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Abstract

Viscous fluid is squeezed out from a shrinking (or expanding) tube whose
radius varies with time as (1 — Br)}. The full Navier-Stokes equations reduce
to a non-linear ordinary differential equation governed by a non-dimensional
parameter S representing the relative importance of unsteadiness to viscosity.
This paper studies the analytic solutions for large | S | through the method of
matched asymptotic expansions. A simple numerical scheme for integration
is presented. It is found that boundary layers exist near the walls for large
| ${. In addition, flow reversals and oscillations of the velocity profile occur
for large negative S (fast expansion of the tube).

1. Introduction

The full Navier—Stokes equations including all the unsteady, viscous and inertial
terms represent a set of non-linear partial differential equations with very few
exact solutions. Excluding unsteady parallel and unsteady concentric cylindrical
flows, where the non-linear terms vanish individually, only the following two types
of exact solutions exist.

(I) Wang [5] studied a class of solutions where the non-linear terms are not zero
individually but the non-linearities cancel each other. These flows include Taylor’s
[3] solution of vortex decay, and other impinging flows. The solutions of this type
admit no rigid boundaries and the velocities vary exponentially with time. '

(II) Birkhoff [2], in his study of transformation groups, noted the Navier—
Stokes equations would reduce to a single non-linear ordinary differential equation
if the lateral velocities are proportional to ¢+, Birkhoff’s idea of similarity solu-
tions was extended by Yang [7] to unsteady stagnation point flow and by Wang [6]
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to the squeezing of two plates. Recently Uchida and Aoki [4] also applied this
transformation to the squeezing of a viscous fluid out of a shrinking cylinder.
This situation occurs, for example, in physiology, when regional blood volume is
reduced by the active ‘““vasoconstriction’ of the blood vessels (for example, Berne
and Levy [1]).

However, Uchida and Aoki [4] only studied the shrinking tube solutions for low
squeeze numbers (| S| < 5). This is adequate for vasoconstriction but is inadequate
for the ejection of the heart (| S| ~ 50). The recent paper studies the behaviour of
the fluid for large | S| (fast squeezing and expansion). The results are important
in the fluid dynamics of ventricular pumping.

2. Formulation

Let the inside tube radius be prescribed by a(f). The Navier—Stokes equations
then admit similarity solutions if

a(t) = ag (1 —PB1), M)

where a, and B are constants. When B is positive the tube is squeezed until total
collapse at ¢t = 1/8 and when B is negative the tube is expanded indefinitely.

Let u, v be the velocities in cylindrical polar coordinates in the directions of z, r
respectively. The following transformation is used

re )
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where % is the normalized radius, p is the pressure, p is the density and v is the
kinematic viscosity of the fluid. The constant 4 and the function P(z) are to be
determined from the boundary conditions. Note that our radial variable, 7, is the
square of that defined by [4]. We shall consider the time interval <S8! when
B>0and r> —|B|~* when B<O.

The boundary conditions are on

r=a(t), v=dajdt, u=0, ' 6
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r=0, v=0, oufor=0. @)

Using equations (2-7) the Navier—Stokes equations then reduce to an ordinary
differential equation

YT =SOf"+ 2"+ M) =0, ®

with the boundary conditions

lﬂlg)l (\/Ln) =0 or f(0)=0, )
lim (Jn) £7) = 0, (10)
S (1)=0, an
SO =1 (12)
Here S is a “‘squeeze number” defined by
S=Pad/dv. 13)

The character of the solutions depends heavily on the parameter S. We believe that
our equation (8) is much simpler than Uchida and Aoki’s equation (24). In addi-
tion, the derivatives of our function f are bounded everywhere, while the deriva-
tives of their F are singular at the origin. Equation (8) can be converted to the
“equation (24) of reference [4] by the following substitution: f——Ffa, n—>173
S—>—0af2, A>—K[8a, B—>—20v/a}.

