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Abstract. Using compact simple Lie groups and Heisenberg groups, we combine
and generalize the constructions of complex structures on Kodaira surfaces and Hopf
surfaces. We identify locally complete parameter spaces of deformations of these spaces
and analyze the deformation of Kodaira manifolds in details.
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1. Introduction. Kodaira surfaces are elliptic fibrations over elliptic curves with
b3 = 3 [2, 13]. They can be considered as the compact quotient of C2 with respect to a
discrete subgroup of the affine group of C2. Taking this point of view, Borcea studied
the moduli space of Kodaira surfaces [4]. Alternatively a Kodaira surface is a quotient
of a one-dimensional nilpotent extension of the three-dimensional Heisenberg group.
In this paper we consider a nilpotent extension H2n+1 × R of the (2n + 1)-dimensional
Heisenberg group H2n+1. We define a left-invariant complex structure on this extension
and consider the quotient by a co-compact lattice �. Then we study the moduli of
complex structures on these Kodaira manifolds �\(H2n+1 × R).

Hopf surfaces are complex manifolds diffeomorphic to S1 × S3 [2]. A special
one is U(1) × SU(2) with left-invariant complex structure. The moduli problem on
Hopf surfaces was investigated by several authors including Dabrowski [7]. The
investigation of moduli on Hopf surfaces can be extended to U(1) × G, where G is
an odd-dimensional compact simple Lie group. Left-invariant complex structures on
these manifolds were studied by Samelson [17]. Using Bott-Borel-Weil theory, the
cohomology of the tangent sheaf on such complex manifolds was calculated in [12,
Appendix 2].
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260 GUEO GRANTCHAROV ET AL.

We combine the construction of complex structures on Kodaira manifolds with
Samelson’s construction to define a left-invariant complex structure on H2n+1 × G.
Using co-compact subgroups � in H2n+1, we obtain compact complex manifolds X =
(�\H2n+1) × G with features of both the Kodaira manifold (�\H2n+1) × U(1) and the
generalized Hopf surface U(1) × G. We investigate the complex deformations of X .
One of our main general results is a computation of H1(X,�X ) together with an
analysis of integrability. This analysis uses Kuranishi theory and work of Griffiths
[15, 11]. After identifying the cohomology groups, we apply both the Kodaira-Spencer
and the Kuranishi method to investigate the integrability of the parameters.

As an application, we analyze the structure of the moduli space of invariant
complex structures on Kodaira manifolds in details. To state this result, we shall
use D∗ to denote the punctured unit disc and Hn,k to denote the flag domain
Sp(2n, R)/ Un−k,k(C).

THEOREM. The moduli space of invariant complex structures on the complex 2(� + 1)-
dimensional Kodaira manifold �\H4�+3 × S1 is the topological space

M = ∪�
j=0(H2�+1,2�+1−4j/ Sp(4� + 2, Z)) × D∗.

The moduli space of invariant complex structures on the complex 2� + 1-dimensional
Kodaira manifold �\H4�+1 × S1 is the topological space

M = (∪2�
j=0H2�,2�−2j

/
Sp(4�, Z)

) × D∗.

This result may be viewed as a mix of those in [3] on moduli of complex structures
of torus via an elliptic fibration over torus. It certainly is a generalization of Borcea’s
work in complex dimension 2 [4]. In his case, he benefits from classification of Kodaira
surfaces and hence the qualification “invariant” is not necessary. For constructions of
homogeneous structures on other nilmanifolds see [1, 16].

2. Kodaira manifolds and its generalizations. In this section, we define Kodaira
manifolds in such a way that it generalizes Kodaira surfaces. The key element is
the Heisenberg group. Afterward, we go on to extend it to consider a Hopf-type
generalization of Kodaira manifolds. To prepare our investigation, we also calculate
the relevant cohomology groups.

2.1. The Heisenberg group. The underlying manifold of the Heisenberg group
H2n+1 is the space R2n+1. In terms of the coordinates (x1, y1, . . . , xn, yn, z) the group
operation is given by

(x, y, z) ∗ (x′, y′, z′) =

x + x′, y + y′, z + z′ + 1

2

n∑
j=1

(xjy′
j − yjx′

j)


 . (1)

and satisfies

(x, y, z)−1 = (−x,−y,−z). (2)
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If we consider R2n+1 as Cn × R, in coordinates with ζ ∈ Cn and t ∈ R the group
law looks like

(ζ, t) ∗ (ζ ′, t′) =
(

ζ + ζ ′, t + t′ + 1
2

Im(ζ ∗ζ ′)
)

where ζ ∗ is the conjugate transpose of ζ . The tangent vectors ∂
∂xj

, ∂
∂yj

, ∂
∂z at the identity

extend to left invariant vector fields

X̃ j = ∂

∂xj
− 1

2
yj

∂

∂z
Ỹ j = ∂

∂yj
+ 1

2
xj

∂

∂z
Z̃ = ∂

∂z

respectively. These left invariant vector fields form a basis for the Heisenberg algebra
h2n+1. The commutator relations of h2n+1 are as follows:

[X̃ j, Ỹ j] = Z̃ for 1 ≤ j ≤ n (3)

with all other brackets being equal to 0. It follows that the Heisenberg algebra is a two-
step nilpotent algebra, with the 1-dimensional subspace c spanned by Z as its center.
It is known that for all nilpotent Lie groups the exponential map is a surjection, and
for a simply connected nilpotent group such as the Heisenberg group the exponential
mapping will be a diffeomorphism. The algebra and group operations are related by
the Campbell-Baker-Hausdorff formula

exp(X) ∗ exp(Y ) = exp
(

X + Y + 1
2

[X, Y ]
)

for X, Y ∈ h2n+1. (4)

The inverse of the exponential map will be called log, and formula (4) can also be
written as

log(g ∗ h) = log(g) + log(h) + 1
2

[log(g), log(h)]. (5)

The log function satisfies the following familiar identity. We skip the proof.

LEMMA 1. log(gn) = n log(g) for every integer n and every g ∈ H2n+1.

The quotient of the Heisenberg algebra by the center c is the Abelian algebra t2n.
We have an exact sequence

0 → c
ι→ h2n+1

φ→ t2n → 0. (6)

The center c, corresponding (under the exponential map) to the central subgroup
C of H2n+1, is given x = y = 0, and C is isomorphic to (R,+). On the group level we
have a homomorphism

φ : H2n+1 → (R2n,+). (7)

We consider a discrete subgroup � of H2n+1 generated by elements gi, 1 ≤ i ≤
2n + 1, satisfying the following relations:

g2i−1g2ig−1
2i−1g−1

2i = gm
2n+1 for i = 1, 2, . . . , n

gigjg−1
i g−1

j = id for all other combinations (i, j) with i < j (8)
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for some positive integer m and such that the quotient �\H2n+1 is compact. We will
denote the quotient �\H2n+1 by Ȟ2n+1. For example we could take gi = ei where
(e1, . . . , e2n+1) are the standard basis vectors of R2n+1. The relation then satisfied is
e2i−1e2ie−1

2i−1e−1
2i = e2n+1. Such a lattice with m = 1 will be called a primary lattice.

If we denote by �0 the intersection of � with C, �0 is isomorphic to the additive
group (Z,+). The quotient of C by �0 is the one-dimensional torus group T1. The
image φ(�) in R2n is isomorphic to Z2n, and the quotient φ(�)\φ(H2n+1) is isomorphic
to the 2n-dimensional torus group T2n.

We now prefer to use a new basis of the algebra h2n+1 related to the lattice �. Let

Xj|0 = log(g2j−1), Yj|0 = log(g2j) for 1 ≤ j ≤ n, and Z|0 = log(g2n+1). (9)

with the fields Xj, Yj and Z defined at other points by left translation. Combining the
Campbell-Baker-Hausdorff formula (4) and the relations (8) we find that the algebra
of the vector fields generated by Xj, Yj, Z is determined by

[Xj, Yj] = mZ (10)

with all other brackets identically 0. Now we define 1-forms αj dual to Xj, βj dual to Yj

and γ dual to Z. The exterior derivatives are given by the Maurer-Cartan equations

dαj = 0, dβj = 0, dγ = −m
n∑

j=1

αj ∧ βj. (11)

2.2. Kodaira manifolds. By taking the direct sum of h2n+1 with the one dimen-
sional Lie algebra t1, we extend the exact sequence (6) by a direct sum of ι with the
identity map:

0 → c ⊕ t1
ι→ h2n+1 ⊕ t1

φ→ t2n → 0. (12)

The simply connected Lie groups with algebra c ⊕ t1 and h2n+1 ⊕ t1 are C × R
and H2n+1 × R respectively. We define �̌ to be the product of the lattice � with the
integers Z, and �̌0 to be the product of �0 with Z. Then the quotient of H2n+1 × R
by �̌ is diffeomorphic to Ȟ2n+1 × U(1) and the quotient of the center C × R by �̌0 is
diffeomorphic to the two-dimensional torus T2.

