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Examples of Half-Factorial Domains
Hwankoo Kim

Abstract. In this paper, we determine some sufficient conditions for an A + XB[X] domain to be an HFD. As
a consequence we give new examples of HFDs of the type A + XB[X].

Introduction

We first recall various factorization properties for an integral domain. Following P. M. Cohn
[13], we say that an integral domain R is atomic if each nonzero nonunit of R is a finite prod-
uct of irreducible elements (atoms) of R. An integral domain R satisfies the ascending chain
condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending
chain of principal ideals of R. It is well known that ACCP implies atomic, but the con-
verse is not true; however examples are hard to come by. The first such example is due to
A. Grams [17].

For an atomic domain R, a nonzero nonunit of R may have several factorizations into
irreducible elements of R and two factorizations may have different lengths. Thus, follow-
ing A. Zaks [21], we define R to be a half-factorial domain (HFD) if R is atomic and any two
factorizations of a nonzero nonunit of R as products of irreducible elements have the same
length. Examples of HFDs include UFDs, and more generally any Krull domain R with
|Cl(R)| ≤ 2 [22, Theorem 1.4]. Moreover, A. Zaks showed that if R is a Krull domain, then
R[X] is an HFD if and only if |Cl(R)| ≤ 2 [22, Theorem 2.4]. If R[X] is an HFD, then R is an
HFD, but the converse does not hold in general (also, see [5, Example 5.4]). As it concerns
the Noetherian domain R such that R[X] is an HFD, a characterization has been given re-
cently by J. Coykendall [14, Corollary 2.3]. In order to measure how far an atomic domain R
is from being an HFD, we define the elasticity of R as ρ(R) = sup{m

n | x1 · · · xm = y1 · · · yn,
where each xi , y j ∈ R is irreducible}. This concept was introduced by R. Valenza [20].
Thus 1 ≤ ρ(R) ≤ ∞, and ρ(R) = 1 if and only if R is an HFD.

In this paper, we determine some sufficient conditions for an A + XB[X] domain to be
an HFD. As a consequence we give new examples of HFDs of the type A + XB[X].

General references for any undefined terminology or notation are [1], [4], [8], and [15].
For an integral domain R, R∗ is the set of nonzero elements of R and U (R) is its group of
units.

Main Results

In [5], [10], [12], and [16], integral domains of the type A + XB[X], where A ⊆ B is
an extension of integral domains are studied. In particular, some sufficient conditions
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for A + XB[X] to be an HFD are given. In [5, Theorem 5.3], they showed that if B is a
field, then A + XB[X] is an HFD if and only if A is a field. In [12, Theorem 3.4], they
showed if A is a field and B[X] is a UFD, then A + XB[X] is an HFD. Also, they asked
a question in [12, Question, p. 75]: If A ⊂ B is an extension of integral domains such
that U (A) = U (B), each irreducible element of A is irreducible in B, and B is a UFD,
is A + XB[X] an HFD? This question was solved positively in [10, Proposition 5.4] and
with weaker sufficient conditions in [16, Proposition 1.8]. In [12, Remark 3.7] and [10,
Question, end of Section 5], they ask the following question: Is A = K + XB[X] an HFD
when K is a field and B[X] is an HFD? Next, we give a positive answer for this question. To
do so, we need the following four lemmas.

Lemma 1 Let R be an integral domain with quotient field K. Let f , g ∈ R[X]. Assume that
either the leading coefficient or the coefficient of the term of lowest degree of g is a unit of R and
g divides f in K[X]. Then g divides f in R[X].

Proof This result follows by comparing coefficients.

The following lemma is well known (see [18, p. 69, Exercise 9.6]).

Lemma 2 Let R be an integrally closed integral domain with quotient field K and let f ∈
R[X] be a nonconstant. Assume that either the leading coefficient or the constant term of f is
a unit of R. Then f is irreducible in R[X] if and only if f is irreducible in K[X].

To prove the following lemma, we need the fact that if B[X] is an HFD, then B is inte-
grally closed [14, Theorem 2.2]. However, in [10, Example 5.5 (b)] they gave an example
where B[X] is an HFD, but B is not completely integrally closed.

Lemma 3 Let R = K + XB[X], where K ⊆ B, K is a field, and B[X] is an HFD. If f (X) =
X
(
b1 + Xh1(X)

)
· · ·
(

bn + Xhn(X)
)

, where for each i = 1, . . . , n, 0 
= bi ∈ B − U (B),
hi(X) ∈ B[X], and bi + Xhi(X) is an irreducible element of B[X], then f is an irreducible
element of R.

