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We study the pairwise interactions of drops in an applied uniform DC electric field
within the framework of the leaky dielectric model. We develop three-dimensional
numerical simulations using the boundary integral method and an analytical theory
assuming small drop deformations. We apply the simulations and the theory to explore the
electrohydrodynamic interactions between two identical drops with arbitrary orientation
of their line of centres relative to the applied field direction. Our results show a complex
dynamics depending on the conductivities and permittivities of the drops and suspending
fluids, and the initial drop pair alignment with the applied electric field.
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1. Introduction

The interaction of fluids and electric fields is at the heart of natural phenomena such as
the disintegration of raindrops in thunderstorms and many practical applications such as
electrosprays (Ganan-Calvo et al. 2018), microfluidics (Stone, Stroock & Ajdari 2005)
and crude oil demulsification (Eow & Ghadiri 2002). Many of these processes involve
drops and there has been growing interest in understanding drop–drop interactions in the
presence of electric fields.

A drop placed in an electric field polarizes if its permittivity and/or conductivity are
different than the suspending fluid. The polarization leads to a jump in the electric
stresses across the drop interface. In the case of fluids that are perfect dielectrics, only
the normal electric stress is discontinuous at the interface. If the electric pressure can be
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balanced by surface tension, the drop adopts a steady prolate ellipsoidal shape and the
fluids are quiescent. The physical picture changes dramatically if the fluids are conducting
materials. Finite conductivity, even if very low, enables the passage of electric current and
electrical charge accumulates at the drop interface. The electric field acting on this induced
surface charge creates tangential electric stress, which shears the fluids into motion. The
complicated interplay between the electrostatic and viscous fluid stresses results in either
oblate or prolate drop deformation in weak fields (Taylor 1966), and a complex dynamics in
strong fields, such as break-up (Torza, Cox & Mason 1971; Sherwood 1988; Lac & Homsy
2007; Karyappa, Deshmukh & Thaokar 2014; Lanauze, Walker & Khair 2015; Pillai et al.
2016; Wang, Ma & Siegel 2019), streaming either from the drop poles (Taylor 1964; de
la Mora 2007; Collins et al. 2008, 2013; Herrada et al. 2012; Sengupta, Walker & Khair
2017) or equator (Brosseau & Vlahovska 2017; Wagoner et al. 2020) and electrorotation
(Ha & Yang 2000; Salipante & Vlahovska 2010, 2013; Das & Saintillan 2017).

While the prototypical problem of an isolated drop in a uniform electric field has
been extensively studied (see for a recent review (Vlahovska 2019)), investigations of the
collective dynamics of many drops are scarce (Fernandez 2008a,b; Casas et al. 2019) and
mainly focused on the near-contact interaction preceding electrocoalescence (Anand et al.
2019; Roy, Anand & Thaokar 2019). The dynamics of drop approach and interactions at
arbitrary separations has been considered mainly in the case of droplet pairs aligned with
the electric field (Sozou 1975; Baygents, Rivette & Stone 1998; Lin, Skjetne & Carlson
2012; Mhatre, Deshmukh & Thaokar 2015; Zabarankin 2020), because the axial symmetry
greatly simplifies the calculations. These studies revealed that in weakly conducting fluid
systems, which can be modelled using the leaky dielectric model (Melcher & Taylor 1969),
the hydrodynamic interactions due to the electric-shear-driven flow can play a significant
role. For example, in the case of a drop with drop–medium ratios of conductivities R
and permittivities S such that R/S > 1, the electrohydrodynamic flow generates repulsion
which opposes the electrostatic attraction due to the drop dipoles and the drops move
apart.

The general case of an electric field applied at an angle to the line joining the centres of
the two drops is studied only to a limited extent experimentally (Mhatre et al. 2015) and
via numerical simulations in two dimensions (Dong & Sau 2018). This configuration has
been systematically analysed only for a pair of non-deformable, ideally polarizable spheres
(Saintillan 2008). In this case, the flow about the spheres has the same stresslet-quadrupole
structure as the electrohydrodynamic flow about a drop with R/S < 1 even though the flow
is due to induced charge electroosmosis, unlike the leaky dielectric drops where Debye
charge clouds are absent. The study showed that the pair dynamics is not a simple attraction
or repulsion; depending on the angle between the centre-to-centre line and the undisturbed
electric field, the relative motion of the two spheres can be quite complex: they attract
in the direction of the field and move towards each other, pair up and then separate in
the transverse direction. To the best of our knowledge, such a dynamics in the case of
drops has not been reported. Motivated by the observed intricate trajectories of ideally
polarizable spheres and the potential similarities to the electrohydrodynamic interactions
of drops with R/S < 1, we set out to investigate the effects of drop electric properties
(conductivity ratio R and permittivity ratio S) and deformability on the relative motion of
a drop pair initially misaligned with the applied field. The paper is organized as follows:
§ 2 sets up the problem, § 3 outlines the numerical method, § 4 describes an analytical
theory for drop pair interaction and relative motion in an applied uniform DC electric
field, § 5 presents results from drop pair dynamics at different initial configurations and
drop electrical properties and § 6 summarizes the main results.
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Figure 1. Two initially spherical identical drops with radius a, permittivity εd and conductivity σd suspended
in a fluid with permittivity εs and conductivity σs and subjected to a uniform DC electric field E∞ = E0ẑ. The
angle between the line-of-centres vector and the field direction is Θ = arccos(ẑ · d̂).

