1

E(It1,1 . . . Itp,1)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p!
n∑

t1=1

. . .

n∑
tp=1

E(It1,1 . . . Itp,1)I(t1 < t2)I(t2 < t3). . . I(tp−1 < tp).

Letting gt(·) denote the density of xt, we have

E(It1,1 . . . Itp,1) = E(I(0 ≤ xt1 ≤ yn−1/2). . . I(0 ≤ xtp ≤ yn−1/2))

= E(I(0 ≤ xtp − xtp−1 +·· ·+ xt2 − xt1 + xt1 ≤ yn−1/2). . . I(0 ≤ xt1 ≤ yn−1/2))

=
∫

. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)

×gt1(z1)gt2−t1(z2). . . gtp−tp−1 (zp)dz1 . . . dzp.
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Since gt(z) = t−1/2ft(t−1/2z), sup|z|≤yn−1/2 |gt(z)− t−1/2φ(0)| = o(t−1/2) because

ct = sup
|z|≤yn−1/2

|gt(z)− t−1/2φ(0)| = sup
|z|≤yn−1/2

|t−1/2ft(t
−1/2z)− t−1/2φ(0)|

≤ t−1/2 sup
|z|≤yn−1/2

(|ft(t−1/2z)− ft(0)|+ |ft(0)−φ(0)|) = o(t−1/2)

because by assumption supx∈R |ft(x)−φ(x)| → 0 and supt≥1,x∈R |f ′
t (x)| < ∞. Therefore,

approximating gt1(z) by t−1/2φ(0) gives

|
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)E(It1,1 . . . Itp,1)

−
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)

×
∫

. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)

× t−1/2
1 φ(0)gt2−t1(z2). . . gtp−tp−1(zp)dz1 . . . dzp|

≤
n∑

t1=1

ct1

n∑
t2=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)

×
∫

. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)

×gt2−t1(z2). . . gtp−tp−1(zp)dz1 . . . dzp

=
n∑

t1=1

ct1

n∑
t2=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)(t2 − t1)−1/2 . . . (tp − tp−1)−1/2

×
∫

. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)

× ft2−t1(z2). . . ftp−tp−1(zp)dz1 . . . dzp

≤
n∑

t1=1

ct1

n∑
t2=1

(t2 − t1)−1/2 . . .

n∑
tp=1

(tp − tp−1)−1/2I(t1 < t2). . . I(tp−1 < tp)(yn−1/2)p

×
(

sup
t≥1,x∈R

ft(x)

)p−1

= O

⎛
⎝n−1/2

n∑
t=1

ct

⎞
⎠ = o(1).
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Similarly, we can also approximate gt2−t1(z) by (t2 − t1)−1/2φ(0), gt3−t2(z) by (t3 −
t2)−1/2φ(0), etc. and therefore

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)E(It1,1 . . . Itp,1)

=
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . .

× I(tp−1 < tp)

∫
. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)

× t−1/2
1 φ(0)p(t2 − t1)−1/2 . . . (tp − tp−1)−1/2dz1 . . . dzp +o(1).

Because∫
. . .

∫
I(0 ≤ z1 + z2 +·· ·+ zp ≤ yn−1/2). . . I(0 ≤ z1 ≤ yn−1/2)dz1 . . . dzp = ypn−p/2,

(24)

it now follows that

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)E(It1,1 . . . Itp,1)

= o(1)+ (yn−1/2φ(0))p
n∑

t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)t−1/2
1 (t2 − t1)−1/2 . . .

× (tp − tp−1)−1/2,

and by Lemma 4, the last expression equals

o(1)+ ypφ(0)p
∫ 1

0
(sp − sp−1)−1/2

∫ sp−1

0
(sp−1 − sp−2)−1/2 . . .

×
∫ s2

0
s−1/2
1 (s2 − s1)−1/2ds1 . . . dsp

and by Lemma 5, it now follows that

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,1 . . . Itp,1)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p! ypφ(0)p (�(1/2))p/�(p/2+1)

= p!yp2−p/2/�(p/2+1).

The result for It2 follows analogously, except that in the result of Equation (24), ypn−p/2

needs to be replaced by 2pypn−p/2. �
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LEMMA 7. Assume Assumption 1 holds. For b = 1,2, p ≥ 2 and j = 1,2, . . . ,p−1, define

hbnpj =
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,bIt2,b . . . Itp,b)I(t1 �= t2)I(t2 �= t3). . . I(tj �= tj+1)

and for b = 1,2 and p ≥ 1, define hbnp0 = E(
∑n

t=1 Itb)p. Then Hbpj = limn→∞ hbnpj is well-
defined for b = 1,2, p ≥ 1 and j = 0,1,2, . . . ,p − 1, and as a consequence, μp = H1p0 =
limn→∞ h1np0 and νp = H2p0 = limn→∞ h2np0 are well-defined for p ≥ 1. Also, for b =
1,2, p ≥ 2 and j = 0, . . . ,p−2,

Hbpj = Hb,p−1,j +Hb,p,j+1. (25)

Proof of Lemma 7. For b = 1,2, p ≥ 3 and j = 1,2, . . . ,p−2, we can write

hbnpj =
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,bIt2,b . . . Itp,b)I(t1 �= t2). . . I(tj �= tj+1)

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,bIt2,b . . . Itp,b)I(t1 �= t2). . . I(tj �= tj+1)

× (I(tj+1 = tj+2)+ I(tj+1 �= tj+2))

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp−1=1

E(It1,bIt2,b . . . Itp−1,b)I(t1 �= t2). . . I(tj �= tj+1)

+
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,bIt2,b . . . Itp)I(t1 �= t2). . . I(tj �= tj+1)I(tj+1 �= tj+2)

= hb,n,p−1,j +hb,n,p,j+1, (26)

where the third equality follows from the fact that Itj+1,bItj+2,b = Itj+1,b when tj+1 = tj+2,
and we relabel the summation indices. This shows the result of Equation (26) for b = 1,2,
p ≥ 3 and j = 1, . . . ,p − 2. For p ≥ 2 and j = 0, it is easy to see that we also have hbnp0 =
hb,n,p−1,0 +hbnp1 because

E

⎛
⎝ n∑

t=1

Itb

⎞
⎠

p

= E

⎛
⎝ n∑

t=1

Itb

⎞
⎠

p−1

+
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,bIt2,b . . . Itp,b)I(t1 �= t2).