Proof Suppose that f is not irreducible in R. Then, since K is a field, f =(
1 + Xg(X)

)
Xm(X), where g(X) and m(X) are nonzero elements of B[X]. Thus, among

irreducible factors of f in B[X], there is an irreducible factor of type 1 + Xg ′(X), where
g ′(X) ∈ B[X]. By Lemma 2, 1 + Xg ′(X) is irreducible (and so prime) in L[X], where L is
the quotient field of B. Since 1 + Xg ′(X) � X, 1 + Xg ′(X) | bi + Xhi(X) in L[X] for some
1 ≤ i ≤ n. It follows from Lemma 1 that 1 + Xg ′(X) | bi + Xhi(X) in B[X]. Thus bi ∈ U (B)
since bi + Xhi(X) is irreducible in B[X], a contradiction. Thus f is irreducible in R.

Lemma 4 ([12, Lemma 3.3]) Let R = A + XB[X], where A ⊆ B is an extension of integral
domains such that U (B) ∩ A = U (A) and let f ∈ R. If f is irreducible in B[X], then it is
irreducible in R.

Now we are ready to answer a question raised in [12, Remark 3.7] and [10, Question,
end of Section 5].
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Theorem 5 Let R = K + XB[X], where K ⊆ B, K is a field, and B[X] is an HFD. Then R is
an HFD.

Proof If 0 
= f ∈ R, then f (X) = Xr
(
b + Xh(X)

)
, where r ≥ 0, 0 
= b ∈ B and

h(X) ∈ B[X].

Case 1 If r = 0, then b ∈ K. Since K is a field, b ∈ U (R) and so f (X) is an associate of
an element of R of type 1 + Xh ′(X), where h ′(X) ∈ B[X]. In this case, the factorization of
f as a product of irreducible elements in B[X] is also a factorization of f as a product of
irreducible elements in R. Indeed, any irreducible factor of f is of type 1 + Xhi(X), and so
an irreducible element of R (cf. Lemma 4).

Case 2 If r 
= 0 and b ∈ U (B), then f = (bX)Xr−1
(

1 + Xh ′(X)
)

for some h ′(X) ∈ B[X].
Since bX and X are irreducible elements of R, decomposing the factor 1 + Xh ′(X) in B[X],
we get also, in this case, that f is a product of irreducible elements of R.

Case 3 If r 
= 0 and b ∈ B −U (B), then consider the factorization of f into irreducible
elements of B[X]: f (X) = Xr

(
b + Xh(X)

)
= uXr

(
b1 + Xh1(X)

)
· · ·
(

bn + Xhn(X)
)

, where
u ∈ U (B), each bi ∈ B (at least one b j is a nonunit) and each hi(X) ∈ B[X]. Since the
factors bi + Xhi(X) with bi ∈ U (B) are associates (in B[X]) of elements of type 1 + Xh ′i (X)
for some h ′i (X) ∈ B[X], we get f (X) = vXr

(
b1 +Xh1(X)

)
· · ·
(
bk +Xhk(X)

)(
1+Xh ′1(X)

)
· · ·(

1 + Xh ′s (X)
)

, where v ∈ U (B), b1, . . . , bk ∈ B −U (B) and all the factors are irreducible
elements in B[X]. It follows from Lemma 3 that X

(
b1 + Xh1(X)

)
· · ·
(
bk + Xhk(X)

)
is an

irreducible element of R. Thus f is a product of r + s irreducible elements of R.
Thus the three cases show that R is atomic (cf. [12, Proposition 2.1]). To prove that R

is an HFD, we have to show that if f ∈ R has the following factorization into irreducible
elements of B[X]: f (X) = uXr

(
b1 +X f1(X)

)
· · ·
(
bk +X fk(X)

)(
1+Xg1(X)

)
· · ·
(
1+Xgs(X)

)
,

where u ∈ U (B), each bi ∈ B−U (B), and each fi(X), gi(X) ∈ B[X], then any factorization
of f into irreducible elements of R has s + r factors.

Indeed, let f (X) =
(
a1 + Xh1(X)

)
· · ·
(

an + Xhn(X)
)

be another factorization of f into
irreducible elements of R. Note that if ai = 0, then Xhi(X) is not divisible (in B[X]) by any
factor 1 + Xg j(X).

Claim Each factor 1 + Xgi(X), where 1 ≤ i ≤ s, is an associate (in R) of an element
a j + Xh j(X) with a j 
= 0.

Proof of claim Since each 1+Xgi(X) is irreducible in B[X], it is irreducible (and so prime)
in L[X] by Lemma 2, where L is the quotient field of B. Since 1+Xgi(X) � Xhk(X), 1+Xgi(X)
divides (in L[X]) an element a j + Xh j(X) with a j 
= 0. Thus 1 + Xgi(X) divides in B[X]
the element a j + Xh j(X) by Lemma 1. Write a j + Xh j(X) =

(
1 + Xgi(X)

)
h(X) for some

h(X) ∈ B[X]. Note that h(X) ∈ R. The fact that a j + Xh j(X) is an irreducible element of R
forces h(X) ∈ U (R).