2. Problem formulation

Let us consider two identical neutrally buoyant and charge-free drops with radius a,
viscosity ηd, conductivity σd and permittivity εd suspended in a fluid with viscosity ηs,
conductivity σs and permittivity εs. The mismatch in drop and suspending fluid properties
is characterized by the conductivity, permittivity, and viscosity ratios

R = σd

σs
, S = εd

εs
, λ = ηd

ηs
. (2.1a–c)

The distance between the drops’ centroids is d and the angle made with the drops’ line of
centres and the applied field direction is Θ . The unit separation vector between the drops
is defined by the difference between the position vectors of the drops’ centres of mass
d̂ = (xc

2 − xc
1)/d. The unit vector normal to the drops’ line of centres and orthogonal to d̂

is t̂. The problem geometry is sketched in figure 1.
We adopt the leaky dielectric model (Melcher & Taylor 1969), which assumes creeping

flow and charge-free bulk fluids acting as ohmic conductors. Albeit an approximation of
the actual electrokinetic problem (Saville 1997; Schnitzer & Yariv 2015; Ganan-Calvo
et al. 2016, 2018; Mori & Young 2018), the leaky dielectric model has been successful
in modelling many phenomena not only in poorly conducting fluids such as oils, but also
aqueous electrolyte solutions such as in cell-mimicking vesicle systems (Vlahovska et al.
2009; Vlahovska 2019). The assumption of charge-free fluids decouples the electric and
hydrodynamic fields in the bulk. Accordingly,

∇ · T hd = η∇2u − ∇p = 0, ∇ · T el = 0, (2.2)

where Thd
ij = −pδij + η(∂jui + ∂iuj) is the hydrodynamic stress and δij is the Kronecker

delta function; u and p are the fluid velocity and pressure. The electric stress is
given by the Maxwell stress tensor Tel

ij = ε(EiEj − EkEkδij/2). The coupling of the
electric field and the fluid flow occurs at the drop interfaces D, where the charges
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brought by conduction accumulate. Gauss’ law dictates that the electric field E in the
electroneutral bulk fluids is solenoidal, ∇ · E = 0, however, at the drop interface, the
electric displacement field, εE, is discontinuous and its jump corresponds to the surface
charge density

ε(Es
n − SEd

n) = q, x ∈ D, (2.3)

where En = E · n, and n is the outward pointing normal vector to the drop interface. The
surface charge density adjusts to satisfy the current balance

∂q
∂t

+ ∇s · (uq) = σs(Es
n − REd

n), x ∈ D. (2.4)

In this study, we neglect charge relaxation and convection, thereby reducing the charge
conservation equation to continuity of the electrical current across the interface as
originally proposed by Taylor (1966)

Es
n = REd

n . (2.5)

The electric field acting on the induced surface charge gives rise to an electric shear stress
at the interface. The tangential stress balance yields

(I − nn) · (T s − T d) · n + qEt = 0, x ∈ D, (2.6)

where Et = E − Enn is the tangential component of the electric field, which is continuous
across the interface, and I is the idemfactor. The normal stress balance is

n · (T s − T d) + 1
2 ((Es

n)
2 − S(Ed

n)2 − (1 − S)E2
t ) = γ (∇s · n)n, x ∈ D, (2.7)

where γ is the interfacial tension.
Henceforth, all variables are non-dimensionalized using the radius of the undeformed

drops a, the undisturbed field strength E0, a characteristic applied stress τc = εsE2
0 and

the properties of the suspending fluid. Accordingly, the time scale is tc = ηs/τc and the
velocity scale is uc = aτc/ηs. The ratio of the magnitude of the electric stresses and surface
tension defines the electric capillary number

Ca = εsE2
0a

γ
. (2.8)

The simplification of the charge conservation equations (2.4) and (2.5) implies
ε2

s E2
0/(ηsσs) � 1. This condition is satisfied for the typical fluids used in experiments such

as castor oil (conductivity is ∼10−11 S m−1, viscosity is ∼1 Pa s) and low field strengths
E0 ∼ 104 V m−1. Furthermore, the momentum diffusion time scale, a2ρ/ηs, for drops
of typical size a ∼ 1 mm is much shorter than the electrohydrodynamic flow time scale
ηs/(εsE2

0), which justifies the use of the steady Stokes equation to describe the fluid flow
(2.2).

3. Numerical method

We utilize the boundary integral method to solve for the flow and electric
fields. Details of our three-dimensional formulation can be found in Sorgentone,
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Tornberg & Vlahovska (2019). In brief, the electric field is computed following (Baygents
et al. 1998; Lac & Homsy 2007)

E∞ +
2∑

j=1

∫
Dj

x̂
4πr3 (Es − Ed) · n dS( y) =

⎧⎪⎪⎨
⎪⎪⎩

Ed(x) if x inside D,

1
2 (Ed(x) + Es(x)) if x ∈ D,

Es(x) if x outside D,

(3.1)

where x̂ = x − y and r = |x̂|. The normal and tangential components of the electric field
are calculated from the above equation

En(x) = 2R
R + 1

E∞ · n + R − 1
R + 1

2∑
j=1

n(x) ·
∫
Dj

x̂
2πr3 En( y) dS( y),

Et(x) = Es + Ed

2
− 1 + R

2R
Enn.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

For the flow field, we have developed the method for fluids of arbitrary viscosity, but for the
sake of brevity here we list the equation in the case of equiviscous drops and suspending
fluids. The velocity is given by

2u(x) = −
2∑

j=1

(
1

4π

∫
Dj

(
f ( y)
Ca

− f E( y)
)

·
(

I
r

+ x̂x̂
r3

)
dS( y)

)
, (3.3)

where f and f E are the interfacial stresses due to surface tension and electric field

f = n∇s · n, f E = (Es · n)Es − 1
2(Es · Es)n − S((Ed · n)Ed − 1

2 (Ed · Ed)n).