Let t be a coordinate for R so that the vector field T = ∂
∂t is left invariant. Then

(Xj, Yj, Z, T) forms a basis for the algebra h2n+1 ⊕ t1. We define an endomorphism J
of the algebra by

JXj = Yj, JYj = −Xj, JZ = T, JT = −Z (13)

and extend it from the tangent space at the identity by left translation. This
endomorphism defines an almost complex structure on H2n+1 × R. Since the only
non-trivial Lie bracket is of the type [Xj, Yj], it is easy to check that for any left
invariant vector fields X and Y

[JX, JY] = [X, Y ]. (14)

If a complex structure satisfies (14), it is said to be Abelian. Since the Nijenhuis
tensor will be zero in such case, it is integrable. If we define the 1-form χ by χ = dt,
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the space of (1,0)-forms is spanned by

ωj = αj + iβj for 1 ≤ j ≤ n, ωn+1 = γ + iχ.

These forms have exterior derivatives

dωj = 0 for 1 ≤ j ≤ n,

dωn+1 = dγ = −m
n∑

j=1

αj ∧ βj = −m
i
2

n∑
j=1

ωj ∧ ωj

because ωj ∧ ω̄j = −(2i)αj ∧ βj. Since ∂ωn+1 = 0, the forms ωj, 1 ≤ j ≤ n are holo-
morphic type (0,1)-forms on H2n+1 × R.

Since the complex structure is left-invariant, it descends to an integrable complex
structure on the quotient space Ȟ2n+1 × U(1). We refer to it as a Kodaira manifold. If
the lattice is a primary one, the Kodaira manifold is called primary. The projection 

from Ȟ2n+1 × U(1) onto the torus T2n given by taking the quotient by the center is a
holomorphic map.

2.3. Complex structures on Ȟ × G. The construction in the last section can be
substantially generalized in several directions. Let G be an odd-dimensional compact
semi-simple Lie group with Lie algebra g. Let its rank be 2m − 1. Samelson proves that
there is a left-invariant complex structure J on the direct product T1 × G defined as
follows [17]. Let U be a maximal torus of G. Let 
+ be a choice of positive roots with
respect to the Cartan subalgebra uC. Let ga be the root spaces. Let {H1, . . . H2m−1} be
a basis for the real Lie algebra u, let Z = H0 be a non-zero vector in t1, and let Xa be
a non-zero vector in ga. Then the (1,0)-vectors with respect to J are in the complex
linear span of

{H2k + iH2k+1, 0 ≤ k ≤ m − 1; Xa, a ∈ 
+}. (15)

Consider the product space H2n+1 × G. The tangent space to the identity coset is
the vector space h2n+1 ⊕ g ∼= t2n ⊕ c ⊕ g. Define an endomorphism J on this space such
that on t2n, JXj = Yj, JYj = −Xj. On c ⊕ g, define J to be Samelson’s complex structure
on the tangent space of the identity element of T1 × G. Through left-translations, this
endomorphism is extended to a left-invariant almost complex structure on H2n+1 × G.
The almost complex structure descends to an almost complex structure on Ȟ × G. By
construction, this almost complex structure is G-invariant.

This almost complex structure is integrable. It is most convenient to verify the
integrability on the non-compact space H2n+1 × G as the almost complex structure is
left-invariant on this space. Since t2n and c ⊕ g are both J-invariant and they commute
in the algebra h2n+1 ⊕ g = R2n ⊕ c ⊕ g, when N is the Nijenhuis tensor for J, then
N(X, Y ) = 0 for any X in R2n and Y in c ⊕ g. If both X and Y are in R2n, then
N(X, Y ) = 0 because on this summand, the almost complex structure is Abelian in
the sense of (14). If both X and Y are in c ⊕ g, N(X, Y ) = 0 due to the integrability
of Samelson’s complex structure. It follows that Ȟ × G has a G-invariant complex
structure.

In the above definition of the complex structure on H2n+1 × G, the adjoint action
of c ⊕ u on (h2n+1 ⊕ g)C preserves the type decomposition. Since the complex structure
J on H2n+1 × G is left-invariant, it is also invariant with respect to the right action of
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the group C × U on Ȟ × G. The holomorphic quotient of Ȟ × G is the product of
the complex n-torus T2n and the Borel’s flag manifold G/U . We have the holomorphic
projection

 : Ȟ × G → T2n × G/U. (16)

The fibers are the flows of the right actions generated by the group C × U . Therefore,
the algebra of holomorphic vertical vector fields v with respect to  is invariant with
respect to the left action of G.

Denote Ȟ × G by X and T2n × G/U by M, we have the following exact sequence
of holomorphic bundles on X .

0 → OX (v) → �X → ∗�M → 0. (17)

2.4. Computation of cohomology. Use the notation of (15). Let χa be the dual
1-form for the vector H� for 1 ≤ � ≤ 2m − 1, γ = χ0 the dual of Z. Then the 1-forms

ωn+k+1 = χ2k + iχ2k+1, for 0 ≤ k ≤ m − 1

are type (1,0)-forms.
Let Xa and Xb be any pair of positive roots. Then [Xa, Xb] = NabXa+b where

Nab = 0 when a + b is not a root. Therefore,

dωn+k+1(Xa, Xb) = Xaωn+k+1(Xb) − Xbωn+k+1(Xa) − ωn+k+1([Xa, Xb])

= −Nabωn+k+1(Xa+b) = 0.

dωn+k+1(Xa, H�) = Xaωn+k+1(H�) − H�ωn+k+1(Xa) − ωn+k+1([Xa, H�])

= −a(H�)ωn+k+1(Xa) = 0

dωn+k+1(H�, H�̂) = H�ωn+k+1(H�̂) − H�̂ωn+k+1(H�) − ωn+k+1([H�, H�̂]) = 0.

It follows that dωn+k+1 does not have any type (2,0)-part. In other words, ∂ωn+k+1 = 0.
Taking complex conjugation, we find that the linear span

� = 〈ωn+k+1, 0 ≤ k ≤ m − 1〉 (18)

is the space of vertical holomorphic (0,1)-forms on Ȟ × G. This computation works
also when G is the group U(1).

LEMMA 2. Let OX and �X be the structure sheaf and the tangent sheaf for X =
Ȟ × G, where G is either a compact semi-simple Lie group of odd-dimension or the circle
group T1. Let M = T2n × G/U when G is semi-simple and M = T2n when G is the circle
group. Then for p ≥ 1, the direct image sheaves are.

Rp∗OX = ∧p� ⊗ OM ; Rp∗∗�M = ∧p� ⊗ �M . (19)

Proof. The second identity is a consequence of the first identity and the projection
formula.

To prove the first formula, note that for any m in the manifold M,

(Rp∗OX )m = Hp(−1(m),OX ) ∼= Hp(C × U,OX ).
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It has constant rank. Therefore, by Grauert’s Theorem, the direct image sheaf is locally
free. As −1(m) is isomorphic to a complex torus, for all p ≥ 1,

Hp(−1(m),OX ) = ∧pH1(−1(m),OX ),

The vector bundle Rp∗OX is isomorphic to ∧pR1∗OX . Since the vertical
holomorphic (0,1)-forms ωn+k+1 are non-zero anywhere, and they form a basis for
the space of holomorphic (0,1)-form on each fiber of the map , they trivialize the
bundle R1∗OX . Therefore, we have

Rp∗OX ∼= ∧pR1∗OX ∼= ∧p� ⊗ OM . (20)

The proof is complete.