Thus the number of indices such that ai 
= 0 is exactly s. So the factorization of f
into irreducible elements of R is: f (X) = a

(
1 + Xh ′1(X)

)
· · ·
(
1 + Xh ′s (X)

)(
Xh1(X)

)
· · ·(

Xhn−s(X)
)

, where a ∈ K∗ and each h ′i (X), h j (X) ∈ B[X]. Furthermore, since the factors
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Xh j(X) are irreducible elements of R, the polynomials h j(X) are not divisible by X (in
B[X]). Since Xr divides f in B[X] and Xr+1 does not divide f in B[X], we get that n− s = r,
and so n = r + s, as we desired.

Example 6 Let B = K[Y 2,Y Z,Z2], where K is a field. Then B is a two-dimensional
Noetherian Krull domain with |Cl(B)| = 2 [1, Example 3.4]. Thus B (and hence B[X]) is
not a UFD. Note that, for a Krull domain D, D[X] is an HFD if and only if |Cl(D)| ≤ 2
[21, Theorem 2.4]. Thus B[X] is an HFD which is not a UFD. Let R = K + XB[X]. Then R
is an HFD by Theorem 5.

Corollary 7 Let A be an integral domain with quotient field K and let B be an extension of
A such that K ⊆ B and B[X] is an HFD. Then A + XB[X] is an HFD if and only if A is a field.

Proof This follows from Theorem 5 and the remarks after [5, Theorem 5.3].

Question 8 Let R = K + XB[X], where K ⊆ B, and K is a field. Is B[X] an HFD if R is an
HFD?

Remark 9 In [12, Example 3.7], they observed that even if A and B[X] are HFDs, the
domain A + XB[X] need not be an HFD. For example, let A = Z and B = Z[

√
−5]. Then

A is a UFD, B[X] is an HFD, but A + XB[X] is not an HFD. While, in [16, Example 3.7 (b)],
there is an example such that A and B are HFDs, but not UFDs, and A + XB[X] is also an

HFD. For example, take A = Z[
√

85] and B = Z[ 1+
√

85
2 ].

In [6, Definition 2.1], they defined a splitting multiplicatively closed set as follows: Let
R be an integral domain. A saturated multiplicatively closed subset S of R is said to be a
splitting set if for each 0 
= r ∈ R, we can write r as the product r = sa for some s ∈ S and
a ∈ R with s ′R ∩ aR = s ′aR for all s ′ ∈ S.

For S any multiplicatively closed subset of R, let T = {0 
= t ∈ R | sR ∩ tR = stR
for all s ∈ S}. It is easily proved that T is a saturated multiplicatively closed subset of R.
Thus S is a splitting set if and only if ST = R − {0}. Hence if S is a splitting set of R, each
nonzero element r ∈ R may be written in the form r = st for some s ∈ S and t ∈ T,
and this factorization is unique up to unit factors. The set T is called the complementary
multiplicatively closed set for S (or m-complement for S). Note that T is also a splitting set
with S for its m-complement. Several conditions equivalent to S being a splitting set are
given in [6, Theorem 2.2].

Note that the following theorem generalizes [10, Proposition 5.4], but its proof is essen-
tially the same as in [10, Proposition 5.4]. For completeness we will give a proof.

Theorem 10 Let A ⊆ B be an extension of integral domains such that U (A) = U (B), A is a
UFD, B[X] is an HFD, and each prime element in A is a prime of B. Then R = A + XB[X] is
an HFD.

Proof Let p be a prime of A. By hypothesis, p is prime in B, and hence also in B[X]. Note
that pB∩A = pA. For if pb = a ∈ A, then some prime factor of a in A must be an associate
of p in B, and hence in A since U (A) = U (B). Thus pR = pB[X]∩R, and so p is also prime
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in R. Hence by [7, Corollary 1.7], S = A − {0} is a splitting multiplicative set of R (resp.,
B[X]) generated by principal primes since R satisfies ACCP by [10, Corollary 1.3] (resp.,
B[X] is an HFD). Thus RS = q f (A) + XBS[X] is an HFD by Theorem 5 since BS[X] =
(B[X])S is an HFD [7, Corollary 2.5], and hence R is an HFD by [7, Theorem 3.3].