(3.4a,b)

Drop velocity and centroid are computed from the volume averages

U j = 1
V

∫
Vj

u dV = 1
V

∫
Dj

n · (ux) dS, xc
j = 1

V

∫
Vj

x dV = 1
2V

∫
Dj

n (x · x) dS.

(3.5a,b)

To solve the system of (3.2) and (3.3) we utilize the boundary integral method presented
in Sorgentone et al. (2019). In the current study, however, we modify the time-stepper
scheme to the adaptive fourth-order Runge–Kutta introduced in Kennedy & Carpenter
(2003). All variables are expanded in spherical harmonics, which provides an accurate
representation even for relatively low expansion order. In this respect, to make sure that
all the geometrical quantities of interest (e.g. mean curvature) are computed with high
accuracy as well, we adopt an adaptive upsampling procedure introduced by Rahimian
et al. (2015) which is based on the decay of the mean curvature spectrum and seems to
work very well for this kind of simulation. When the drops are well separated from each
other, the regular quadrature based on the trapezoidal rule in the longitudinal direction
and on the Gauss–Legendre quadrature rule in the non-periodic direction works well. As
they get closer, regular quadrature on a finer grid can still be used. Here, the density
is interpolated to the finer (upsampled) grid, where the nearly singular kernel is better
resolved. But at some point, a special quadrature method is needed since the quadrature
error grows exponentially as we approach the surface and it is not possible to resolve
the problem by grid refinement, i.e. upsampling. In Sorgentone & Tornberg (2018) a
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numerical procedure based on interpolation first introduced by Ying, Biros & Zorin (2006)
is discussed and optimized to handle these complicated situations. The idea introduced in
Ying et al. (2006) for the nearly singular integration was to find the point x∗ on the surface
that is closest to the target point x0. Then, continuing along a line that passes through x∗
and x0, the integral is evaluated at a number of points x1, . . . , xn further away from the
surface. This can be done by regular quadrature on the standard grid or on the upsampled
grid, depending on how far the target point is from the surface. The value of the integral
on the surface (at x∗) needs to be computed by a specialized quadrature rule for singular
integrals. At this point a one-dimensional Lagrangian interpolation is used to compute
the value at x0 by interpolating the values at x∗ and xi, i = 1, . . . , N. In Sorgentone &
Tornberg (2018) it has been shown how to optimize this procedure, implementing a cell
list algorithm to hierarchically find the closest point on the surface and using the spherical
harmonic expansion to interpolate the on-surface integral value previously obtained on
the whole surface (at the grid points only) by the special quadrature for singular integrals
introduced in Veerapaneni et al. (2011) and Rahimian et al. (2015). The accuracy of the
method depends on the numerical parameters involved: the maximum distance before we
need to upsample the grid for the regular quadrature (that of course will depend on the grid
resolution), the upsampling rate used in the intermediate region, the number of points used
for interpolation for target points in the nearest region, the distance and the distribution of
these points (Sorgentone & Tornberg 2018). We also use the spectral reparameterization
technique presented in the same paper, designed to keep the representation optimal even
under strong deformations. In our work, in order to be able to run long simulations and well
resolve the close interactions, we set the spherical harmonic expansion order to p = 9, and
for the nearly singular quadrature, we set the upsampling rate in the intermediate region
to 4 and the number of interpolating points to 8. The viscosity contrast is λ = 1. Unless
otherwise explicitly stated, the electric capillary number is Ca = 0.1.

Our numerical method was validated against the simulation results of Baygents et al.
(1998) and an analytical theory for spherical drops developed by us and presented in
the next section. Figure 2 shows the results for the drop steady velocity as a function
of the drop centroid separation for drops aligned with the field. Figure 3 illustrates the
more general case of drops initially misaligned with the field. The simulations agree very
well with the theory and show a complex dynamics such as the drops line-of-centres
rotating away from the applied field direction and interaction switching from attraction
to repulsion. This dynamics will be explored in more detail in § 5.

4. Theory: far-field interactions

To gain more physical insight, it is instructive to analyse the interaction of two widely
separated spherical drops. In this case, the drops can be approximated as point dipoles.
The disturbance field E1 of the drop dipole P1 induces a dielectrophoretic (DEP) force on
the dipole P2 located at xc

2 = dd̂, given by F (d) = (P2 · ∇E1)|r=d

F (d) = P1P2 : ∇
(

I
r3 − 3

xx
r5

)∣∣∣∣
r=d

, P1 = P2 = R − 1
R + 2

E∞. (4.1)

The drop velocity under the action of this force can be estimated from Stokes’ law, Udep
2 =

−Udep
1 = F/ζ , where ζ is the friction coefficient, ζ = 2π(3λ+ 2)/(λ+ 1)