Therefore, we conclude that the result of Equation (26) holds for b = 1,2, p ≥ 2, and j =
0, . . . ,p−2.

It follows from Lemma 6 that for b = 1,2, Hb,p,p−1 = limn→∞ hb,n,p,p−1 exists for
p ≥ 1. To show that Hbpj = limn→∞ hbnpj exists for b = 1,2, p ≥ 2 and j = 0, . . . ,p − 2,
note that by setting j = p−2 in Equation (26), we now have for b = 1,2, p ≥ 2

hb,n,p,p−2 = hb,n,p−1,p−2 +hb,n,p,p−1.

By taking limits, it now follows that Hb,p,p−2 exists because Hb,p,p−2 = Hb,p−1,p−2 +
Hb,p,p−1. Repeating this argument for j = p−3, then p−4 etc. until j = 0 then shows that
limn→∞ hbnpj = Hbpj exists for b = 1,2, p ≥ 2 and j = 0, . . . ,p−2. Therefore, the existence
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of Hbpj is now shown for b = 1,2, p ≥ 1, and j = 0, . . . ,p − 1. The result of Equation (25)
now follows by taking the limit as n → ∞ in Equation (26). �

LEMMA 8. Assume Assumption 1 holds. Then for p ≥ 2 and 0 ≤ j ≤ p−1, H1pj = �jμp

and H2pj = �jνp.

Proof of Lemma 8. Equation (25) states that Hbpj = Hb,p−1,j + Hb,p,j+1 for b = 1,2,
p ≥ 2 and j = 0, . . . ,p − 2. Setting j + 1 = i, we find Hbpi = Hb,p,i−1 − Hb,p−1,i−1 =
�Hb,p,i−1 for b = 1,2, p ≥ 2 and i = 1, . . . ,p−1. Repeating this equation gives, if p ≥ 2 and

1 ≤ i−1 ≤ p−1, Hbpi = �2Hb,p,i−2. Therefore, repeating the equation k times, for k ≥ 0

and 1 ≤ i− k +1 ≤ p−1, we find Hbpi = �kHb,p,i−k. Setting k = i gives Hbpi = �iHbp0

for p ≥ 2. Therefore, because μp = H1p0 and νp = H2p0, H1pi = �iμp and H2pi = �iνp.
This completes the proof. �

LEMMA 9. Assume Assumption 1 holds. Then for all p ≥ 2,

�p−1μp = p!yp2−p/2/�(p/2+1)

and

�p−1νp = p!yp2p/2/�(p/2+1).

Proof of Lemma 9. The result of Lemma 8 implies that H1,p,p−1 = �p−1μp. Therefore,
by Lemma 6, it now follows that

�p−1μp = p!yp2−p/2/�(p/2+1).

The result for νp is proven analogously. This completes the proof. �

LEMMA 10. Assume Assumption 1 holds. Then for the μp sequence as defined in
Lemma 7, for p ≥ 2, μp ≤ (2p)p max(1,yp) and νp ≤ 22ppp max(1,yp).

Proof of Lemma 10. By Lemma 7, we have for p ≥ 2 and j = 0, . . . ,p−2

H1pj = H1,p−1,j +H1,p,j+1 ≤ 2 max
i1=0,1

H1,p−1+i1,j+i1

and applying this reasoning k times,

H1pj ≤ 4 max
i1=0,1

max
i2=0,1

H1,p−2+i1+i2,j+i1+i2

≤ ·· · ≤ 2k max
i1=0,1

. . . max
ik=0,1

H1,p−k+i1+···+ik,j+i1+···+ik .

Note that Lemma 7 states that H1,p−k+i1+···+ik,j+i1+···+ik is well-defined for 0 ≤ j ≤
p − k − 1. This is because Hbpj is well-defined for b = 1,2, p ≥ 1, and j = 0, . . . ,p − 1
by Lemma 7, and p− k + i1 +·· ·+ ik ≥ p− k ≥ 1 and 0 ≤ j+ i1 +·· ·+ ik ≤ j+ k ≤ p−1.

Therefore, setting j = 0 and k = p−1,

μp = H1p0 ≤ 2p−1 max
i1=0,1

. . . max
ip−1=0,1

H1,1+i1+···+ip−1,i1+···+ip−1
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= 2p−1 max
0≤i≤p−1

H1,1+i,i = 2p−1 max
1≤i≤p

H1,i,i−1.

Because H1,p,p−1 = p!2−p/2yp/�(p/2 + 1) by Lemma 6, p!≤ pp, �(p/2 + 1) ≥ 1 and

2−p/2 ≤ 1 for p ≥ 2,

2p−1 max
1≤i≤p

Hi,i−1 ≤ 2p−1 max(1,yp)p!≤ (2p)p max(1,yp).

For νp the proof is analogous, except that the upper bound for νp of Lemma 6 is a factor 2p

larger. This completes the proof. �

With the above results in place, we can now complete the proof of Lemma 1:

Proof of Lemma 1. We first apply Lemma 3 to Xn = ∑n
t=1 It1 for part 1 of Lemma 1,

and then to Xn = ∑n
t=1 It2 for part 2 of Lemma 1. Condition (1) of Lemma 3 holds because

EXp
n = E(

∑n
t=1 It1)p converges to μp by Lemma 7. Condition (2) of Lemma 3 follows

because
∑∞

p=1 μ
−1/(2p)
2p = ∞ because for p ≥ 2, μ2p ≤ (4p)2p max(1,y2p) by Lemma 10.

