Examples of Half-Factorial Domains

Hwankoo Kim

Abstract. In this paper, we determine some sufficient conditions for an $A+X B[X]$ domain to be an HFD. As a consequence we give new examples of HFDs of the type $A+X B[X]$.

Introduction

We first recall various factorization properties for an integral domain. Following P. M. Cohn [13], we say that an integral domain R is atomic if each nonzero nonunit of R is a finite product of irreducible elements (atoms) of R. An integral domain R satisfies the ascending chain condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal ideals of R. It is well known that ACCP implies atomic, but the converse is not true; however examples are hard to come by. The first such example is due to A. Grams [17].

For an atomic domain R, a nonzero nonunit of R may have several factorizations into irreducible elements of R and two factorizations may have different lengths. Thus, following A. Zaks [21], we define R to be a half-factorial domain (HFD) if R is atomic and any two factorizations of a nonzero nonunit of R as products of irreducible elements have the same length. Examples of HFDs include UFDs, and more generally any Krull domain R with $|\mathrm{Cl}(R)| \leq 2$ [22, Theorem 1.4]. Moreover, A. Zaks showed that if R is a Krull domain, then $R[X]$ is an HFD if and only if $|\mathrm{Cl}(R)| \leq 2[22$, Theorem 2.4]. If $R[X]$ is an HFD, then R is an HFD, but the converse does not hold in general (also, see [5, Example 5.4]). As it concerns the Noetherian domain R such that $R[X]$ is an HFD, a characterization has been given recently by J. Coykendall [14, Corollary 2.3]. In order to measure how far an atomic domain R is from being an HFD, we define the elasticity of R as $\rho(R)=\sup \left\{\left.\frac{m}{n} \right\rvert\, x_{1} \cdots x_{m}=y_{1} \cdots y_{n}\right.$, where each $x_{i}, y_{j} \in R$ is irreducible $\}$. This concept was introduced by R. Valenza [20]. Thus $1 \leq \rho(R) \leq \infty$, and $\rho(R)=1$ if and only if R is an HFD.

In this paper, we determine some sufficient conditions for an $A+X B[X]$ domain to be an HFD. As a consequence we give new examples of HFDs of the type $A+X B[X]$.

General references for any undefined terminology or notation are [1], [4], [8], and [15]. For an integral domain R, R^{*} is the set of nonzero elements of R and $U(R)$ is its group of units.

Main Results

In [5], [10], [12], and [16], integral domains of the type $A+X B[X]$, where $A \subseteq B$ is an extension of integral domains are studied. In particular, some sufficient conditions

[^0]for $A+X B[X]$ to be an HFD are given. In [5, Theorem 5.3], they showed that if B is a field, then $A+X B[X]$ is an HFD if and only if A is a field. In [12, Theorem 3.4], they showed if A is a field and $B[X]$ is a UFD, then $A+X B[X]$ is an HFD. Also, they asked a question in [12, Question, p. 75]: If $A \subset B$ is an extension of integral domains such that $U(A)=U(B)$, each irreducible element of A is irreducible in B, and B is a UFD, is $A+X B[X]$ an HFD? This question was solved positively in [10, Proposition 5.4] and with weaker sufficient conditions in [16, Proposition 1.8]. In [12, Remark 3.7] and [10, Question, end of Section 5], they ask the following question: Is $A=K+X B[X]$ an HFD when K is a field and $B[X]$ is an HFD? Next, we give a positive answer for this question. To do so, we need the following four lemmas.

Lemma 1 Let R be an integral domain with quotient field K. Let $f, g \in R[X]$. Assume that either the leading coefficient or the coefficient of the term of lowest degree of g is a unit of R and g divides f in $K[X]$. Then g divides f in $R[X]$.

Proof This result follows by comparing coefficients.
The following lemma is well known (see [18, p. 69, Exercise 9.6]).