LEMMA 3. Let O and � be the structure sheaf and the tangent sheaf for X = Ȟ × G,
where G is either a compact semi-simple Lie group with odd-dimension or the circle group.
Let v be the algebra of vertical holomorphic vector fields with respect to the projection
. Let t1,0 be the (1, 0)-part of the complexification of t2n. Let t∗(0,1) be the (0, 1)-forms.
Then

Hk(X,OX ) = ∧k(� ⊕ t∗(0,1)). (21)

Hk(X, ∗�M) = ∧k(� ⊕ t∗(0,1)) ⊗ (t1,0 ⊕ gC). (22)

Proof. Let us consider the Leray spectral sequence with respect to the ∂-operator
and the holomorphic projection . One has

Ep,q
2 = Hp(M, Rq∗OX ), Ep,q

∞ ⇒ Hp+q(X,OX ).

Due to the last proposition, when q ≥ 1,

Ep,q
2 = Hp(M,∧q� ⊗ OM) = ∧q� ⊗ Hp(M,OM)

= ∧q� ⊗ Hp(T2n × G/U,OM) = ∧q� ⊗ (⊕a+b=pHa(T2n,O) ⊗ Hb(G/U,O)).

Due to Bott-Borel-Weil theory, Hb(G/U,O) vanishes except when b = 0. Therefore,

Ep,q
2 = ∧q� ⊗ Hp(T2n,O) = ∧q� ⊗ ∧pt∗(0,1). (23)

Note that every element in Ep,q
2 is a linear combination of the tensor products of

holomorphic (0,q)-forms generated by � and holomorphic (0,p)-forms lifted from
the base. Since these holomorphic forms are globally defined and the differential d2

is generated by the ∂-operator, d2 = 0. It follows that the Leray spectral sequence
degenerates on E2-level. Therefore,

Hk(X,OX ) = ⊕p+q=kEp,q
2 = ∧k(� ⊕ t∗(0,1)). (24)

Next, Leray spectral sequence for ∗�M gives

Ep,q
2 = Hp(M, Rq∗∗�M), Ep,q

∞ ⇒ Hp+q(X, ∗�M).
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Due to the last proposition and Kunneth formula, Ep,q
2 is equal to

Hp(M,∧q� ⊗ �M) = ∧q� ⊗ Hp(M,�M) = ∧q � ⊗ ⊕p
k=0(Hk(T2n,�T2n )

⊗ Hp−k(G/U,O) ⊕ Hp−k(T2n,O) ⊗ Hk(G/U,�G/U ))

Due to Bott-Borel-Weil theory, Hb(G/U,�) and Hb(G/U,O) vanish except when
b = 0 and H0(G/U,�) = gC. Therefore,

Ep,q
2 = ∧q� ⊗ ∧pt∗(0,1) ⊗ (t1,0 ⊕ gC). (25)

Note that elements in t1,0 ⊕ gC are holomorphic vector fields on M and hence globally
defined sections of ∗�M on X . Elements in ∧q� are pulled back to globally defined
holomorphic (0,q)-forms on X . Most important, elements in ∧pt∗(0,1) are globally
defined holomorphic (0,p)-forms on X , the operator d2 is identically zero. Therefore,
the spectral sequence degenerates at E2. We have

Hk(X, ∗�M) = ⊕p+q=kEp,q
2 = ∧k(� ⊕ t∗(0,1)) ⊗ (t1,0 ⊕ gC). (26)

The proof is complete.

Now we are able to compute the relevant cohomology. Recall that v is the algebra
of the vertical holomorphic vector fields with respect to the projection  from Ȟ × G
onto T2n × G/U . Let v0 be the complex linear span of Z − iH1 in v. Let v1 be the
complex linear span of {H2� + iH2�+1 : 1 ≤ m − 1}. Define N = � ⊗ v0 ⊕ t∗(0,1) � t1,0

and S = H1(X,OX ) ⊗ (v1 ⊕ gC) = (� ⊕ t∗(0,1)) ⊗ (v1 ⊕ gC).

PROPOSITION 1. LetOX , �X be the structure sheaf and the tangent sheaf for X = Ȟ ×
G, where G is a compact semi-simple Lie group of odd-dimension. Then H0(X,�X ) =
v ⊕ gC and H1(X,�X ) = N ⊕ S.

Proof. The induced long exact sequence of (17) yields

→ Hk(X,O) ⊗ v → Hk(X,�X ) → Hk(X, ∗�M)
δk→ Hk+1(X,O) ⊗ v→. (27)

By the last proposition, the coboundary map is

δk : ∧k(� ⊕ t∗(0,1)) ⊗ (t1,0 ⊕ gC) → ∧k+1(� ⊕ t∗(0,1)) ⊗ v. (28)

Now we have to chase the diagram to calculate the coboundary maps. To do so, we
choose a metric h on Ȟ × G satisfying the following conditions: the restriction of h onto
Ȟ is the Euclidean metric such that the coordinate vector fields are orthonormal. The
restriction onto G is the bi-invariant metric such that h(H1, H1) = h(Z, Z) = 1. We also
assume that the basis {H1, . . . , H2m−1} is orthonormal with respect to h. It is not hard
to see that this is a Hermitian metric on Ȟ × G. Let ∇ be the Chern connection on �X .
We use the ∂-operator twisted by the Chern connection to construct the cohomology
for �X .

There are two types of elements in Hk(X, ∗�M). One type is given by ϒ ⊗ V
where ϒ is a holomorphic (0,k)-form contained in ∧k(� ⊕ t∗(0,1)) and V is an element
in gC. Since V has a natural holomorphic lifting to X and ϒ is a holomorphic k-form
on X , ϒ ⊗ V is a holomorphic (0,k)-form on X with values in �X . As the Chern
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connection is compatible with the holomorphic structure, ∂∇(ϒ ⊗ V ) = 0. Therefore,
δk(ϒ ⊗ V ) = 0.

Another type is given by ϒ ⊗ ( ∂
∂xj

− i ∂
∂yj

). Its lifting is ϒ ⊗ (Xj − iYj). The
holomorphic vector field ∂

∂xj
− i ∂

∂yj
on T2n × G/U can also be lifted to Xj − iYj.

Since the vector field Xj is obtained by left-translation, its flow is generated by right
multiplication. Therefore, it is not necessarily a holomorphic vector field. To calculate
the coboundary map, we recall an observation of Gauduchon [9] that ∂

∇
AB = [A, B]1,0

when A is a (0,1)-vector and B is a (1,0)-vector field. Keeping in mind that Xj − iYj is
a vector field along the first factor of the product Ȟ × G, we have

δ0

(
∂

∂xj
− i

∂

∂yj

)
= ∂

∇
(Xj − iYj)

= 1
2

(
n∑

k=1

[Xk + iYk, Xj − iYj]1,0 ⊗ ωk + [Z + iH1, Xj − iYj]1,0 ⊗ ωn+1

)

= −iδjkZ1,0 ⊗ ωk = −1
2

i(Z − iH1) ⊗ ωj. (29)

In particular, kernel of δ0 is gC. As v0 is the complex linear span of Z − iH1 in v, the
image of δ0 is v0 ⊗ t∗(0,1). Therefore, we have H0(X,�) = v ⊕ gC.

To calculate δ1, note that {ωj : 1 ≤ j ≤ m + n} is a basis for t∗(0,1) ⊕ �. Since they are
holomorphic and elements in gC has a natural holomorphic lifting, (� ⊕ t∗(0,1)) ⊗ gC

is in the kernel of δ1. On the other hand, for 0 ≤ k ≤ m and 1 ≤ j ≤ n,

∂
∇

(ωn+k ⊗ (Xj − iYj)) = ωn+k ∧ ∂
∇

(Xj − iYj) = 2iωn+k ∧ ωj ⊗ (Z − iH1). (30)

Therefore, the restriction of δ1 on � ⊗ t1,0 is an injective map. Its image is � ⊗ t∗(0,1) ⊗
v0.

Similarly, for 0 ≤ k, j ≤ n,

∂
∇

(ωk ⊗ (Xj − iYj)) = ωk ∧ ∂
∇

(Xj − iYj) = 2iωk ∧ ωj ⊗ (Z − iH1). (31)

Therefore, the kernel of the restriction of δ1 on t∗(0,1) ⊗ t1,0 is the symmetric product
t∗(0,1) � t1,0. The image is ∧2t∗(0,1) ⊗ v0.