The value for μ1 was calculated in Lemma 6, and the recursive relationship of Equation (8)
was shown in Lemma 9. Therefore, the proof of the result for part 1 is now complete. The
proof of part 2 of Lemma 1 is analogous. �

Proof of Theorem 1
Proof of Theorem 1. We will show part 1 of Theorem 1, and note that the proof for

part 2 is analogous. Under Assumption 1, Rn(y) = ∑n
t=1 I(0 ≤ xt ≤ yn−1/2) converges in

distribution to R(y) by Lemma 1. Therefore, noting that

P(Yn1 ≤ y) = P

(
n1/2 min{t:1≤t≤n,xt>0}xt ≤ y

)
= 1−P

⎛
⎝ n∑

t=1

I(0 ≤ xt ≤ yn−1/2) ≤ 1/2

⎞
⎠

and because 1/2 is a continuity point of R(y) for all y ∈ R,

L(y) = lim
n→∞P

(
n1/2 min{t:1≤t≤n,xt>0}xt ≤ y

)

exists for all y ∈ R. We will verify that L(y) is Lipschitz continuous on R. This follows
because, for y,y′ ∈ R, y ≤ y′,

|L(y)−L(y′)|
= lim

n→∞

∣∣∣∣P
(

n1/2 min{t:1≤t≤n,xt>0}xt ≤ y

)
−P

(
n1/2 min{t:1≤t≤n,xt>0}xt ≤ y′

)∣∣∣∣
= lim

n→∞P

(
y < n1/2 min{t:1≤t≤n,xt>0}xt ≤ y′

)

≤ limsup
n→∞

P(∃t ∈ {1, . . . ,n} : y < n1/2xt ≤ y′)

= limsup
n→∞

P

⎛
⎝ n∑

t=1

I(yn−1/2 ≤ xt ≤ y′n−1/2) > 1/2

⎞
⎠
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≤ 2limsup
n→∞

n∑
t=1

P(yn−1/2 ≤ xt ≤ y′n−1/2)

= 2limsup
n→∞

n∑
t=1

(Ft(y
′n−1/2t−1/2)−Ft(yn−1/2t−1/2))

≤ 2limsup
n→∞

n∑
t=1

|y− y′|n−1/2t−1/2 sup
t≥1

sup
x∈R

ft(x)

≤ 2sup
t≥1

sup
x∈R

ft(x)|y− y′| sup
n≥1

n−1/2
n∑

t=1

t−1/2, (27)

where the first equality follows from the definition of L(·), the second inequality is the
Markov inequality, and the third inequality follows from the mean value theorem.

To show that Y−1
n1 converges in distribution, note that for all z1 > 0,

P(Y−1
n1 ≤ z1) = P(Yn1 ≥ z−1

1 ) = 1−P(Yn1 ≤ z−1
1 )

converges as n → ∞, and the limit is continuous at any z1 > 0. Furthermore,

lim
z1→∞ lim

n→∞P(Y−1
n1 ≤ z1) = 1

because using the reasoning of Equation (27),

lim
z1→∞ limsup

n→∞
|P(Y−1

n1 ≤ z1)−1| = lim
z1→∞ limsup

n→∞
|P(Yn1 ≥ z−1

1 )−P(Yn1 ≥ 0)|

≤ lim
z1→∞ limsup

n→∞
P(0 ≤ Yn1 ≤ z−1

1 ) ≤ C lim
z1→∞z−1

1 = 0,

while for z1 < 0, P(Y−1
n1 ≤ z1) = 0. This implies that P(Y−1

n1 ≤ z1) converges to a well-

defined limit distribution, and Y−1
n1 converges in distribution. The second part of the theorem

is proven analogously. �

Proof of Lemma 2
Lemmas 11 to 17 are used for the proof of Lemma 2.

LEMMA 11. A random sequence Xn ∈ R
m converges in distribution to a random

variable X if (1) for all λ �= 0, E(λ′Xn)p converges to a limit ζλ,p for all p ∈ N; and (2)∑∞
p=1 ζ

−1/(2p)
λ,2p = ∞ for all λ �= 0.

Proof of Lemma 11. Since λ′Xn satisfies the conditions of Lemma 3 for all λ ∈ R
m,

λ �= 0, it follows that λ′Xn
d−→ Yλ for some random variable Yλ all λ ∈R

m, λ �= 0. Therefore,

E exp(iλ′Xn) converges pointwise in λ to a limit ψ(λ), and we only need to show that Yλ
d=

λ′X for some random variable X. It follows from Theorem 2.13 of Van der Vaart (2000, p.
14) that ψ(λ) is the characteristic function of a random variable X if ψ(λ) is continuous
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at 0. To show this, note that because |exp(ix)− exp(iy)| ≤ |x− y| for x,y ∈ R,

|ψ(λ1)−ψ(λ2)| ≤ lim
n→∞|E exp(iλ′

1Xn)−E exp(iλ′
2Xn)|

≤ |λ1 −λ2| lim
n→∞E|Xn| = |λ1 −λ2| lim

n→∞(EX′
nXn)1/2,

and, defining si as a vector of zeros except for a 1 at spot i,

lim
n→∞EX′

nXn = lim
n→∞

m∑
i=1

E(s′iXn)2

is well-defined because by assumption, limn→∞ E(s′iXn)2 = ζsi,2 is well-defined. There-
fore, the lemma is now proven. �

LEMMA 12. Assume Assumption 1 holds. Then for p ≥ 2,

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,y1,1It2,y2,1 . . . Itp,yp,1)I(t1 < t2). . . I(tp−1 < tp)

= 2−p/2
p∏

j=1

yj/�(p/2+1)

and

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,y1,2It2,y2,2 . . . Itp,yp,2)I(t1 < t2). . . I(tp−1 < tp)

= 2p/2
p∏

j=1

yj/�(p/2+1).