Lemma 2 Let R be an integrally closed integral domain with quotient field K and let $f \in$ $R[X]$ be a nonconstant. Assume that either the leading coefficient or the constant term of f is a unit of R. Then f is irreducible in $R[X]$ if and only if f is irreducible in $K[X]$.

To prove the following lemma, we need the fact that if $B[X]$ is an HFD, then B is integrally closed [14, Theorem 2.2]. However, in [10, Example 5.5 (b)] they gave an example where $B[X]$ is an HFD, but B is not completely integrally closed.

Lemma 3 Let $R=K+X B[X]$, where $K \subseteq B$, K is a field, and $B[X]$ is an HFD. If $f(X)=$ $X\left(b_{1}+X h_{1}(X)\right) \cdots\left(b_{n}+X h_{n}(X)\right)$, where for each $i=1, \ldots, n, 0 \neq b_{i} \in B-U(B)$, $h_{i}(X) \in B[X]$, and $b_{i}+X h_{i}(X)$ is an irreducible element of $B[X]$, then f is an irreducible element of R.

Proof Suppose that f is not irreducible in R. Then, since K is a field, $f=$ $(1+X g(X)) X m(X)$, where $g(X)$ and $m(X)$ are nonzero elements of $B[X]$. Thus, among irreducible factors of f in $B[X]$, there is an irreducible factor of type $1+X g^{\prime}(X)$, where $g^{\prime}(X) \in B[X]$. By Lemma $2,1+X g^{\prime}(X)$ is irreducible (and so prime) in $L[X]$, where L is the quotient field of B. Since $1+X g^{\prime}(X) \nmid X, 1+X g^{\prime}(X) \mid b_{i}+X h_{i}(X)$ in $L[X]$ for some $1 \leq i \leq n$. It follows from Lemma 1 that $1+X g^{\prime}(X) \mid b_{i}+X h_{i}(X)$ in $B[X]$. Thus $b_{i} \in U(B)$ since $b_{i}+X h_{i}(X)$ is irreducible in $B[X]$, a contradiction. Thus f is irreducible in R.

Lemma 4 ([12, Lemma 3.3]) Let $R=A+X B[X]$, where $A \subseteq B$ is an extension of integral domains such that $U(B) \cap A=U(A)$ and let $f \in R$. If f is irreducible in $B[X]$, then it is irreducible in R.

Now we are ready to answer a question raised in [12, Remark 3.7] and [10, Question, end of Section 5].

Theorem 5 Let $R=K+X B[X]$, where $K \subseteq B$, K is a field, and $B[X]$ is an HFD. Then R is an HFD.

Proof If $0 \neq f \in R$, then $f(X)=X^{r}(b+X h(X))$, where $r \geq 0,0 \neq b \in B$ and $h(X) \in B[X]$.

Case 1 If $r=0$, then $b \in K$. Since K is a field, $b \in U(R)$ and so $f(X)$ is an associate of an element of R of type $1+X h^{\prime}(X)$, where $h^{\prime}(X) \in B[X]$. In this case, the factorization of f as a product of irreducible elements in $B[X]$ is also a factorization of f as a product of irreducible elements in R. Indeed, any irreducible factor of f is of type $1+X h_{i}(X)$, and so an irreducible element of R ($c f$. Lemma 4).

Case 2 If $r \neq 0$ and $b \in U(B)$, then $f=(b X) X^{r-1}\left(1+X h^{\prime}(X)\right)$ for some $h^{\prime}(X) \in B[X]$. Since $b X$ and X are irreducible elements of R, decomposing the factor $1+X h^{\prime}(X)$ in $B[X]$, we get also, in this case, that f is a product of irreducible elements of R.