Udep
2 = βD

r4
3(1 + λ)
2 + 3λ

[(1 − 3 cos2 Θ)d̂ − sin (2Θ) t̂], βD =
(

R − 1
R + 2

)2

. (4.2)
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Figure 2. Comparison between our fully three-dimensional simulations and the axisymmetric simulations of
a drop pair aligned with the field by Baygents et al. (1998). (a) Absolute value of the radial component of the
steady drop velocity as a function of separation for Ca = 0.1 (red dots) and 1 (blue dots) for a drop with R = 5,
S = 4. Black dots are the data from figure 9 in Baygents et al. (1998) with Ca = 1. Solid line is the theoretical
U2 · d̂ for a drop of low Ca given by (4.7). The drop velocity at large separations shows the 1/d2 behaviour
of a stresslet flow. (b) Absolute value of the steady velocity of a drop undergoing only a dielectrophoretic
force, R = S = 5, corresponding to figure 4(a) in Baygents et al. (1998). The black dots are from our fully
three-dimensional code, the solid line is the dielectrophoretic velocity, (4.2), showing 1/d4 dependence.
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Figure 3. Comparison between the simulations (black) and the analytical theory (red) for a drop pair with
R = 1, S = 3, initial separation 3.5, initial angle between the line of centres and the applied field direction
50◦ and Ca = 0.1. The trajectory was computed from the relative drop velocity (4.7). Time evolution of the
(a) separation, (b) angle between the line of centres and applied field direction, (c) radial component of the
relative velocity U · d̂ and (d) tangential component of the relative velocity U · t̂.
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The relative DEP velocity, Udep = Udep
2 − Udep

1 , depends on the angle Θ = arccos(d̂ · ẑ)
between the direction of the external field and the line joining the centres of the two drops.
Drops attract, i.e. Udep · d̂ < 0, if Θ < Θc = arccos(1/

√
3) ≈ 54.7◦, e.g. when the drops

are lined up with the field, and repulse if Θ > Θc, e.g. if the line of centres of the two
drops is perpendicular to the field. The DEP interaction also causes drops to align with the
field, since the tangential component of the relative velocity is always negative.

The electrohydrodynamic (EHD) flow about an isolated, spherical drop in an applied
uniform electric field is a combination of a stresslet and a quadrupole (see appendix A for
the flow evolution upon application of the electric field). At steady state,

u = 9
10

S − R
(2 + R)2(λ+ 1)

E∞E∞ :
[(

I
r3 − 3

xx
r5

)
x + 1

3
∇
(

I
r3 − 3

xx
r5

)]
. (4.3)

At the surface of the drop,

u (r = 1) = βT sin(2θ)θ̂ , βT = 9
10

R − S

(1 + λ) (R + 2)2 . (4.4)

If R/S < 1, the surface flow is from pole to equator, i.e. fluid is drawn in at the poles
and pushed away from the drop at the equator. The flow direction is reversed for R/S > 1.
A second drop moves in response to the EHD flow (4.3). The drop translational velocity is
found from Faxen’s law (Kim & Karrila 1991)

Uehd
2 =

(
1 + λ

2(3λ+ 2)
∇2
)

u|x=dd̂ . (4.5)

Inserting (4.3) in the above equation leads to

Uehd
2 = βT

(
1
d2 − 2

d4

(
1 + 3λ
2 + 3λ

))
(−1 + 3 cos2 Θ)d̂

− 2βT

d4

(
1 + 3λ
2 + 3λ

)
sin(2Θ)t̂ + O(d−5). (4.6)

The radial component of the EHD velocity, and thus the sign of the EHD interaction
(attraction or repulsion), changes sign at the same angle as the DEP interaction, Θc = 54.7.
If R/S < 1, the EHD flow is attractive when drops are aligned with the applied field and
repulsive when the line of centres is perpendicular to the field direction. The interaction is
reversed for R/S > 1. Notably, unlike the DEP interaction which always drives the drops
to align with the applied field direction, the EHD can cause the drops’ line of centres to
rotate away from the direction of the applied field if βT < 0, i.e. R/S < 1.

Combining the EHD and the DEP velocities yields the relative drop velocity. Since the
drops studied here are identical, drop motions are reciprocal. Therefore, the relative drop
velocity U = U2 − U1 = 2U2

U = 2βT

d2 (−1 + 3 cos2 Θ)d̂ − Φ(R, S, λ)
4
d4 ((−1 + 3 cos2 Θ)d̂ + sin(2Θ)t̂) + O(d−5),

(4.7)

where

Φ = 1 + 3λ
2 + 3λ

(
βT + 3βD

1 + λ
1 + 3λ

)
. (4.8)

The discriminant Φ quantifies the drop pair alignment with the field and the interplay of
EHD and DEP interactions in drop attraction or repulsion. The line of centres between
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Figure 4. (a) Phase diagram of drop deformations and alignment with the field for different viscosity ratios.
The solid lines correspond to Φ(λ, R, S) = 0 given by (4.8). In the shaded regions, the line of centres of
the two drops rotates away from the applied field direction Φ < 0. The dashed line corresponds to the Taylor
discriminating function (A3); in the parameter space above it, drop deformation is oblate. (b) Critical separation
above which EHD dominates the interactions for λ = 1 and S = 0.1 (blue), S = 1 (black) and S = 10 (red).

two drops with Φ > 0 rotates towards a parallel orientation with respect to the applied
electric field, since Θ̇ = U · t̂ ∼ −Φ. However, in the case of Φ < 0 (which occurs only
for R/S < 1 drops), the line of centres between the drops rotates towards a perpendicular
orientation with respect to the applied electric field. Figure 4(a) summarizes the regimes
of alignment and deformation.