Proof of Lemma 12. We write that

E(It1,y1,1It2,y2,1 . . . Itp,yp,1)

= E(I(0 ≤ xt1 ≤ n−1/2y1). . . I(0 ≤ xtp ≤ n−1/2yp))

=
∫

· · ·
∫

I(0 ≤ z1 + z2 +·· ·+ zp ≤ n−1/2yp). . . I(0 ≤ z1 ≤ n−1/2y1)

×gt1(z1)gt2−t1(z2). . . gtp−tp−1 (zp)dzp . . . dz1.

We follow a similar argument as in the proof of Lemma 6 and approximate gt1(z) by

t−1/2
1 φ(0) and gtj−tj−1(z) by (tj − tj−1)−1/2φ(0) for j = 2,3, . . . ,p and write that

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2)I(t2 < t3). . . I(tp−1 < tp)E(It1,y1,1 . . . Itp,yp,1)

= lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2). . . I(tp−1 < tp)
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×
∫

· · ·
∫

I(0 ≤ z1 +·· ·+ zp ≤ n−1/2yp). . . I(0 ≤ z1 ≤ n−1/2y1)

×φ(0)pt−1/2
1 (t2 − t1)−1/2 . . . (tp − tp−1)−1/2dzp . . . dz1.

Since∫
· · ·

∫
I(0 ≤ z1 +·· ·+ zp ≤ n−1/2yp). . . I(0 ≤ z1 ≤ n−1/2y1)dzp . . . dz1 = n−p/2

p∏
j=1

yj,

(28)

we have

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2)I(t2 < t3). . . I(tp−1 < tp)E(It1,y1,1 . . . Itp,yp,1)

= φ(0)p
p∏

j=1

yj lim
n→∞n−p/2

n∑
t1=1

. . .

n∑
tp=1

I(t1 < t2). . .

× I(tp−1 < tp)t−1/2
1 (t2 − t1)−1/2 . . . (tp − tp−1)−1/2.

Lemmas 4 and 5 now imply, by noting that φ(0)p = (2π)−p/2 and (�(1/2))p = πp/2, that

lim
n→∞

n∑
t1=1

. . .

n∑
tp=1

E(It1,y1,1It2,y2,1 . . . Itp,yp,1)I(t1 < t2). . . I(tp−1 < tp)

= φ(0)p
p∏

j=1

yj

∫ 1

0

∫ sp

0
. . .

∫ s2

0
s−1/2
1 (s2 − s1)−1/2 . . . (sp − sp−1)−1/2ds1ds2 . . . dsp

= 2−p/2
p∏

j=1

yj/�(p/2+1).

The proof of the second result of the lemma is analogous, except that the equivalent of
Equation (28) now receives an additional 2p factor. �

LEMMA 13. Assume Assumption 1 holds. Then we have

lim
n→∞E

⎛
⎝ n∑

t1=1

It1,y1,1

⎞
⎠ = y1

√
2/π

and

lim
n→∞E

⎛
⎝ n∑

t1=1

It1,y1,2

⎞
⎠ = 2y1

√
2/π

and for p ≥ 2,

lim
n→∞

n∑
t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,1It2,y2,1 . . . Itp,yp,1)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)
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= p!2−p/2
p∏

j=1

yj/�(p/2+1)

and

lim
n→∞

n∑
t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,2It2,y2,2 . . . Itp,yp,2)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p!2p/2
p∏

j=1

yj/�(p/2+1).

Proof of Lemma 13. The first two assertions of the lemma follows from Lemma 6 when
we set y = y1. The third result follows immediately from noting that

lim
n→∞

n∑
t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,1It2,y2,1 . . . Itp,yp,1)I(t1 �= t2)I(t2 �= t3). . . I(tp−1 �= tp)

= p! 2−p/2
p∏

j=1

yj/�(p/2+1),

because there are p! orderings of {t1,t2, . . . ,tp}, and Lemma 12 ensures that any possible
ordering of {y1,y2, . . . ,yp} gives the same limit result. The fourth result follows analogously.

�

LEMMA 14. Assume Assumption 1 holds. For b = 1,2, p ≥ 2 and j = 1,2, . . . ,p − 1,
define

hbnpj(y1,y2, . . . ,yp)

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,bIt2,y2,b . . . Itp,yp,b)I(t1 �= t2)I(t2 �= t3). . . I(tj �= tj+1),

and for b = 1,2 and p ≥ 1, define

hbnp0(y1,y2, . . . ,yp) =
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,bIt2,y2,b . . . Itp,yp,b).

Then Hbpj(y1,y2, . . . ,yp) = limn→∞ hbnpj(y1,y2, . . . ,yp) is well-defined for b = 1,2, p ≥ 1
and j = 0,1, . . . ,p−1, and as a consequence,

μp(y1,y2, . . . ,yp) = H1p0(y1, . . . ,yp) = lim
n→∞h1np0(y1,y2, . . . ,yp)

and

νp(y1,y2, . . . ,yp) = H2p0(y1, . . . ,yp) = lim
n→∞h2np0(y1,y2, . . . ,yp)

are well-defined for p ≥ 1. Also, for b = 1,2, p ≥ 2, j = 0,1, . . . ,p − 2 and 0 ≤ y1 ≤ y2 ≤
·· · ≤ yp,

Hbpj(y1,y2, . . . ,yp) = Hb,p−1,j(y1, . . . ,yj+1,yj+3, . . . ,yp)+Hb,p,j+1(y1,y2, . . . ,yp). (29)
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Proof of Lemma 14. For b = 1,2, p ≥ 3 and j = 1,2, . . . ,p−2, we can write

hbnpj(y1,y2, . . . ,yp)