3. Asymptotic solution for large, positive S

This is the case for fast transient squeezing. We set £2=1/S<1 and use the
method of matched asymptotic expansions. In the interior let

f=Fy+eFfR+... 149)
We substitute (14) into (8). The leading terms are
nFo+2Fg+ FoFg—FyFg =0, (15)
with the boundary conditions

F0)=0, F(1)=1, li_g)h/(n)Fﬁ(n)=0- (16)
)

The solution is the potential flow

Fy=n. (17
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Since the boundary layer is on 5 = 1, we define a stretched variable

E=(1-7)e, (18)
f=1—egy(D)—g(D— ..., (19
A=(1/eD{A;+eA;+...). (20)

Using the transformations (18-20), the leading terms of equation (8) are

8" —le1~28/—8181+818 =0 @n
or after integration
& —lei—81—818118:18 = 4o (22

The matching boundary conditions are

sai~{ as {>o, £0)=0, gy0)=0. (23
We. are fortunate that the boundary layer equations (22, 23) admit an exact
solution
& = {—(2)+(1/y2)e~v®X, (29
Ag=-2.

The first-order interior solution F, is also found to satisfy equation (15). Matching
with the boundary layer, we find

F = (1/y2)n. (25)
Again from equations (8, 18, 19) the second-order boundary layer equation is
g2~ {87 —&1— [lgs+82+2818:— 8185~ 82811 = Ay (26)

Using equations (8) and (19) the matching boundary conditions are

£:(0) = £x(0) =0, @7
gx(0)~(1/42) L. (28)

From equations (26) and (28) we find
A, =-3[J2. (29)

https://doi.org/10.1017/50334270000001922 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000001922

[5] Squeezing of a viscous fluid from a tube 69

Without solving for g,, it follows that

£50) = —1/y2. (30)
The composite solution is then
S=n+(e/y2) n—(e/y2) eV B+ O(e?), (31
A = (=2/e)=(3/J2) &+ 01) = f"(D)+f7(1), (32)
S = (=42/e)+0(1), (33)
(1) = (=2/e)-(1/J(2) &)+ 0(1). (34

4. Asymptotic solution for large, negative S

Large negative S means fast transient expansion of the tube with a subsequent
suction of fluid from the ends. Since vorticity is transported from the ends the
interior is sensitive to the entrance conditions. It is not certain whether the solutions

are unique.
Assuming a boundary layer on 7 = 1, we set 82 =|S|~! and obtain an interior

solution similar to equation (17). The stretching

£ =(1-7)/3, (35)

f=1=0m(&)—8hy(&)—..., (36)

yields
hy" + €h] +2h{+hihi~h, b = 0, 37
hy(0)~> ¢, hy(0) = hy(0) = 0. (38)

The conditions for exponential decay of the boundary layer can be obtained by
setting

hy = £+ ¢+ 4(8), (39)
where ¢, is a constant and ¢ is small. Equation (37) is then linearized to give
""" —c;¢"+3¢" =0. (40)
This yields
$~exp{}lc, + J(c3—12)] £}. (1)

Exponential decay is possible when ¢, <0. Further, the solution is oscillatory (in £)
when |¢,|<243.
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Numerical solutions of equations (37-38) by the shooting method do not appear
to be unique. One solution (Fig. 1) yields Aj(0) = —1.831249, Aj(0) =2 and
¢, = —3.38. Although | ¢,| <23 here, the oscillations for large ¢ are not apparent
in the figure due to the long period [approximately 16.4 from equation (41)] and
the fast decay. Other solutions yield results similar to Fig. 1.

he) 2 0 n)
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g

Fig. 1. Numerical solution of the boundary layer equations (37-38).

We note the boundary layers for large negative S have inflection points for
small £. In contrast, the boundary layer for large positive S, equation (24), is
monotonic.

A similar uniformly valid solution can be constructed

f=n-8cn—8h(E)— £~ ]+0(8). 42)

5. Numerical solution

Equations (8-12) may be integrated numerically to yield exact solutions for any S.
Uchida and Aoki [4] used a two-parameter shooting scheme. However, this
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difficult two-point boundary value problem can be much simplified by trans-
forming the dependent and independent variables as follows [6]:

) = G| S|, 43)
A=|S[». 44
Equation (8) then yields
AG""+2G"—(sign S)(AG"+2G"+G'G"—-GG") =0, 45)
G(0) =0, lim{(X)G"(A) =0, (46)
A0
G(|sh=1|s), G(s|)=0o. CY))