The relative radial motion of the two drops at a given configuration depends on Φ and
βT , where βT ẑẑ is the strength of the far-field EHD stresslet flow

us (x) = βT(−1 + 3 cos2 θ)
x
r3 . (4.9)

There is a critical separation dc corresponding to U2(dc) · d̂ = 0, which yields d2
c =

2Φ/βT . For Φ > 0 and R/S < 1 (βT < 0), dc does not exist and EHD and DEP
interactions are cooperative and act radially in the same direction (note that a system
with Φ < 0 and R/S > 1 cannot exist). For Φ > 0 and R/S > 1 or Φ < 0 and R/S < 1,
there is competition between EHD and DEP, with the quadrupolar DEP winning out
closer to the drops and the EHD taking over via the stresslet flow in the far field. The
fact that depending on separation drops may attract or repel in the case of antagonistic
EHD and DEP interactions has been discussed previously by Baygents et al. (1998) and
Zabarankin (2020). Note that for drops with R/S < 1, EHD effectively dominates DEP at
all separations since dc is smaller than 2, which is the minimum separation of spherical
drops. Figure 4(b) illustrates the dependence of the critical separation dc for three typical
cases. If S = 10, dc is always less than 2, the minimum separation between two spheres,
and accordingly the interactions are dominated by the EHD flow. For S = 1, dc does not
exist below R = 0.7. In the case S = 0.1, Φ > 0 for all values of R and thus R/S < 1
is always dominated by EHD, while in the case R/S > 1 the DEP attraction could be
stronger than the EHD for quite large separations, e.g. for R/S = 1.1 or R/S � 1 dc > 10.
The DEP dominates in these cases because the EHD is very weak, in the first case because
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Figure 5. Radial component U · d̂ of the relative velocity of the two drops U at t = 0 as a function of the angle
made between the applied field and the line of centres of the two spheres E∞ · d̂ = cos Θ . Initial separation
is d = 4. (a) Case R/S < 1: R = 0.1, S = 1 (black), R = 1, S = 10 (blue). At Θ = 0, both electrostatic (DEP)
and EHD interactions are attractive. At Θ = π/2, both DEP and EHD are repulsive. (b) Case R/S > 1: R =
1, S = 0.1 (red), R = 100, S = 1 (green). Solid line corresponds to the velocity computed from the theory
accounting for transient drop deformation (A9), while the dashed line corresponds to the theory assuming
spherical drops (4.7). Points are the numerical simulations.

(R − S) ∼ 0 and in the second case because the EHD flow decreases with conductivity
ratio as ∼1/R.

5. Results and discussion

An isolated charge-neutral drop in a uniform DC electric field experiences no net force.
However, a drop pair can move in response to mutual electrostatic (due to polarization)
and hydrodynamic (due to the flow driven by surface electric stresses) interactions. While
the theory in § 4 describes steady drop velocities (drop shape is assumed to be spherical
and unaffected by drop motions), our simulations consider deformable drops whose shape
can change during the interaction. We have extended the quasi-steady theory to account for
the contribution of transient small deformations in the EHD drop velocity, see appendix A
for details. Here, we explore the pair dynamics at different initial configurations using the
simulations, the quasi-steady and the transient-deformation theories.

5.1. Initial drop interactions
The initial interaction of two drops at different misalignment with the applied field is
illustrated in figures 5 and 6 by the dependence on Θ of the initial (t = 0) relative velocity
of the two drops. Figure 5 shows that the radial component of the velocity changes sign
around Θ ∼ Θc. The critical angle at which the total interaction changes sign at different
separations between the drops is shown in figure 6(b). The deviation from the far-field
result Θc = 54.7◦ is due to the DEP interaction, since the dipole approximation becomes
inaccurate at small separations. The value R = 1 turns off the DEP interaction and in this
case the angle is exactly given by Θc = 54.7◦ at all separations. This is because the EHD
solution (4.5) is exact for a sphere, which is the drop shape at t = 0.

In the case R/S < 1, the centre-to-centre electrostatic (DEP) and EHD interactions work
in the same direction. Figure 5(a) shows that when the drop pair is aligned with the
field (Θ = 0), the drops attract. As Θ increases, the attraction decreases and changes to
repulsion around Θ ∼ Θc. The repulsion is strongest in the configuration with Θ = π/2,
i.e. line of drop centres perpendicular to the applied field. The initial velocity is higher
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Figure 6. (a) Tangential component U · t̂ of the relative velocity of the two drops U at t = 0 as a function
of the angle made between the applied field and the line of centres of the two drops E∞ · d̂ = cos Θ .
Initial separation is d = 4. R = 1, S = 10 (blue), R = 0.1, S = 1 (black), R = 1, S = 0.1 (red), R = 100,
S = 1 (green). Solid line corresponds to the velocity computed from the theory accounting for transient drop
deformation (A9), while the dashed line corresponds to the theory assuming spherical drops (4.7). Points are
the numerical simulations. (b) Critical value of the angle Θ for which the initial radial velocity between two
spheres is zero, plotted as a function of the separation distance between the drops. This critical angle separates
configurations for which drops attract (U · d̂ < 0) and repel (U · d̂ > 0). Points are the numerical simulations
and the lines are added to guide the eye.

than predicted by the theory assuming spherical drops, because at t = 0, the drop shape
begins to evolve and thus the fluid around the drop moves not only because of the tangential
electric shearing of the interface, but also because the interface deforms. As a result, the
strength of the EHD contribution to the relative velocity at early times is enhanced.