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,bIt2,y2,b . . . Itp,yp,b)I(t1 �= t2). . . I(tj �= tj+1)

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,bIt2,y2,b . . . Itp,yp,b)I(t1 �= t2). . . I(tj �= tj+1)

× (I(tj+1 = tj+2)+ I(tj+1 �= tj+2))

=
n∑

t1=1

n∑
t2=1

. . .

n∑
tp−1=1

E(It1,y1,b . . . Itj,yj,bItj+1,yj+1,bItj+2,yj+3,b . . . Itp−1,yp,b)

× I(t1 �= t2). . . I(tj �= tj+1)

+
n∑

t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,y1,bIt2,y2,b . . . Itp,yp,b)I(t1 �= t2). . . I(tj �= tj+1)I(tj+1 �= tj+2)

= hb,n,p−1,j(y1,y2, . . . ,yj+1,yj+3, . . . ,yp)+hb,n,p,j+1(y1,y2, · · · ,yp), (30)

where the third equality follows from the fact that Itj+1,yj+1,bItj+2,yj+2,b = Itj+1,yj+1,b
Itj+1,yj+2,b = Itj+1, min(yj+1,yj+2),b = Itj+1,yj+1,bwhen tj+1 = tj+2 and from relabeling the
summation indices. This shows the result of Equation (30) for b = 1,2, p ≥ 3, and j =
1,2, . . . ,p−2. Similar to the argument in the proof of Lemma 7, for b = 1,2, p ≥ 2, and j = 0,
we also have hbnp0(y1, . . . ,yp) = hb,n,p−1,0(y1,y3 . . . ,yp) + hbnp1(y1, . . . ,yp). Therefore,
we conclude that the result of Equation (30) holds for b = 1,2, p ≥ 2, and j = 0, . . . ,p−2.
It follows from Lemma 13 that for b = 1,2,

Hb,p,p−1(y1,y2, . . . ,yp) = lim
n→∞hb,n,p,p−1(y1,y2, . . . ,yp)

exists for p ≥ 1. To show that Hbpj(y1,y2, . . . ,yp) = limn→∞ hbnpj(y1,y2, . . . ,yp) exists for
b = 1,2, p ≥ 2 and j = 0, . . . ,p−2, note that by setting j = p−2 in Equation (30), we now
have for b = 1,2 and p ≥ 2

hb,n,p,p−2(y1,y2, . . . ,yp) = hb,n,p−1,p−2(y1,y2, . . . ,yp−1)+hb,n,p,p−1(y1,y2, . . . ,yp).

By taking limits, it now follows that Hb,p,p−2(y1,y2, . . . ,yp−1) exists because

Hb,p,p−2(y1,y2, . . . ,yp) = Hb,p−1,p−2(y1,y2, . . . ,yp−1)+Hb,p,p−1(y1,y2, . . . ,yp).

Repeating this argument for j = p − 3, then p − 4 etc. until j = 0 then shows that
limn→∞ hbnpj(y1,y2, . . . ,yp) = Hbpj(y1, . . . ,yp) exists for b = 1,2, p ≥ 2, and j = 0, . . . ,p−
2. Therefore, the existence of Hbpj(y1, . . . ,yp) is now shown for b = 1,2, p ≥ 1, and
j = 0, . . . ,p − 1. The result of Equation (29) now follows by taking the limit as n → ∞
in Equation (30). �

LEMMA 15. Assume Assumption 1 holds. Then for the μp(y1,y2, . . . ,yp) sequence
defined in Lemma 14, we have for p ≥ 2 and y1 ≤ y2 ≤ ·· · ≤ yp, μp(y1,y2, . . . ,yp) ≤
(2p)p max(1,yp

p). For the νp(y1,y2, . . . ,yp) sequence defined in Lemma 14, we have for p ≥ 2

and y1 ≤ y2 ≤ ·· · ≤ yp, νp(y1,y2, . . . ,yp) ≤ 22ppp max(1,yp
p).
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Proof of Lemma 15. Note that Hbpj(y1,y2, . . . ,yp) is increasing in each argument yj for
j = 1,2, . . . ,p. Therefore, since y1 ≤ y2 ≤ ·· · ≤ yp

H1pj(y1,y2, . . . ,yp) ≤ H1pj(yp, . . . ,yp) ≤ (2p)p max(1,yp
p),

where the last inequality follows from Lemma 10 and setting y = yp. The argument for
νp(y1,y2, . . . ,yp) is analogous. �

LEMMA 16. Assume Assumption 1 holds. Define

Xn1 =
⎛
⎝ n∑

t=1

It,y1,1,

n∑
t=1

It,y2,1, . . . ,

n∑
t=1

It,ym,1

⎞
⎠

′

and

Xn2 =
⎛
⎝ n∑

t=1

It,y1,2,

n∑
t=1

It,y2,2, . . . ,

n∑
t=1

It,ym,2

⎞
⎠

′
.

Then, for all p > 1, μλp = limn→∞ E(λ′Xn1)p and νλp = limn→∞ E(λ′Xn2)p are well-
defined.