By definition of v1, the following sequence is exact.

0 → � ⊗ v ⊕ t∗(0,1) ⊗ v1 → H1(X,�) → (
� ⊕ t∗(0,1)) ⊗ gC ⊕ t∗(0,1) � t1,0 → 0.

This completes the proof.

In the above description of holomorphic vector fields, we find a direct sum
decomposition. In fact, this is a direct sum decomposition of Lie algebras. Any element
in gC is represented by V = C − iJC where C is a right-invariant real vector field on
G. Since C is holomorphic, LCJ = 0. Since right multiplications commute with left
multiplications, it is clear that the vector field C commutes with the left-invariant vector
fields {H0, H1, . . . , H2m−1} where H0 = Z. We note that these left-invariant vector fields
are holomorphic. i.e. LH�

J = 0. Therefore,

[H�, JC] = J[H�, C] = 0.
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Since v is generated by an Abelian group,

[v, gC] = 0, and [v, v] = 0. (32)

We shall refer to the component v as the nilpotent part and to gC as the semi-simple
part of the algebra of holomorphic vector fields on X .

In the case when G = U(1), the semi-simple part is equal to zero. The above proof
yields the following.

PROPOSITION 2. Let OX , �X be the structure sheaf and the tangent sheaf for X =
Ȟ × U(1). Let v be the algebra of vertical holomorphic vector fields with respect to the
projection  from Ȟ × U(1) onto T2n. Let t1,0 be the (1, 0)-part of the complexification
of t2n. Let t∗(0,1) be the (0, 1)-forms. Then

H0(X,�X ) = v ∼= C.

H1(X,�X ) = t∗(0,1) � t1,0 ⊕ � ⊗ v0
∼= C

1
2 n(n+1) ⊕ C.

3. Kodaira-Spencer-Kuranishi theory. The computations in the last section have
identified the virtual parameter space of deformations. Since H2(X,�X ) does not
vanish, we need to investigate the obstructions in some depth before we can identify
the directions in which the virtual parameters of deformations are integrable.

3.1. The Nijenhuis bracket. If ω ⊗ V is a vector-valued (0,1)-form representing
an element in H1(X,�X ), the obstruction for it to be the tangent of a one-parameter
deformation is contained in a bracket operation:

{·, ·} : H1(X,�X ) × H1(X,�X ) → H2(X,�X ). (33)

We call this bracket the Nijenhuis bracket [8, 10]. This obstruction was discussed by
Kodaira-Spencer in [14, Section 6] and it plays a critical role in Kuranishi theory [15]. It
is defined as follows. When �1 and �2 are vector-valued 1-forms representing elements
in H1(X,�X ), and when A and B are (0,1)-vector fields, then

{�1,�2}(A, B)

= [�1(A),�2(B)] − [�1(B),�2(A)]

+�1(−[A,�2(B)] + [B,�2(A)]) + �2(−[A,�1(B)] + [B,�1(A)]). (34)

In the case when �1 = ω ⊗ V and �2 = ω′ ⊗ V ′, by Griffiths [11, Proposi-
tion 10.5] the Dolbeault representative for {ω ⊗ V, ω′ ⊗ V ′} is

ω′ ∧ LV ′ω ⊗ V + ω ∧ LVω′ ⊗ V ′ + ω ∧ ω′ ⊗ [V, V ′]. (35)

LEMMA 4. Suppose X is the complex manifold Ȟ × G where G is a compact semi-
simple Lie group. The Nijenhuis bracket between any pair of elements of N ⊕ S is equal
to zero except possibly when they both are in (� ⊕ t∗(0,1)) ⊗ gC. When ω ⊗ V and ω′ ⊗ V ′

are both in (� ⊕ t∗(0,1)) ⊗ gC, then

{ω ⊗ V, ω′ ⊗ V ′} = ω ∧ ω′ ⊗ [V, V ′]. (36)
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Proof. The bundle of (0,1)-vectors on Ȟ × G is globally and smoothly trivialized
by

Xj + iYj, 1 ≤ j ≤ n, H2� + iH2�+1, 0 ≤ � ≤ m − 1, g− = {W 1, . . . , W N}, (37)

where g− is the complex vector space of negative roots for gC with respect to the chosen
maximal torus U and the vectors Wj form a basis. Let us assume that A and B are
elements in the basis of the above trivialization.

If �1 and �2 are both in t∗(0,1) � t1,0, then [�1(A),�2(B)] = 0 for all A, B. Also,
[A,�i(B)] is in the linear span of Z and hence is in the kernel of �j. Therefore,
{t∗(0,1) � t1,0, t∗(0,1) � t1,0} = 0.

If �1 and �2 are elements contained in t∗(0,1) ⊗ v1 ⊕ � ⊗ v0 ⊕ � ⊗ v1, then
[�1(A),�2(B)] = 0 for any A and B. For i, j = 1, 2, �i(A) is in v, [B,�i(A)] is contained
in g− which is in the kernel of �j. Therefore,

{
t∗(0,1) ⊗ v1 ⊕ � ⊗ v0 ⊕ � ⊗ v1, t

∗(0,1) ⊗ v1 ⊕ � ⊗ v0 ⊕ � ⊗ v1
} = 0. (38)

A similar computation shows that {t∗(0,1) ⊗ v1, t
∗(0,1) � t1,0} = 0.

In the case when �1 = ωn+k ⊗ (H2� − iH2�+1) is in � ⊗ (v0 ⊕ v1), and �2 = ωi ⊗
(Xj − iYj) + ωj ⊗ (Xi − iYi) is in t∗(0,1) � t1,0, we note that the range of the adjoint
action of H�’s are contained in the kernel of ωi and ωj. Therefore, [�1,�2](A, B) could
be non-zero only when A = Xm + iYm and B = Xl + iYl for some integers 1 ≤ m, l ≤ n.
In this case,

{�1,�2}(A, B)

= −ωn+k([Xm + iYm, δil(Xj − iYj) + δjl(Xi − iYi)]

− [Xl + iYl, δim(Xj − iYj) + δjm(Xi − iYi)])(H2� − iH2�+1)

= −8iωn+k(Z)(δilδmj + δjlδmi − δimδlj − δjmδli) = 0. (39)

It follows that {� ⊗ (v0 ⊕ v1), t∗(0,1) � t1,0} = 0.

Next, we compute the Nijenhuis bracket involving the holomorphic vector fields
in gC.

When �1 is in t∗(0,1) � t1,0 and �2 is in (� ⊕ t∗(0,1)) ⊗ gC, [�1(A),�2(B)] = 0 for
all A, B. Moreover, [A,�2(B)] is a tangent vector field along G. It is in the kernel of
�1. [A,�1(B)] is contained in the center of the Heisenberg space. Therefore,

{�1,�2}(A, B) = −�2([A,�1(B)] − [B,�1(A)]). (40)

And it could be non-zero only when A = Xm + iYm, B = Xl + iYl for some m and l. In
such case, a computation similar to (39) shows that {t∗(0,1) � t1,0, (� ⊕ t∗(0,1)) ⊗ gC} =
0.

Now if �1 is in t∗(0,1) ⊗ v1 and �2 is in (� ⊕ t∗(0,1)) ⊗ gC, [�1(A),�2(B)] = 0 for
all A, B. Moreover, [A,�1(B)] is contained in g−. It follows that it is contained in the
kernel of �2. [A,�2(B)] is a tangent vector field along G. It is in the kernel of �1.
Therefore, {t∗(0,1) ⊗ v1, (� ⊕ t∗(0,1)) ⊗ gC} = 0.

To make further computation, we claim that for all A in the basis of the
trivialization and for all V = R − iJR where R is right-invariant vector field

ω([A, V ]) = 0 (41)
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for all ω in � ⊕ t∗(0,1). Since [A, V ] is a tangent vector field along G, it is clear that it
is in the kernel of ω if ω is in t∗(0,1). Since {H0, H1, . . . , H2m−1} is a set of orthonormal
vectors with respect to the bi-invariant metric h, the dual 1-forms χ� are determined
by χ�(B) = h(B, H�).