The case R/S > 1 is more complicated because the electrostatic and EHD interactions
are antagonistic. The EHD interactions are predicted to change from repulsive to attractive
as Θ increases, while the DEP follows the opposite trend. Figure 5(b) shows that
the interaction at t = 0 for the considered separation d = 4 is dominated by the EHD
contribution. The theory assuming spherical drops predicts that DEP dominates the
interaction of the drops with R = 100, S = 1, since for this system the critical separation
dc = √

2Φ/βT ∼ 23 is much larger than the initial separation. However, at t = 0 the flow
associated with the elongating drops overcomes the DEP. The solution of the transient
EHD problem, which accounts for the drop shape evolution (see appendix A), does
highlight that the relative velocity can reverse sign before deformation reaches steady state
on a typical time scale ∼Ca.

The tangential component of the relative velocity is U · t̂ = −4Φ sin(2Θ)/d4.
Accordingly, it is maximal at Θ = π/4 as confirmed by figure 6(a). In all cases except
R = 1, S = 10 the tangential velocity is negative, indicating that the drops’ line of centres
will move towards the applied field direction.

The question arises as to what happens after the initial attraction or repulsion? How do
drop deformation, hydrodynamic and electrostatic interactions affect the drop trajectory?
Here we show that their interplay gives rise to intricate trajectories.

5.2. Drop pair trajectories: evolution of separation and alignment with the field
Figures 7 and 8 illustrate the evolution of the centre-to-centre distance, the radial
component of the relative velocity and the deformation parameter of drop 1 in the case
of drops initially placed in the two extreme configurations, aligned and perpendicular
to the field, Θ = 0 and Θ = π/2, respectively. The simulations are compared to the

914 A24-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1007


C. Sorgentone and others

0 10 20 30 40 50
Time

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

S
ep

ar
at

io
n

0 10 20 30 40 50
Time

0.010

0.015

0.020

0.025

0.030

0.035

R
ad

ia
l 

v
el

o
ci

ty

0 10 20 30 40
1.5

2.0

2.5

3.0

3.5

4.0
S

ep
ar

at
io

n

0 10 20 30 40
–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0

R
ad

ia
l 

v
el

o
ci

ty

0 10 20 30 40
–0.035

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0

D
ef

o
rm

at
io

n

p
ar

am
et

er

0 10 20 30 40 50
Time

–0.035

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0

D
ef

o
rm

at
io

n

p
ar

am
et

er

Simulations
Theory

Simulations
Theory

(a) (b) (c)

(d ) (e) ( f )

Figure 7. The EHDs of a pair of deforming drops with R = 0.1 and S = 1 with initial separation d = 4 and
inclinations Θ = 0 (a–c) and Θ = π/2 (d–f ). Evolution of the centre-to-centre distance (a,d), the radial
component of the relative velocity (b,e) and the deformation parameter (c, f ). Black dots correspond to the
numerical simulations. Red line corresponds to the radial velocity and separation predicted by (4.7) and the
blue line is the deformation of an isolated drop calculated from (5.2).

quasi-steady theory, where the separation is computed from the radial velocity, ḋ = U · d̂
with U given by (4.7). The tangential component of the relative velocity, U · t̂, is zero
during the interaction and accordingly the drop pair orientation with the field remains
unchanged, i.e. the angle between the line of centres (and the field direction) remains
in the initial configuration. In both cases, R/S < 1 and R/S > 1, the drops attract in the
Θ = 0 configuration, and repel if aligned perpendicularly with the applied field, Θ = π/2.
However, the interaction in the R/S < 1 case is controlled by EHD, while in the R/S > 1
case – by DEP, since the critical distance dc in the considered system R = 100, S = 1
is approximately 23, much larger than the initial separation. The radial velocity, U · d̂,
varies in time and in the case R/S < 1 (figure 7) does not change sign (it remains either
negative, indicating attraction, or positive, indicating repulsion). In the Θ = 0 case, drops
attract and the distance between the drops decreases; if Θ = π/2, the drops repel and
the separation increases. In the case R/S > 1 (figure 8), the radial velocity reverses sign
on a short time scale ∼ Ca. If Θ = 0, drops attract after a short transient repulsion and
separation decreases in time. The opposite occurs in the Θ = π/2 configuration. The
theoretical trajectory computed from the steady state velocity and the simulations are in
good agreement since drop shape remains close to a sphere and drop translation is slow
compared to the deformation time scale.

The deformation parameter is defined as DT = (a‖ − a⊥)/(a‖ + a⊥), where a‖ and a⊥
are the drop lengths in directions parallel and perpendicular to the applied field. For an
isolated drop, in weak fields (Ca � 1) the equilibrium shape is given by

DT = 9Ca
16(2 + R)2

[
R2 + 1 − 2S + 3(R − S)

2 + 3λ
5(1 + λ)

]
. (5.1)

Upon application of the field, the drop approaches the steady state monotonically
(Esmaeeli & Sharifi 2011)

D(t) = DT(1 − e−t/tr) where tr = ηsa
γ

(
(3 + 2λ)(16 + 19λ)

40(1 + λ)
)

. (5.2)
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Figure 8. The EHDs of a pair of deforming drops with R = 100 and S = 1 with initial separation d = 4
and inclinations Θ = 0 (a–c) and Θ = π/2 (d–f ). Evolution of the centre-to-centre distance (a,d), the radial
component of the relative velocity (b,e) and the deformation parameter (c, f ). Black dots correspond to the
numerical simulations. Red line corresponds to the radial velocity and separation predicted by (4.7) and the
blue line is the deformation of an isolated drop calculated from (5.2).The insets show the sign reversal of the
radial velocity.