Since equation (45) is singular at A = 0, an analytic expansion is needed to start
the numerical integration. The following method is used. For 0< A< A, we guess
G'(0) and G"(0) and obtain all higher derivatives from equation (45). A Taylor
series is then constructed

N AndrG

x 5 XdnG| 48
G(A) 1§0 n! d)\"’ 0 ( )
For a given N>2, the maximum range for Taylor series approximation Ap is

determined by requiring
(A GVHOY<10-1°, n=N+1,N,N—1,N-2. (49)

Then using equation (48) we calculate G(Ay), G'(Ay), G"(Ar), G"(Az) from which
equation (45) is integrated as an initial value problem for A> A, by the fourth-
order Runge-Kutta algorithm until G’'(A*) = 0. A solution is obtained if the value
of G(A*)— A* is zero. If not we can adjust either G'(0) or G"(0) and try again. The
problem is thus reduced to a much simpler one-parameter shooting algorithm.
The disadvantage is that S shall be determined a posteriori.

After a solution is found S is then obtained by

S = (sign S) A*. (50

Our numerical results agree favorably with those published by Uchida and Aoki
[4] for low S (—0.835 < §<5.0). However, we are able to obtain solutions for much
larger absolute values of S(—57.78 < §<46.0).

Figures 2 and 3 show the axial velocity profiles f'(7) plotted against {5 (3 is
proportional to the radius ). For large positive S (fast squeeze) we see the velocity
profile is similar to those published by Uchida and Aoki [4] except the boundary
layer character is more obvious. For large negative S (fast expansion) the results
are quite different. As S becomes more negative the region of reverse flow increases
and then decreases. In the meantime, oscillations of the velocity profile appear and
become more pronounced.
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Fig. 2. Axial velocity profiles for squeezing: A : § = 30.416; B: S = 6.145; C: § = 0.86085;
D:5=0.
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Fig. 3. Axial velocity profiles for expansion: D: § = 0; E: S =-0.40737; F: § = —6.22206;
G:8 =-33.683; H: S =~57.780.
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6. Discussion

Table 1 shows a comparison of the results from three different methods. It is
seen that the series expansion obtained by Uchida and Aoki [4] compares well with
exact numerical integration for small | S| while our matched asymptotic expansions
is adequate for large positive S.

TABLE 1

Comparison of results obtained by the various methods

S F 0]
Exact Asymptotic Exact Asymptotic
S numerical equation (33) numerical equation (34)
46.00 —-10.72 —9.59 —96.55 —96.80
30.416 —8.942 —7.799 —64.507 —64.730
22.720 —7.891 —~6.741 —48.658 —48.810
10.609 —5.779 —4.606 —23.289 —23.520
6.145 —4.702 —13.808
0.86085 —2.66595 —~2.13653
Series, [4] Series, [4]
0.29145 —2.26218 —2.25621 —0.75261 —0.74699
0.16611 —2.15587 —2.15466 —0.43428 —0.43314
0 —2.00000 —2.00000 0.00000 0.00000
—0.11487 —1.87916 —1.87966 0.31149 0.31100
—0.40737 —1.49255 —1.52379 1.17596 1.14532
—0.73305 —0.67362 2.52706
—6.22206 11,7685 34.9025
—33.683 13.042 108.148
—57.780 11.304 149.540

We have demonstrated the possible existence of a boundary layer for large
negative S which may be asymptotically oscillatory. This may also be true in the
related case of the separation of two plates and has not been pointed out previously
[6]. Using the same notation as in equations (35, 36, 39) one finds, in the two-plate
case,

¢, "+ (B +m)¢" =0, (51)
or

¢~exp{te, + Jlcf~4(3+m)) &}, (52)

where m = 0, 1 represents axisymmetric and two-dimensional plates respectively.
This shows exponential decay is possible if ¢; <0 and the solution is oscillatory if
ley|<2{(3+m).
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For S <0, both the separation of two plates and the expansion of a tube show
marked non-uniqueness. The flow reversal and interior oscillations are characteris-
tic for both problems. These phenomena do not occur for the small S cases studied
by Uchida and Aoki [4].
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