Let A be any real left-invariant vector field. Let B = JA, then B is again a left-
invariant vector field. A + iB is a (0,1)-vector field. Since R is right-invariant [A +
iB, R] = 0. Then

ωn+k+1([A + iB, V ])

= h(H2k − iH2k+1, [A + iB, R − iJR])

= ih(H2k − iH2k+1, [A + iB, JR])

= h(H2k, [B, JR]) + h(H2k+1, [A, JR]) + ih(H2k, [A, JR]) − ih(H2k+1, [B, JR])

= −h([B, H2k], JR) − h([A, H2k+1], JR) − ih([A, H2k], JR) + ih([B, H2k+1], JR)

= −h(B, [H2k, JR]) − h(A, [H2k+1, JR]) − ih(A, [H2k, JR]) + ih(B, [H2k+1, JR])

= −h(B, J[H2k, R]) − h(A, J[H2k+1, R]) − ih(A, J[H2k, R]) + ih(B, J[H2k+1, R])

= 0.

Therefore, (41) is proved.
Now if �1 is in � ⊗ (v0 ⊕ v1) and �2 is in (� ⊕ t∗(0,1)) ⊗ gC, then [�1(A),�2(B)] =

0 for all A, B. Moreover, [A,�1(B)] ∈ g− and g− is in the kernel of �2. Therefore, if
�2 = ωj ⊗ V , then with (41),

{�1,�2}(A, B) = −�1(ωj(B)[A, V ] − ωj(A)[B, V ]) = 0 (42)

for 1 ≤ j ≤ m. Therefore, {� ⊗ (v0 ⊕ v1), (� ⊕ t∗(0,1)) ⊗ gC} = 0.

Finally, when both �1 = ωi ⊗ V1 and �2 = ωj ⊗ V2 are in (� ⊕ t∗(0,1)) ⊗ gC, then
equation (41) implies that ωi([A, ωj(B)]) = 0 for all A and B and i, j = 1, 2. Therefore,

{�1,�2}(A, B) = ωi(A)ωj(B)[V1, V2] − ωi(B)ωj(A)[V1, V2]

= ωi ∧ ωj ⊗ [V1, V2],

completing the proof.

Knowing the Nijenhuis bracket among elements in H1(X,�X ), we shall investigate
the obstructions to deformations from both Griffiths’ approach [11] and from
Kuranishi’s approach [15].

3.2. Kodaira-Spencer theory. Recall a very useful definition from [11].

DEFINITION 1. Let A be a subalgebra of H0(X,�X ). The complex manifold X is
said to satisfy Condition D with respect to A if the following hold:

(i) j : H1(X,OX ) ⊗ A → H1(X,�X ) is injective;
(ii) If V ∈ A and ω ∈ H1(X,OX ), then there exists a C∞ function f = f (V, ω) such

that LVω = ∂f .

Let A := v1 ⊕ gC. Due to (32), A is a subalgebra. Since H1(X,OX ) = � ⊕ t∗(0,1),
it is also apparent that the tensor product map j is an inclusion. We now have

H1(X,�X ) = N ⊕ S = N ⊕ H1(X,OX ) ⊗ A. (43)
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LEMMA 5. The complex manifold X satisfies Condition D with respect to the
subalgebra A = v1 ⊕ gC.

Proof. It suffices to verify the second condition in the definition of Condition D.
Suppose that V is in v1. If ω is in t∗(0,1), it is clear that LVω = 0 because V is

tangential to the second factor of Ȟ × G and t∗(0,1) contains forms dual to vectors
along the first factor. If ω is in �, then LVω = 0 because for any left-invariant vector
field A, [V, A] is in g+ ⊕ g− which is in the kernel of ω.

Suppose that V is in gC. Let V = R − iJR where R is a right invariant vector field.
If ω is in t∗(0,1), it is clear that LVω = 0 because V is tangential to the second factor of
Ȟ × G and t∗(0,1) contains forms dual to vectors along the first factor.

Suppose that ω is in �. In particular, this is a left-invariant holomorphic (0,1)-form
and dω is a type (1,1)-form.

Treating Ȟ × G as a principal C × U-bundle over M = T2n × G/U , we consider
(ωn+1, . . . , ωn+m) as a connection 1-form. In particular, (dωn+1, . . . , dωn+m) is the
curvature form. Note that dωn+1 = ∑n

j=1 ωj ∧ ωj − idχ1. When ω is in �, it is in the
complex linear span of (ωn+1, . . . , ωn+m). Therefore, there exists a 2-form η on G/U and
a constant c such that dω = ∗(c

∑n
j=1 ωj ∧ ωj + η). As the connection is left-invariant

with respect to G, the curvature form η is left-invariant form with respect to G.
Since R is a right-invariant vector field, its flow is generated by left-multiplication.

As η is a left-invariant form, LRη = 0. As c
∑n

j=1 ωj ∧ ωj + η is a curvature form,
d(c

∑n
j=1 ωj ∧ ωj + η) = 0. Yet d

∑n
j=1 ωj ∧ ωj = 0, it follows that dιRη = 0. Therefore,

ιRη is a DeRham closed 1-form on G/U . By Bott-Borel-Weil theory [5], H1(G/U, C)
vanishes. Therefore, there exists a function F on G/U such that ιVη = dF . Let f =
F ◦  be the pull-back of F to Ȟ × G. Then ιRdω = ιR∗η = ∗ιRη = ∗dF = df.
Since ∂ω = 0, it follows from type decomposition that ιV dω = ιR−iIRdω = ∂f.

As V is a type (1,0)-vector, we have LVω = dιVω + ιV dω = ιV dω = ∂f. This
completes the proof of the lemma.

Let kC be any choice of Cartan subalgebra in gC, then v1 ⊕ kC is a maximal Abelian
subalgebra of A = v1 ⊕ gC. As a consequence of Griffiths’ result [11, Theorem 12],
we have the following result about integrability even if the Nijenhuis bracket is not
vanishing.

PROPOSITION 3. Every element of the form ω ⊗ V in H1(X,OX ) ⊗ A is tangent to
a 1-parameter family of deformations. For any choice of Cartan subalgebra kC in gC,
(� ⊕ t∗(0,1)) ⊗ (v1 ⊕ kC) parametrizes a local deformation space, which is maximal in
H1(X,OX ) ⊗ U .

3.3. Kuranishi theory. Next we apply Kuranishi Theory to analyze the summand
N in H1(X,�X ). Note that if X = Ȟ × U(1), this summand is the entire H1(X,�X ).

Let us review Kuranishi Theory briefly to set up notation. Let {β1, . . . , βN} be
an orthonormal basis of the harmonic representatives of H1(X,�X ). For any vector
t = (t1, . . . , tN) in CN , let φ1(t) = t1β1 + . . . + tNβN . Let G be the Green’s operator and
∂

∗
be the adjoint operator of the ∂-operator on X with respect to the Hermitian metric

h previously defined. For ν ≥ 2, define inductively

φν(t) = 1
2

ν−1∑
µ=1

∂
∗G{φµ(t), φν−µ(t)}, (44)
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where the operator { , } is the Nijenhuis bracket. Consider the formal sum φ(t) =∑
ν≥1 φν . Let {γ1, . . . , γM} be an orthonormal basis for the space of harmonic (0, 2)-

forms with values in �X . Define fk(t) = ({φ(t), φ(t)}, γk). According to the Kuranishi
theory, there exists ε such that {t ∈ CN : |t| < ε, f1(t) = 0, . . . , fM(t) = 0} forms a
locally complete family of deformations of X [15, Theorem 1].

Recall that {ωn+k : 1 ≤ k ≤ m} is a basis for �. Let νn+k := ωn+k ⊗ (H0 − iH1).
Then {νn+k : 1 ≤ k ≤ m} is a basis for � ⊗ v0. Denote µjk = 1

2 (ωj ⊗ (Xk − iYk) + ωk ⊗
(Xj − iYj)). Then {µjk : 1 ≤ j ≤ k ≤ n} forms a basis for t∗(0,1) � t1,0. As in Proposi-
tion 1, we use the Chern connection ∇ with respect to the Hermitian metric h to
develop the harmonic theory on X . We have seen in the same proposition that

∂
∇

(Xj − iYj) = 2i(H0 − iH1) ⊗ ωj, ∂
∇

(H2� − iH2�+1) = 0. (45)

Since ω� for 1 ≤ � ≤ n + m are holomorphic,

∂
∇
νn+k = 0, ∂

∇
µjk = −i(ωj ∧ ωk + ωk ∧ ωj) ⊗ (H0 − iH1) = 0. (46)

With respect to the metric h, we need to compute ∂
∇∗

νn+k and ∂
∇∗

µjk.