Proof of Lemma 16. For the first case, by using the definition of μp(y1,y2, . . . ,yp) in
Lemma 14, we write that

lim
n→∞E(λ′Xn1)p

=
m∑

j1=1

m∑
j2=1

. . .

m∑
jp=1

λj1λj2 . . . λjp lim
n→∞

n∑
t1=1

n∑
t2=1

. . .

n∑
tp=1

E(It1,yj1,1 It2,yj2,1 . . . Itp,yjp,1 )

=
m∑

j1=1

m∑
j2=1

. . .

m∑
jp=1

λj1λj2 . . . λjpμp(yj1,yj2, . . . ,yjp). (31)

Since μp(yj1,yj2, . . . ,yjp) is well-defined by Lemma 14, limn→∞ E(λ′Xn1)p is also well-
defined. The second case is analogous, but uses the definition of νp(y1,y2, . . . ,yp) instead
of μp(y1,y2, . . . ,yp) from Lemma 14. �

LEMMA 17. Assume Assumption 1 holds, and let μλp and νλp be as defined in
Lemma 16. Then for p ≥ 2,

|μλp| ≤ (2mp)p max
1≤i≤m

|λi|p max(1,yp
p)

and

|νλp| ≤ 22p(mp)p max
1≤i≤m

|λi|p max(1,yp
p).
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Proof of Lemma 17. Since μp(y1, . . . ,yp) ≤ (2p)p max(1,yp
p) by Lemma 15, it follows

from Equation (31) that

|μλp| ≤
m∑

j1=1

m∑
j2=1

. . .

m∑
jp=1

|λj1 ||λj2 |. . . |λjp |μp(yj1,yj2, . . . ,yjp)

≤
m∑

j1=1

m∑
j2=1

. . .

m∑
jp=1

max
1≤i≤m

|λi|p(2p)p max(1,yp
p)

= (2mp)p max
1≤i≤m

|λi|p max(1,yp
p).

The second part is shown analogously, except that the upper bound for νp(y1, . . . ,yp) from
Lemma 15 is now used. �

We now provide the proof of Lemma 2.

Proof of Lemma 2. We first apply Lemma 11 to

Xn1 =
⎛
⎝ n∑

t=1

It,y1,1,

n∑
t=1

It,y2,1, . . . ,

n∑
t=1

It,ym,1

⎞
⎠

′

for part 1 of Lemma 2, and then to

Xn2 =
⎛
⎝ n∑

t=1

It,y1,2,

n∑
t=1

It,y2,2, . . . ,

n∑
t=1

It,ym,2

⎞
⎠

′

for part 2 of Lemma 2. Condition (1) of Lemma 11 holds because E(λ′Xn1)p converges

to μλp by Lemma 16. Condition (2) of Lemma 11 follows because
∑∞

p=1 μ
−1/(2p)
λ,2p =

∞ because for p ≥ 2, μλ,2p ≤ (4mp)2p max1≤i≤m(1,λ2p
i )max(1,y2p

p ) by Lemma 17.
Therefore, the proof of the result for part 1 is now complete. The proof of part 2 of Lemma 2
is analogous. �

Proof of Theorem 2
Theorem 2 relies on Lemma 18.

LEMMA 18. For all (y1, . . . ,ym)′ ∈ R
m and (y′

1, . . . ,y
′
m)′ ∈ R

m,

|P(Yni ≤ yi for i = 1, . . . ,m)−P(Yni ≤ y′
i for i = 1, . . . ,m)|

≤
m∑

i=1

|P(Yni ≤ yi)−P(Yni ≤ y′
i)|.

Proof of Lemma 18. The result follows because

|P(Yni ≤ yi for i = 1, . . . ,m)−P(Yni ≤ y′
i for i = 1, . . . ,m)|
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= |E
m∏

i=1

(I(Yni ≤ yi)− I(Yni ≤ y′
i))|

≤ E
m∏

i=1

|I(Yni ≤ yi)− I(Yni ≤ y′
i)|

≤ E
m∑

i=1

|I(Yni ≤ yi)− I(Yni ≤ y′
i)|

=
m∑

i=1

EI(min(yi,y
′
i) ≤ Yni ≤ max(yi,y

′
i))

=
m∑

i=1

(P(Yni ≤ max(yi,y
′
i))−P(Yni ≤ min(yi,y

′
i)))

=
m∑

i=1

|P(Yni ≤ yi)−P(Yni ≤ y′
i)|.

�We can now complete the proof of Theorem 2.

Proof of Theorem 2. We first show the first part of Theorem 2. Under Assumption 1,
(
∑n

t=1 I(0 ≤ xt ≤ y1n−1/2),
∑n

t=1 I(0 ≤ xt ≤ y2n−1/2), . . . ,
∑n

t=1 I(0 ≤ xt ≤ ymn−1/2))′
converges in distribution to (R(y1),R(y2), . . . ,R(ym))′ by Lemma 2. We have

P(Yni ≤ yi for i = 1, . . . ,m) = P

⎛
⎝ n∑

t=1

I(0 < xt ≤ yin
−1/2) ≥ i−1/2 for i = 1, . . . ,m

⎞
⎠

and the last expression converges to some function L(y1, . . . ,ym) since (1/2,3/2, . . . ,m −
1/2) is a continuity point of the distribution of (R(y1), . . . ,R(ym))′. By Lemma 18, we have

|L(y1, . . . ,ym)−L(y′
1, . . . ,y

′
m)|

= lim
n→∞|P(Yni ≤ yi for i = 1, . . . ,m)−P(Yni ≤ y′

i for i = 1, . . . ,m)|

≤
m∑

i=1

lim
n→∞|P(Yni ≤ yi)−P(Yni ≤ y′

i)|

≤
m∑

i=1

lim
n→∞P(∃t ∈ {1, . . . ,n} : min(yi,y

′
i) < n1/2xt ≤ max(yi,y

′
i))