Figures 7 and 8 show that upon application of the field the drops deform into an oblate
or prolate ellipsoid depending on the Taylor discriminating function. The deformation
parameter increases monotonically, similarly to the isolated drop case, and approaches a
nearly steady value, which is close to that for an isolated drop given by (5.1). Due to the
axial symmetry, the deformation parameters of both drops are identical. The difference
between the two drop and the isolated drop results is greater in the Θ = 0 case because
as the drops are moving closer their interaction is getting stronger; in the Θ = π/2
configuration, the drops move away from each other and become more isolated. The
strengthening interaction as separation decreases in the Θ = 0 case leads to an unsteady
increase in the deformation parameter because the drop shapes lose fore–aft symmetry and
deform greatly before contact.

The effect of the initial misalignment of the drop pair and the applied field direction is
illustrated in figure 9 with the three-dimensional trajectory of drops in the two canonical
cases R/S < 1 and R/S > 1. While in most cases drops display monotonic separation
or attraction, figure 9 highlights some more intriguing dynamics: repulsion followed by
attraction with centreline rotating towards the applied field direction (a,d), attraction
followed by repulsion with centreline rotating towards the applied field direction (c)
and attraction followed by repulsion with centreline rotating away from the applied field
direction (b). The drops remain in the plane defined by the initial separation vector and
the applied field direction, in this case the xz plane. The transient pair dynamics is clearly
seen in the trajectories in the xz plane.The unsteady drop interactions are illustrated in
more detail in figure 10. In the systems R = 0.1 and S = 1 (Φ > 0), R = 1 and S = 10
(Φ < 0), R = 1 and S = 0.1 (Φ > 0), the EHD interactions are dominant; in particular,
for a sphere, R = 1 completely switches off the DEP interaction. In the R = 1 and S = 10
(Φ < 0) case (figure 10c,d), the initial drop centreline angle is below Θc and the EHD
interaction is attractive. The drops initially attract along the direction of the electric field,
but the rotation of the centreline away from the field axis increases the tilt angle above
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xz planes.

Θc leading to repulsion and separation in direction perpendicular to the field. The angle
between the separation vector and the applied field continuously increases and around
65◦ the interaction changes from attractive to repulsive. At this point the drops attain
minimum separation, and after that the drops move away from each other with a velocity
that overshoots. At long times the drop pair approaches a nearly perpendicular orientation
relative to the field direction, where the repulsive DEP and EHD interactions push the
drops apart. This ‘kiss-and-run’ dynamics is similar to the those observed with ideally
polarizable spheres (Saintillan 2008) and has implications for electrocoalescence since the
switching from attraction to repulsion prevents drops from reaching proximity sufficient
to initiate merger. In all other cases, for which Φ > 0, drops move to align with the
field. Figures 10(a,b) and 10(e, f ) illustrate the repulsion/attraction and attraction/repulsion
dynamics. In both cases, the drop is released at an initial angle above the critical, but the
R = 0.1 and S = 1 EHD stresslet flow is repulsive, while the R = 1 and S = 0.1 EHD flow
is attractive. Since Φ > 0, the drop centreline rotates towards the field direction bringing
the drops into the range of angles where the EHD flow causes the drop interaction to
reverse sign.

The DEP interactions become very important for large conductivity ratios R � 1. As R
increases the EHD flow weakens (see (4.3)), while the DEP force plateaus as the dipole
strength (R − 1)/(R + 2) approaches 1 (see (4.2)). As a result, the cross-over separation
beyond which the EHD flow becomes important increases. The R = 100, S = 1 case
(figure 10g,h) illustrates the dynamics in this DEP dominated regime. Choosing an initial
angle larger than Θc causes the drops to repel, but Φ > 0 means that Θ will decrease with
time below Θc and the drops will then attract.

6. Conclusions and outlook

The three-dimensional interactions of a drop pair in an applied electric field are
studied using numerical simulations and a small-deformation theory based on the leaky
dielectric model. We present results for the case of a uniform electric field and arbitrary
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Figure 10. Dynamics of a pair of identical drops with initial separation d = 4 and different angles with
the applied field; (a,b) R = 0.1, S = 1 (repulsion–attraction, alignment with the field), (c,d) R = 1, S = 10
(attraction–repulsion, misalignment with the field), (e, f ) R = 1, S = 0.1 (attraction–repulsion, alignment
perpendicular to the field) and (g,h) R = 100, S = 1 (repulsion–attraction, alignment with the field).

angle between the drops’ line of centres and the applied field direction, where the
non-axisymmetric geometry necessitates three-dimensional simulations.

The pair dynamics depends on the interplay between the EHD and DEP interactions,
which are cooperative in the case of R/S < 1, and antagonistic for R/S > 1.
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DEP interaction favours drop pair alignment with the field and is attractive for small
angles and repulsive otherwise. The critical angle where centre-to-centre motion changes
sign can be estimated from the point-dipole approximation, Θc = arccos(1/

√
3) ≈ 54.7◦.

The EHD interaction depends on the sign of the induced free-charge dipole, which is
dictated by the difference ∼ (R − S). If R/S < 1, the pole to equator flow pulls the drops
together when aligned parallel to the applied field direction and pushes them apart when
the centre-to-centre line is perpendicular to the field; this scenario reverses for R/S > 1.
The critical angle which separates attraction from repulsion can be estimated from the
stresslet approximation of the EHD flow and is the same as the DEP force. Hence, to
leading order in separation and drop deformation, both the DEP and EHD change sign
at Θc. Unlike DEP, the EHD interaction can cause the drops’ line of centres to rotate
toward or away from the applied field direction. The theory highlights the importance of
the function Φ(λ, R, S), given by (4.8), which discriminates between the drop pair moving
to align with the field or in a direction transverse to the field.