LEMMA 6. The sections νn+k and µjk are harmonic.

Proof. Recall that a smooth frame of (1,0)-vectors is

Xj − iYj, 1 ≤ j ≤ n, H2� − iH2�+1, 0 ≤ � ≤ m − 1, g+ = {W1, . . . , WN}. (47)

If Y is a (1,0)-vector field, then there are smooth functions aj, c� and bα such that

Y =
∑

j

aj(Xj − iYj) +
∑

�

c�(H2� − iH2�+1) +
∑

α

bαWα.

Due to (45),

∂
∇

Y =
∑

j

∂aj ⊗ (Xj − iYj) +
∑

�

∂c� ⊗ (H2� − iH2�+1) +
∑

α

∂bα ⊗ Wα

+
∑

j

2iajωj ⊗ (H0 − iH1) +
∑

α

bα∂
∇

Wα. (48)

Since H0 − iH1 is left-invariant, its length is constant. Therefore, with respect to
the L2-norm 〈·, ·〉L2 on Ȟ × G,

〈∂∇∗
νn+k, Y〉L2 = 〈ωn+k ⊗ (H0 − iH1), ∂

∇
Y〉L2

= 〈ωn+k, ∂c0〉L2‖H0 − iH1‖L2 = 〈∂∗
ωn+k, c0〉L2‖H0 − iH1‖L2 . (49)

Let {ωk, ωn+k, ωα} be the co-frame for (1,0)-vectors with respect to the basis (47)
and {ωk, ωn+k, ωα} be the co-frame for (0,1)-vectors. Recall that [18, pp. 166–168]
∂

∗ = −∗ ◦ ∂ ◦ ∗
Let � be the pull-back of the volume form on the Borel flag G/U and � the

pull-back of the volume form on the torus T2n. Then

∂
∗
ωn+k = −∗∂ ∗ ωn+k = ±∗∂(ωn+k ∧j �=k ωn+j ∧ ωn+j ∧ � ∧ �). (50)
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It is apparent that � and � are closed. As dωn+� is a curvature form, dωn+� ∧ � ∧ � =
0. Therefore, ∂

∗
ωn+k = 0, and hence ∂

∇∗
νn+k = 0.

Similarly,

∂
∗
ωk = −∗∂ ∗ ωk = ±∗∂(ωk ∧j �=k ωj ∧ ωj ∧� ωn+� ∧ ωn+� ∧ �).

Note that ωj and ωj are closed forms. Also, ωn+� are connection forms over T2n × G
and ωn+� are holomorphic. Therefore, ∂

∗
ωk = 0. Hence

〈∂∇∗
νn+k, Y〉L2 = 〈νn+k, ∂

∇
Y〉L2

= 〈ωj ⊗ (Xk − iYk) + ωk ⊗ (Xj − iYj), ∂
∇

Y〉L2

= 〈ωj ⊗ (Xk − iYk) + ωk ⊗ (Xj − iYj), ∂a� ⊗ (X� − iY�)〉L2

= 〈ωj, ∂ak〉 + 〈ωk, ∂aj〉 = ak∂
∗
ωj + aj∂

∗
ωk = 0. (51)

and so the proof is complete.

Now, we are ready to prove the following result.

PROPOSITION 4. Every element in � ⊗ v0 ⊕ t∗(0,1) � t1,0 in H1(X,�X ) is tangent to
a 1-parameter family of deformations.

Proof. Every element φ1 = ∑m
�=1 t�νn+� + ∑n

1≤j≤k tjkµjk in � ⊗ v0 ⊕ t∗(0,1) � t1,0 is
harmonic (Lemma 6). By Lemma 3 the Nijenhuis bracket {φ1, φ1} vanishes. The proof
is complete.

We are now able to sum up the main results in the following theorems.

THEOREM 1. Let G be a compact semi-simple Lie group. Let X = Ȟ × G be the
compact quotient of the complex manifold H2n+1 × G with a left-invariant complex
structure determined by a maximal torus U in G. Then every element in N and every
simple element ω ⊗ V in S is tangent to a 1-parameter family of deformations. Moreover,

P = � ⊗ v0 ⊕ t∗(0,1) � t1,0 ⊕ (
� ⊕ t∗(0,1)) ⊗ (v1 ⊕ uC) (52)

parameterizes a local deformation space, which is maximal in N ⊕ S, if H1(X,OX ) is at
least of dimension two.

Proof. By Proposition 3 and Proposition 4, every element of the form ω ⊗ V in
S and every element in N is tangent to a 1-parameter family of deformations. By
Lemma 4, {N ,S} = 0. It follows that every element in P is a local deformation space,
and so the proof is complete.

Note that elements in H0(X,�X ) and in the space P are all invariant of C × U .
By Cathelineau’s equivariant deformation theory [6], we obtain the following version
of the last theorem.

THEOREM 2. The space of C × U-equivariant deformations of X = Ȟ × G is
locally parametrized by P = � ⊗ v0 ⊕ t∗(0,1) � t1,0 ⊕ (� ⊕ t∗(0,1)) ⊗ (v1 ⊕ uC), which is
maximal in the local parameter space of all deformations.
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4. Moduli of Kodaira manifolds. For Kodaira manifolds G = U(1). Therefore the
component S of H1(X,�X ) is equal to zero. We have the following result.

THEOREM 3. Let X = Ȟ × U(1) be the compact quotient of the complex manifold
H2n+1 × U(1) with a left-invariant complex structure. Then every element in H1(X,�X )
is tangent to a 1-parameter family of deformations. Moreover,

� ⊗ v0 ⊕ t∗(0,1) � t1,0 (53)

parametrizes a local maximal deformation space.

Based on this infinitesimal result, we extend our scope to a global one with some
limitation.

4.1. Invariant complex structures. To realize the deformations, we recall that
elements in H1(X,�) are �-valued (0, 1)-forms

θ = sjkωj ⊗ (Xk − iYk) + s(γ − idt) ⊗ (Z − iT) (54)

where sjk = skj. The forms θ act as deformations by changing the distribution of (0,1)-
vectors. For any t ∈ R, define

Vl(θ, t) = Xl + iYl + tθ (Xl + iYl) = Xl + iYl + t
∑

k

slk(Xk − iYk),

Vn+1(θ, t) = Z + iT + tθ (Z + iT) = Z + iT + ts(Z − iT). (55)

For the distribution defined by D = {V1(θ, t), . . . , Vn(θ, t)} to define a complex
structure J(θ, t) it is necessary that D ⊕ D = (h2n+1 ⊕ t1)C (non-degeneracy condition.)
All complex structures constructed in this way descend to the quotient space X . All
of these deformations are left-invariant in the sense that this is the quotient of a
left-invariant complex structure on the universal covering.

We now extend the complex parameters (sjk, s) as follows. Define a distribution
spanned by

Vl =
∑

k

alk(Xk + iYk) +
∑

k

blk(Xk − iYk),

Vn+1 = a(Z + iT) + b(Z − iT) (56)

Let A and B be the matrices whose entries are ajk and bjk respectively. The matrix (A|B),
together with a and b, determines the above distribution. Since a complex structure is
defined by the span of the vectors, we treat (A|B) as an element in the Grassmannian of
n-planes in C2n. The parameter [a, b] is considered as an element of CP1. Therefore the
parameter space of all invariant complex structure is contained in Gr(n, C2n) × CP1.
For the distribution D to be integrable it must be closed under the bracket. This is
equivalent to

∑
k

bjkalk =
∑

k

ajkblk, or equivalently BAT = ABT . (57)
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For the distribution to be nondegenerate, and to induce the same orientation as
X1 ∧ Y1 ∧ . . . ∧ Xn ∧ Yn ∧ Z ∧ T we must have

(|a|2 − |b|2) det
(

A B
B A

)
> 0. (58)

This condition is equivalent to (|a|2 − |b|2) det(AA∗ − BB∗) > 0. The space of
parameters has two components

Ǔ = {(A|B) × [a, b] : |a|2 − |b|2 > 0, det(AA∗ − BB∗) > 0, BAT = ABT }.
V̌ = {(A|B) × [a, b] : |a|2 − |b|2 < 0, det(AA∗ − BB∗) < 0, BAT = ABT }.