Example 11 Let A be a UFD, and let X,Y,Z be indeterminates. Then B = A[Y 2,Y Z,Z2]
is a Krull domain with Cl(B) ∼= Z/2Z, and hence an HFD by [21, Theorem 1.4]. Thus
R = A+XA[Y 2,Y Z,Z2][X] is an HFD by Theorem 10. In particular, Z+XZ[Y 2,Y Z,Z2][X]
is an HFD.

The following definition is due to D. D. Anderson et al. in [6, Example 4.8]. Note that
the condition (1) of the following definition was used (with the name C∗2 ) in [16] to study
elasticity of A + XB[X] domains.

Definition 12 Let A ⊆ B be an extension of integral domains. We say that this extension
satisfies (∗) if for 0 
= b ∈ B (1) b = au, where a ∈ A and u ∈ U (B), and (2) b = au = a ′u ′

(a, a ′ ∈ A, u, u ′ ∈ U (B)) implies that u
u ′ ∈ U (A).

Note that the extension A ⊆ B satisfies (∗) precisely when the map P+(A) → P+(B)
given by Ax �→ Bx is an isomorphism or, equivalently, when P(A) → P(B) is an order-
isomorphism. Also note that if the extension A ⊆ B satisfies (∗), then U (B) ∩ A = U (A)
and A is an HFD if and only if B is an HFD (cf. [16, Proposition 2.7]).

The following extensions of integral domains satisfy (∗) [6, Example 4.8].
(1) A ⊆ A.
(2) K ⊆ L, where K and L are fields. (Note that if A ⊆ B satisfies (∗) and A or B is a

field, then so is the other.)
(3) A ⊆ Â, where Â is the completion of A for A a quasi-complete local integral domain

(that is, the map J �→ JÂ is a lattice isomorphism).
(4) A ⊆ A({Yα}) = {

f
g | f , g ∈ A[{Yα}],C(g) = A}, where A is a Bézout domain.

Our final result is a special case of [16, Proposition 2.7]. However, the proofs are very
different.

Theorem 13 Let A ⊆ B be an extension of integral domains satisfying (∗). Let R = A +
XB[X]. Then R is an HFD if and only if B[X] is an HFD.

Proof Suppose that B[X] is an HFD. Then clearly B satisfies ACCP. Since U (B)∩A = U (A),
R satisfies ACCP [12, Proposition 1.2], and hence R is atomic. Now we will show that
ρ(R) = 1. Let S = {uXn | u ∈ U (A) for n = 0 and u ∈ U (B) for n ≥ 1}. Then S is
a saturated multiplicatively closed subset of R. In fact, S is a saturation of {Xn}∞n=0. Let
T = { f (X) ∈ R | f (0) 
= 0}. Clearly T is a saturated multiplicatively closed set of R. Now
by the condition (1) of Definition 12, ST = R∗. By the condition (2) of Definition 12, this
representation is unique up to a unit factor. Hence S is a splitting multiplicatively closed
set with m-complement T. Then RS = B[X,X−1] = B[X]X is an HFD [7, Corollary 2.5]
since B[X] is an HFD. Note that RT = (K + XL[X])T ′ by (1) of Definition 12, where K
(resp., L) is quotient field of A (resp., B) and T ′ = { f (X) ∈ K + XL[X] | f (0) 
= 0}.
Thus RT is atomic [7, Theorem 2.1] since K + XL[X] is atomic [4, Proposition 3.1] and

https://doi.org/10.4153/CMB-2000-043-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-043-7


Half-Factorial Domains 367

T ′ is a splitting set. Now we show that RT is an HFD. Note that D = K + XL[X] is an
HFD [5, Theorem 5.3]. Set S ′ = {uXn | u ∈ K∗ for n = 0 and u ∈ L∗ for n ≥ 1}.
Since the pair K ⊆ L satisfies (∗), applying the same argument as above, S ′ is a splitting
multiplicatively closed subset of D with m-complement T ′. Since 1 = ρ(D) ≥ ρ(DT ′) ≥ 1
by [11, Theorem 2.3(1)], ρ(RT) = ρ(DT ′) = 1. Thus ρ(R) = max{ρ(RS), ρ(RT)} = 1 by
[11, Theorem 2.3 (2)]. Hence R is an HFD. Conversely, suppose that R is an HFD. Let S be
as above. Then RS = B[X,X−1] = B[X]X . Thus RS is atomic by [7, Theorem 2.1] and so
B[X] is atomic by [7, Theorem 3.1]. Now we have 1 = ρ(R) ≥ ρ(RS) = ρ(B[X]X) ≥ 1 by
[11, Theorem 2.3 (1)]. Thus ρ(B[X]X) = 1, and hence B[X]X is an HFD since it is atomic
[7, Theorem 2.1]. Thus by [7, Theorem 3.3] B[X] is an HFD.
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