≤ C
m∑

i=1

|yi − y′
i|, (32)

where the last inequality follows from the reasoning of Equation (27). To show that
(Y−1

n1 , . . . ,Y−1
nm )′ converges in distribution, note that if zi > 0 for all i,

P(Y−1
ni ≤ zi for i = 1, . . . ,m) = P(Yni ≥ z−1

i for i = 1, . . . ,m)
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converges as n → ∞ and is continuous at (z1, . . . ,zL)′. Also, using the reasoning of Equation
(32),

limsup
n→∞

|P(Y−1
ni ≤ zi for i = 1, . . . ,m)−1|

= limsup
n→∞

|P(Yni ≥ z−1
i for i = 1, . . . ,m)−P(Yni ≥ 0 for i = 1, . . . ,m)|

≤ limsup
n→∞

m∑
i=1

P(0 ≤ Yni ≤ z−1
i ) ≤ C

m∑
i=1

z−1
i ,

which converges to 0 if zi → ∞ for all i. Therefore, limn→∞ P(Y−1
ni ≤ zi for i = 1, . . . ,m)

converges to 1 if zi → ∞ for all i. Together with the observation that P(Y−1
ni ≤ zi for i =

1, . . . ,m) = 0 if zi < 0, this implies that P(Y−1
n1 ≤ z1, . . . ,Y

−1
nm ≤ zm) converges to a well-

defined limit distribution. Therefore, (Y−1
n1 , . . . ,Y−1

nm )′ converges in distribution. The second
part of the theorem is proven analogously. �

Proof of Theorem 3
Lemma 19 is key to the proof of Theorem 3. The proof of Lemma 19 is taken from Pötscher
(2013, Thm. 1) and is stated here for completeness.

LEMMA 19. Assume Assumption 1 holds. Then for q > 1,

n−q/2
n∑

t=1

x−q
t I(xt > 0) = Op(1)

and

n−q/2
n∑

t=1

|xt|−q = Op(1).

Proof of Lemma 19. First note that, for all δ > 0,

n−q/2
n∑

t=1

x−q
t I(xt > 0)

= n−q/2
n∑

t=1

x−q
t I(0 < xt ≤ δn−1/2)+n−q/2

n∑
t=1

x−q
t I(xt > δn−1/2).

Now

En−q/2
n∑

t=1

x−q
t I(xt > δn−1/2) = n−q/2

n∑
t=1

t−q/2E(t−1/2xt)
−qI(t−1/2xt > δn−1/2t−1/2)

= n−q/2
n∑

t=1

t−q/2
∫ ∞

t−1/2n−1/2δ
x−qft(x)dx
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≤ sup
t≥1,x∈R

ft(x)n
−q/2

n∑
t=1

t−q/2
∫ ∞

t−1/2n−1/2δ
x−qdx

= sup
t≥1,x∈R

ft(x)n
−q/2

n∑
t=1

t−q/2(1/(1−q))[x−q+1]∞
t−1/2n−1/2δ

= sup
t≥1,x∈R

ft(x)n
−q/2

n∑
t=1

t−q/2(1/(q−1))(t−1/2n−1/2δ)−q+1

= sup
t≥1,x∈R

ft(x)
n∑

t=1

(1/(q−1))t−1/2n−1/2δ−q+1.

In addition, for all δ > 0,

P

⎛
⎝n−q/2

n∑
t=1

x−q
t I(0 < xt < δn−1/2) > 0

⎞
⎠

= P(∃t ∈ {1, . . . ,n} : 0 < xt < δn−1/2) ≤
n∑

t=1

P(0 < xt < δn−1/2)

=
n∑

t=1

∫ δn−1/2t−1/2

0
ft(x)dx

≤ sup
t≥1,x∈R

ft(x)
n∑

t=1

δn−1/2t−1/2.

Therefore,

limsup
n→∞

P

⎛
⎝n−q/2

n∑
t=1

x−q
t I(xt > 0) > K

⎞
⎠

≤ limsup
n→∞

P

⎛
⎝n−q/2

n∑
t=1

x−q
t I(0 < xt < δn−1/2) > 0

⎞
⎠

+ limsup
n→∞

P

⎛
⎝n−q/2

n∑
t=1

x−q
t I(xt > δn−1/2) > K

⎞
⎠

≤ sup
t≥1,x∈R

ft(x) limsup
n→∞

n∑
t=1

δn−1/2t−1/2

+K−1 sup
t≥1,x∈R

ft(x) limsup
n→∞

n∑
t=1

(1/(q−1))t−1/2n−1/2δ−q+1

≤ C1δ +C2K−1δ−q+1

https://doi.org/10.1017/S026646662100013X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662100013X


366 NESLIHAN SAKARYA AND ROBERT M. DE JONG

for constants C1 and C2 independent of n, and the second inequality follows from the
Markov inequality. Therefore,

limsup
K→∞

limsup
n→∞

P

⎛
⎝n−q/2

n∑
t=1

x−q
t I(xt > 0) > K

⎞
⎠ ≤ C1δ,

and since δ was arbitrary, the result now follows. For n−q/2 ∑n
t=1 |xt|−q, the same reasoning

can be followed. �

We are now ready to prove the main result of the paper.

Proof of Theorem 3. Define

Xn = n−q/2
n∑

t=1

x−q
t I(xt ≥ 0);

Mn(K) =
n∑

t=1

I(0 ≤ xt ≤ Kn−1/2);

X(1)
nK = n−q/2

n∑
t=1

x−q
t I(0 ≤ xt ≤ Kn−1/2) =

Mn(K)∑
t=1

Y−q
nt I(0 ≤ Ynt ≤ K);

X(2)
nKm =

min(m,Mn(K))∑
t=1

Y−q
nt I(0 ≤ Ynt ≤ K);

X(3)
nm =

min(m,Mn(∞))∑
t=1

Y−q
nt ;

X(4)
m =

m∑
t=1

Y−q
t ;

and consider the Laplace transform E exp(−rXn) for r > 0. We will first show

that this Laplace transform converges by considering E exp(−rXn) − E exp(−rX(1)
nK ),