4.2. Identification of equivalent structures. Given two different parameters
(A′|B′) × [a′, b′] �= (A|B) × [a, b], the corresponding complex structures on X are
equivalent if and only if there is a diffeomorphism F of X so that the distribution
(A|B) × [a, b] is sent to (A′|B′) × [a′, b′]. Define the diffeomorphism

f (xj, yj, z, t) = F(0, 0, 0, 0)−1 ∗ F(xj, yj, z, t). (59)

The diffeomorphism f sends (A|B) × [a, b] to (A′, B′) × [a′, b′], and is a group
isomorphism of the lattice �̌. Let Gk = f (gk). Then there exist integers ηk,l such that

Gk =

 n∏

j=1

gη2j−1,k

2j−1 gη2j,k

2j


 gη2n+1,k

2n+1 gη2n+2,k
2n+2 . (60)

Since G2n+1 and G2n+2 are in the center,

G2n+1 = gη2n+1,2n+1

2n+1 gη2n+2,2n+1

2n+2 , G2n+2 = gη2n+1,2n+2

2n+1 gη2n+2,2n+2

2n+2 . (61)

The following proposition describes the commuting properties

PROPOSITION 5. For any integers h and k, Gk
2jG

h
2j−1 = G−hkm

2n+1 Gh
2j−1Gk

2j .

Now, using

Gm
2n+1 = G2j−1G2jG−1

2j−1G−1
2j (62)

we can compute

gm(η2n+1,2n+1)
2n+1 gm(η2n+2,2n+1)

2n+2 = Gm
2n+1 = G2l−1G2lG−1

2l−1G−1
2l

=
n∏

j=1

(
gη2j−1,2l−1

2j−1 gη2j,2l−1

2j gη2j−1,2l

2j−1 gη2j,2l

2j g−η2j,2l−1

2j g−η2j−1,2l−1

2j−1 g−η2j,2l

2j g−η2j−1,2l

2j−1

)

= g
m

∑n
j=1(η2j−1,2l−1η2j,2l−η2j,2l−1η2j−1,2l)

2n+1 .

It follows that η2n+2,2n+1 = 0 and that for 1 ≤ l ≤ n

n∑
j=1

(η2j−1,2l−1η2j,2l − η2j,2l−1η2j−1,2l) = η2n+1,2n+1. (63)
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For all other pairs 1 ≤ k, l ≤ 2n, the identity GkGlG−1
k G−1

l = id leads to

n∑
j=1

(η2j−1,lη2j,k − η2j,lη2j−1,k) = 0. (64)

Let S be the matrix (ηj,k)1≤j,k≤2n, and let D be the (2n × 2n)-matrix with 2 × 2-block
( 0
−1

1
0 ) along the diagonal, the last two identities together are equivalent to

ST DS = η2n+1,2n+1D. (65)

Since restriction of f to the center of �̌ is an isomorphism, the matrix

(
η2n+1,2n+1 η2n+1,2n+2

0 η2n+2,2n+1

)

is in GL(2, Z). Therefore |η2n+1,2n+1| = |η2n+2,2n+2| = ±1.
Now since log Gk = df (log gk), we can calculate the matrix of df .

log Gl = log





 n∏

j=1

gη2j−1,l

2j−1 gη2j,l

2j


 gη2n+1,l

2n+1 gη2n+2,l
2n+2




=
n∑

j=1

log
(
gη2j−1,l

2j−1 gη2j,l

2j

) + log gη2n+1,l
2n+1 + log gη2n+2,l

2n+2

=
n∑

j=1

log
(
gη2j−1,l

2j−1

) +
n∑

j=1

log
(
gη2j,l

2j

)

+
n∑

j=1

[
log

(
gη2j−1,l

2j−1

)
, log

(
gη2j,l

2j

)] + log gη2n+1,l
2n+1 + log gη2n+2,l

2n+2

=
n∑

j=1

η2j−1,lXj +
n∑

j=1

η2j,lYj +

η2n+1,l +

n∑
j=1

η2j−1,lη2j,l


 Z + η2n+2,lT.

We then obtain df (Xk) = log(G2k−1) and df (Yk) = log(G2k). Finally,

df (Z) = log G2n+1 = log gη2n+1,2n+1

2n+1 = η2n+1,2n+1Z,

df (T) = log G2n+2 = log gη2n+1,2n+2

2n+1 + log gη2n+2,2n+2

2n+2 = η2n+1,2n+2Z + η2n+2,2n+2T.

To summarize, let e = η2n+1,2n+1, α = η2n+1,2n+2, and ε = η2n+2,2n+2. Define the vectors

η1 =

η2n+1,k +

n∑
j=1

η2j−1,kη2j,k




1≤k≤2n

, η2 = [η2n+2,k]1≤k≤2n.
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The matrix of df with respect to the ordered basis < Xk, Yk, Z, T > is




S
0 0
0 0

ηT
1 e α

ηT
2 0 ε


 . (66)

Suppose the diffeomorphism f sends the distribution spanned by (V1, . . . ,

Vn, Vn+1) determined by (A|B) × [a, b] to another distribution (W1, . . . , Wn, Wn+1)
determined by (A′|B′) × [a′, b′]. Since the center is preserved, set V ′

n+1 = df (Vn+1),
and we may assume that Wn+1 = V ′

n+1. Then define V ′
k by df (Vk) = V ′

k + rkV ′
n+1. It

can be checked that (V ′
1, . . . , V ′

n) is a linearly independent set. Therefore, the span of
(V ′

1, . . . , V ′
n) is identical to the span of (W1, . . . , Wn).

Define β2j−1,l = al,j + bl,j and β2j,l = i(alj − blj). Then

Vl =
n∑

j=1

β2j−1,lXj +
n∑

j=1

β2j,lYj.

For 1 ≤ l ≤ n, let βl be the vector in C2n whose k-th coordinate is βk,l. Similarly define
β ′

k,l so that V ′
l = ∑n

j=1 β ′
2j−1,lXj + ∑n

j=1 β ′
2jYj + rlV ′

n+1. Then




S
0 0
0 0

ηT
1 e α

ηT
2 0 ε







β1 · · · βn 0

0 · · · 0 a + b

0 · · · 0 i(a − b)




=




β ′
1 · · · β ′

n 0

r1(a′ + b′) · · · rn(a′ + b′) a′ + b′

ir1(a′ − b′) · · · irn(a′ − b′) i(a′ − b′)


 .

PROPOSITION 6. The distribution (A|B) × [a, b] is equivalent to (A′|B′) × [a′, b′] if
and only if there is a matrix S and integers e, α, and ε such that:

(i) S satisfies (65), equivalently ST DS = eD.
(ii) Sβl = β ′

l for 1 ≤ l ≤ n.
(iii) e(a + b) + iα(a − b) = a′ + b′ and ε(a − b) = a′ − b′.
(iv) |e| = |ε| = ±1.

Proof. If (A′|B′) × [a′, b′] is equivalent to (A|B) × [a, b] then the equations are
clearly satisfied because of the calculations above. Conversely, given such an S, e, α, and
ε we can choose all ri = 0 because the span of (V1 + r1Vn+1, . . . , Vn + rnVn+1, Vn+1)
is the same as that of (V1, . . . , Vn, Vn+1), and we can freely choose the remaining
parameters so that ηT

1 = ηT
2 = 0, thus producing a diffeomorphism that sends (A|B) ×

[a, b] to (A′|B′) × [a′, b′]. This completes the proof.

The first consequence of the above proposition is a distinction between two
scenarios in analyzing the moduli space.