Our study finds that if the drop pair angle with the field initially is close to the critical
angle for reversal of the interaction sign, the drops do not experience monotonic attraction
or repulsion; instead their trajectories follow three scenarios: motion in the direction of
the field accompanied by either attraction followed by separation or vice versa (repulsion
followed by attraction), and attraction followed by separation in a direction transverse to
the field. The dynamics of drops with R/S < 1 and Φ < 0 is similar to ideally polarizable
spheres (Saintillan 2008) due to the similarities of the flow pattern (despite different
flow origins): the drops attract and move in the direction of the field and then separate
in the transverse direction. Hence, coalescence will be prevented in such cases. Drops
with R/S > 1 tend to align with the field but the sign of the interaction depends on drop
separation. The DEP dominates when drops are close, while EHD controls the far-field
interaction.

The comparison of the analytical theory and the simulations shows that the theory
performs quite well in a wide range of drop separations and angles with the applied
field direction for Ca < 1, and thus can serve as an efficient means to estimate drop
pair dynamics and trajectories in an applied electric field. However, the simulations are
indispensable in modelling the near-contact motions of the drops and the drop dynamics
in stronger fields. Our three-dimensional boundary integral method is also capable of
simulating the dynamics of dissimilar drops (different size, viscosities, R and S), and many
drops, which we plan to explore in the future. Charge convection can also be included
in order to study symmetry-breaking three-dimensional instabilities such as the Quincke
electrorotation (Salipante & Vlahovska 2010, 2013; Vlahovska 2016b).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1007.
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Appendix A. Evolution of the drops velocity upon application of an uniform
electric field

Let us consider the transient drop dynamics after the electric field is applied in the limit
of small deformations Ca � 1. At leading order in Ca, the shape is described by rs =
1 + f2(t)(−1 + 3 cos2 θ), and the velocity field outside the drop at distance r from the
drop centre and an angle θ with the applied field direction is given by Vlahovska (2011,
2016a)

u =
(

α + β

r2 − β

r4

)
(−1 + 3 cos2 θ)r̂ − β

r4 sin(2θ)θ̂ . (A1)

The coefficients α and β are time dependent because the drop deforms

α(t) = 15(λ+ 1)

(3 + 2λ)(16 + 19λ)

(
FT (R, S, λ) − Ca−1 8

3
f2(t)

)
,

β(t) = 1
(3 + 2λ)(16 + 19λ)

(BT(R, S, λ) − Ca−1f2(t)(12(2 + 3λ))),

⎫⎪⎪⎬
⎪⎪⎭ (A2)

where FT is the Taylor discriminating function

FT (R, S, λ) = 1

(2 + R)2

(
R2 + 1 − 2S + 3 (R − S)

2 + 3λ
5(λ+ 1)

)
, (A3)

and

BT(R, S, λ) = 9(λ(3R2 + 13R − 19S + 3) + 2(R2 + 6R − 8S + 1))

2(R + 2)2 . (A4)

The shape evolution equation is obtained from the kinematic condition ṙs = ur(r = 1)

ḟ2 = 15(λ+ 1)

(3 + 2λ)(16 + 19λ)

(
FT (R, S, λ) − Ca−1 8

3
f2(t)

)
. (A5)

Note that the Taylor deformation parameter is related to f2, D = (3/2)f2, which leads to
(5.2) describing the transient shape of an isolated drop.

If a second drop is present at location xc
2 = dd̂, its migration velocity due to the EHD

flow of the first drop can be obtained using Faxen’s law (Kim & Karrila 1991)

Uehd
2 =

(
1 + λ

2(3λ+ 2)
∇2
)

u(r = d). (A6)

Inserting (A1) in the above equation yields

Uehd
2,r =

(
α + β

d2 − 1
d4

(
β + 3λ

2 + 3λ
(α + β)

))
(−1 + 3 cos2 Θ),

Uehd
2,t = − 1

d4

(
β + 3λ

2 + 3λ
(α + β)

)
sin(2Θ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)

where Θ = arccos(d̂ · ẑ). At steady state f2 = (3/8)CaFT , α = 0 and β reduces to
Taylor’s result

βT = 9(R − S)

10 (1 + λ) (2 + R)2 , (A8)

which leads to the steady EHD contribution to the migration velocity calculated assuming
a spherical drop (4.6). Recall that, for a perturbation solution in Ca, the leading-order
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Figure 11. Comparison between the transient and steady migration theories with the numerical simulations.
Centroid distance (a) and relative radial velocity (b) as a function of time for a pair of identical drops with
R = 1, S = 10, aligned with the field (Θ = 0) and initial separation d = 4, Ca = 0.1. The red line corresponds
to the trajectory computed using the steady state velocity (4.7). The transient solution using (A9) with Ca =
0.05 is given in black and Ca = 0.1 in blue.

steady flow about the deformed drop is identical to the solution for a spherical drop
(Rallison 1980).

The relative drop velocity is obtained by adding the contribution from the DEP force,
(4.2), which is time-independent

U(t) = 2(Uehd
2 (t) + Udep

2 ). (A9)

Figure 11 compares trajectories computed from a velocity that is transient (in the case of
a deforming drop) and steady (in the case of a spherical drop). Decreasing Ca shortens the
transient period and the trajectory approaches the steady result. However, a long transient
results in an offset.
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