E exp(−rX(1)
nK )− E exp(−rX(2)

nKm), E exp(−rX(2)
nKm)− E exp(−rX(3)

nm ), and E exp(−rX(3)
nm )−

E exp(−rX(4)
m ). For the first term, note that for all r > 0, because |exp(−x)− exp(−y)| ≤

|x− y| for x,y ≥ 0,

limsup
n→∞

|E exp(−rXn)−E exp(−rX(1)
nK )| ≤ r limsup

n→∞
E|Xn −X(1)

nK |

≤ r limsup
n→∞

n−q/2
n∑

t=1

t−q/2E(t−1/2xt)
−qI(t−1/2xt > t−1/2n−1/2K)

= r limsup
n→∞

n−q/2
n∑

t=1

t−q/2
∫ ∞
−∞

ft(x)x
−qI(x > t−1/2n−1/2K)dx

≤ r sup
t≥1,x∈R

ft(x) limsup
n→∞

n−q/2
n∑

t=1

t−q/2(q−1)−1(t−1/2n−1/2K)1−q
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≤ CK1−q limsup
n→∞

n−1/2
n∑

t=1

t−1/2 = 2CK1−q.

To deal with the second term, note that X(1)
nK �= X(2)

nKm if m < Mn(K), and therefore,

limsup
n→∞

|E exp(−rX(1)
nK )−E exp(−rX(2)

nKm)|

= limsup
n→∞

|E(exp(−rX(1)
nK )− exp(−rX(2)

nKm))I(X(1)
nK �= X(2)

nKm)|

≤ 2limsup
n→∞

P(X(1)
nK �= X(2)

nKm)

≤ 2limsup
n→∞

P(Mn(K) > m)

≤ 2m−1 limsup
n→∞

E
n∑

t=1

I(0 ≤ xt ≤ Kn−1/2)

≤ 2m−1 limsup
n→∞

n∑
t=1

(Ft(t
−1/2Kn−1/2)−Ft(0)) ≤ Cm−1K, (33)

where the third inequality is the Markov inequality and the last inequality follows from the
mean value theorem and supt≥1,x∈R ft(x) < ∞. Also, defining a summation over an empty
index set as 0, we have

|X(2)
nKm −X(3)

nm |

=
∣∣∣∣∣∣
min(m,Mn(K))∑

t=1

Y−q
nt I(0 ≤ Ynt ≤ K)−

min(m,Mn(∞))∑
t=1

Y−q
nt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
min(m,Mn(K))∑

t=1

Y−q
nt −

min(m,Mn(∞))∑
t=1

Y−q
nt

∣∣∣∣∣∣ =
min(m,Mn(∞))∑

t=min(m,Mn(K))+1

Y−q
nt

≤
Mn(∞)∑

t=Mn(K)+1

Y−q
nt =

Mn(∞)∑
t=Mn(K)+1

Y−q
nt I(Ynt > K)

≤ n−q/2
n∑

t=1

x−q
t I(xt > n−1/2K) = |Xn −X(1)

nK |,

where the first inequality holds because if m ≤ Mn(K), then m ≤ Mn(K) ≤ Mn(∞) and the
summation equals 0. Therefore, we can follow the earlier argument for the first term to find

limsup
n→∞

|E exp(−rX(2)
nKm)−E exp(−rX(3)

nm )| ≤ 2CK1−q.

Also, note that because the random walk is recurrent, Mn(∞) will exceed any m even-

tually, implying that eventually, X(3)
nm = ∑m

t=1 Y−q
nt . Therefore, because (Y−1

n1 , . . . ,Y−1
nm )′

converges in distribution to (Y−1
1 , . . . ,Y−1

m )′ by Theorem 2, it follows that X(3)
nm converges in
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distribution to X(4)
m . Putting all these results together, we now find

limsup
n→∞

|E exp(−rXn)−E exp(−rX(4)
m )| ≤ 2CK1−q +Cm−1K +2CK1−q +0.

Next, note that ψ(r) = limm→∞ E exp(−rX(4)
m ) is well-defined because X(4)

m is increasing
in m. Therefore, for all K > 0 and m ≥ 1

limsup
n→∞

|E exp(−rXn)−ψ(r)|

≤ limsup
n→∞

|E exp(−rXn)−E exp(−rX(4)
m )|+ |E exp(−rX(4)

m )−ψ(r)|

≤ Cm−1K +4CK1−q +|E exp(−rX(4)
m )−ψ(r)|.

Now taking the limit first as m → ∞ and then K → ∞, it follows that limn→∞ E exp(−rXn) =
ψ(r). By Theorem 2 of Feller (1971) on page 431, Xn now converges in distribution if
limr↓0 ψ(r) = 1. Note that

lim
r↓0

limsup
n→∞

|E exp(−rXn)−1|

≤ limsup
K→∞

lim
r↓0

limsup
n→∞

|E(exp(−rXn)−1)(I(|Xn| ≤ K)+ I(|Xn| > K))|

≤ limsup
K→∞

lim
r↓0

limsup
n→∞

(|r|E|Xn|I(|Xn| ≤ K)+P(|Xn| > K)),

and therefore it suffices to show

limsup
K→∞

limsup
n→∞

P(|Xn| > K) = 0,

that is, it suffices to show Xn = Op(1), which follows from Lemma 19.

To show that n−q/2 ∑n
t=1 |xt|−q d−→ ∑∞

t=1 Z−q
t , we can reason analogously by defining

Xn = n−q/2
n∑

t=1

|xt|−q;

Mn(K) =
n∑

t=1

I(|xt| ≤ Kn−1/2);

X(1)
nK = n−q/2

n∑
t=1

|xt|−qI(|xt| ≤ n−1/2K) =
Mn(K)∑

t=1

Z−q
nt I(Znt ≤ K);

X(2)
nKm =

min(m,Mn(K))∑
t=1

Z−q
nt I(Znt ≤ K);

X(3)
nm =

min(m,n)∑
t=1

Z−q
nt ;

X(4)
m =

m∑
t=1

Z−q
t .

�
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