COROLLARY 1. When n is odd, every complex structure in the component V̂ of the
parameter space is equivalent to a complex structure in Û . When n is even, complex
structures in V̂ are not equivalent to any complex structures in Û .
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Proof. Suppose that (A′|B′) × [a′, b′] is a parameter in V̂ and (A|B) × [a, b] is in
Û . If there is an identification of these two parameter points, then det S = −1. On the
other hand, D is a symplectic form and S is a symplectic map up to the factor e as
seen in (i) of the last proposition. Therefore, det S = en. When n is even, det S = 1.
Therefore, this is impossible to identify parameters in V̂ with those in Û .

When n is odd, we consider a diffeomorphism f whose differential has the 2-by-2
block (−1 0

0 1

)

along its diagonal and zero elsewhere. It identifies V̂ with Û . This completes the proof.

4.3. Describing the moduli space when n is odd. We conclude from the last
corollary that the moduli space in this case is a quotient of the product of B × U
where

B = {[a, b] ∈ CP1 : |a|2 − |b|2 > 0}

and

U = {(A|B) ∈ Gr(n, C2n) : det(AA∗ − BB∗) > 0, BA = ABT }.

Consider the group Sp(2n, Z) = {S ∈ GL(2n, Z) : ST DS = D}. In view of the last
proposition, Sp(2n, Z) can be regarded as subgroup of automorphisms of �̌ through
the map

S �→
(

S 0
0 I

)
.

Using the inhomogeneous coordinate b/a, B can be identified with the unit disc
{b/a ∈ C : |b/a| < 1}. The map (a, b) �→ a+b

a−b sends the open unit disk to the right half
plane. In addition, if a diffeomorphism with the properties S = I, η1 = η2 = 0, and
e = ε identifies the complex structures (A|B) × [a, b] and (A|B) × [a′, b′] then it satisfies
(iii) of the last proposition. It follows that

a′ + b′

a′ − b′ =
(

a + b
a − b

)
+ i

α

ε
. (67)

Therefore, The fundamental domain of the translation in the imaginary direction is
the strip

{r + iθ ∈ C : r > 0, 0 ≤ θ < 1}.

Taking e−2π(r+iθ), we identify the fundamental domain to the punctured disc. Therefore,
the moduli space is the product: {z ∈ C : 0 < |z| < 1} × U/ Sp(2n, Z).

To describe the quotient space U/ Sp(2n, Z), we consider the transformation

φ : (A|B) → (A + B | i(A − B)). (68)
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This map preserves the condition ABT = BAT and transforms the determinants as
follows.

det(AA∗ − BB∗) = det(2i((A + B)(i(A − B))∗ − i(A − B)(A + B)∗)). (69)

Define

Hn = {(A|B) ∈ Gr(n, C2n)|ABT = BAT , det[i(AB∗ − BA∗)] �= 0} (70)

According to [3, Proposition 1.2 , p. 181], Hn is a homogeneous space with respect to
the group Sp(2n, C) of dimension n(n + 1)/2. Define

Hn,k = {(A|B) ∈ Hn : ind[i(AB∗ − BA∗)] = k}. (71)

By [3, Proposition 1.5, p. 183], this space is the flag domain Sp(2n, R)/ Un−k,k(C).
We identify U with φ(U). Let n = 2� + 1. Since det[i(AB∗ − BA∗)] > 0, the number

of negative eigenvalues of [i(AB∗ − BA∗)] is even. Hence, its index is necessarily odd.
Therefore, U is the disjoint union:

U = ∪�
j=0H2�+1,2�+1−4j. (72)

Finally, by [3, Theorems 4.2 and 4.3, p. 219], the action of Sp(2n, Z) gives us a
description of the topological coarse moduli space of complex structures on �\H2n+1 ×
S1 when n is odd.

THEOREM 4. The moduli space of invariant complex structures on the complex
2(� + 1)-dimensional Kodaira manifold �\H4�+3 × S1 is the topological space

M = ∪�
j=0(H2�+1,2�+1−4j/ Sp(4� + 2, Z)) × D∗

where D∗ is the punctured unit disc.

Note that except for the Siegel spaces Hn,0/ Sp(2n, Z) and Hn,n/ Sp(2n, Z), the
spaces Hn,k/ Sp(2n, Z) are non-Hausdorff. In particular we don’t have a coarse moduli
space of complex structures when � ≥ 1.

REMARK 1. The last theorem demonstrates that when � = 0 the moduli space is
smooth. This is consistent with Borcea’s work [4]. Given a complex structure described
by the parameters (λ, b11; µ, b) or equivalently by the parameters λ′, b′

11; µ′, b′). Then

λ′ + b′
11

λ′ − b′
11

= η11(λ + b11) + iη12(λ − b11)
−iη21(λ + b11) + η22(λ − b11)

. (73)

This is a modular transformation as η11η22 − η12η21 = 1. If we consider the coordinate
change

(λ, b11; µ, b) �→ (λ + b11, λ − b11; µ + b, µ − b) �→
(

λ + b11

λ − b11
,
µ + b
µ − b

)

the product of disks is mapped to the product of right half spaces. With respect to
the quotient of the modular group, the quotient of the first factor becomes a complex
plane. As in the general situation the second factor becomes the punctured disk. This
is precisely the picture given by Borcea [4].
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4.4. Describing the moduli space when n is even. Set n = 2�. In this case, we need
to consider both V̂ and Û . As seen in the last section, the component Û is the product
space B × U where B is again mapped to the punctured disk through equivalence.
Consider the space

H2� = {(A|B) ∈ Gr(2�, C4�)|ABT = BAT , det[i(AB∗ − BA∗)] �= 0}. (74)

For elements in U , det[i(AB∗ − BA∗)] > 0. Therefore, the number of their negative
eigenvalues is even. Given the dimension, it implies that the index is also even. Therefore

U = ∪�
j=0H2�,2�−4j. (75)

The component V̂ is the product ofC × V whereC = {[a, b] ∈ CP1 : |a|2 − |b|2 < 0}
and

V = {(A|B) ∈ Gr(n, C2n) : det(AA∗ − BB∗) < 0, BA = ABT }.
The space C is again mapped to the punctured disk via equivalence of complex
structures. Via the map φ, V is identified to

{(A|B) ∈ H2�| det[i(AB∗ − BA∗)] < 0}.
The determinant is negative if and only if there are odd number of negative eigenvalues.
As the dimension of the matrices in questions is 2� × 2�, the index is even. Therefore,

V = ∪�−1
j=0H2�,2�−2−4j.

It follows that U ∪ V = ∪2�
j=0H2�,2�−2j. A general description of the moduli space in this

case now is similar to that leading the previous theorem.

THEOREM 5. The moduli space of invariant complex structures on the complex
2� + 1-dimensional Kodaira manifold �\H4�+1 × S1 is the topological space

M =
(
∪2�

j=0H2�,2�−2j/ Sp(4�, Z)
)

× D∗,

where D∗ is the punctured unit disc.

REMARK 2. We learn that all small deformations of invariant complex structures
on Kodaira manifolds are invariant. We then extend our moduli consideration to all
invariant complex structures. However, we do not know if all deformation of invariant
complex structures are invariant. Therefore, strictly speaking, we have not yet identified
the full moduli for Kodaira manifolds. In the complex 2-dimensional case, this concern
is removed due to the classification that all Kodaira manifolds are cocompact quotients
[13].

REMARK 3. Our work leading to Theorem 1 is applicable when the Heisenberg
group is replaced by a one-dimensional compact Abelian group U(1). For example,
when the simple group G is SU(�), we obtain the parameter space of deformations of
the left-invariant complex structures on the Hopf manifolds: U(1) × SU(2�). The case
when � = 1 was studied by several authors including Dabrowski [7].

Our computation also yields a parameter space for the deformations of the
Kodaira-Hopf Manifold: �\H3 × SU(2). The manifold Y = �\H3 × SU(2) is an
elliptic fibration over the product of the elliptic curve and the Riemann sphere. Taking
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further projection onto the elliptic curve, we obtain a fibration of Hopf surface with
uniform complex structure. Taking the projection onto the Riemann sphere, we obtain
a fibration of Kodaira surface with uniform complex structure.

By Theorem 1, a maximal parameter space is 6-dimensional. Among the six
parameters of deformations, those in the nilpotent part are attributed to deformation of
the Kodaira surfaces without changing the bundle structure over the Riemann sphere.
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