Case 3 If $r \neq 0$ and $b \in B-U(B)$, then consider the factorization of f into irreducible elements of $B[X]: f(X)=X^{r}(b+X h(X))=u X^{r}\left(b_{1}+X h_{1}(X)\right) \cdots\left(b_{n}+X h_{n}(X)\right)$, where $u \in U(B)$, each $b_{i} \in B$ (at least one b_{j} is a nonunit) and each $h_{i}(X) \in B[X]$. Since the factors $b_{i}+X h_{i}(X)$ with $b_{i} \in U(B)$ are associates (in $\left.B[X]\right)$ of elements of type $1+X h_{i}^{\prime}(X)$ for some $h_{i}^{\prime}(X) \in B[X]$, we get $f(X)=v X^{r}\left(b_{1}+X h_{1}(X)\right) \cdots\left(b_{k}+X h_{k}(X)\right)\left(1+X h_{1}^{\prime}(X)\right) \cdots$ $\left(1+X h_{s}^{\prime}(X)\right)$, where $v \in U(B), b_{1}, \ldots, b_{k} \in B-U(B)$ and all the factors are irreducible elements in $B[X]$. It follows from Lemma 3 that $X\left(b_{1}+X h_{1}(X)\right) \cdots\left(b_{k}+X h_{k}(X)\right)$ is an irreducible element of R. Thus f is a product of $r+s$ irreducible elements of R.

Thus the three cases show that R is atomic (cf. [12, Proposition 2.1]). To prove that R is an HFD, we have to show that if $f \in R$ has the following factorization into irreducible elements of $B[X]: f(X)=u X^{r}\left(b_{1}+X f_{1}(X)\right) \cdots\left(b_{k}+X f_{k}(X)\right)\left(1+X g_{1}(X)\right) \cdots\left(1+X g_{s}(X)\right)$, where $u \in U(B)$, each $b_{i} \in B-U(B)$, and each $f_{i}(X), g_{i}(X) \in B[X]$, then any factorization of f into irreducible elements of R has $s+r$ factors.

Indeed, let $f(X)=\left(a_{1}+X h_{1}(X)\right) \cdots\left(a_{n}+X h_{n}(X)\right)$ be another factorization of f into irreducible elements of R. Note that if $a_{i}=0$, then $X h_{i}(X)$ is not divisible (in $B[X]$) by any factor $1+X g_{j}(X)$.

Claim Each factor $1+X g_{i}(X)$, where $1 \leq i \leq s$, is an associate (in R) of an element $a_{j}+X h_{j}(X)$ with $a_{j} \neq 0$.

Proof of claim Since each $1+X g_{i}(X)$ is irreducible in $B[X]$, it is irreducible (and so prime) in $L[X]$ by Lemma 2, where L is the quotient field of B. Since $1+X g_{i}(X) \nmid X h_{k}(X), 1+X g_{i}(X)$ divides (in $L[X]$) an element $a_{j}+X h_{j}(X)$ with $a_{j} \neq 0$. Thus $1+X g_{i}(X)$ divides in $B[X]$ the element $a_{j}+X h_{j}(X)$ by Lemma 1. Write $a_{j}+X h_{j}(X)=\left(1+X g_{i}(X)\right) h(X)$ for some $h(X) \in B[X]$. Note that $h(X) \in R$. The fact that $a_{j}+X h_{j}(X)$ is an irreducible element of R forces $h(X) \in U(R)$.

Thus the number of indices such that $a_{i} \neq 0$ is exactly s. So the factorization of f into irreducible elements of R is: $f(X)=a\left(1+X h_{1}^{\prime}(X)\right) \cdots\left(1+X h_{s}^{\prime}(X)\right)\left(X h_{1}(X)\right) \cdots$ $\left(X h_{n-s}(X)\right)$, where $a \in K^{*}$ and each $h_{i}^{\prime}(X), h_{j}(X) \in B[X]$. Furthermore, since the factors
$X h_{j}(X)$ are irreducible elements of R, the polynomials $h_{j}(X)$ are not divisible by X (in $B[X])$. Since X^{r} divides f in $B[X]$ and X^{r+1} does not divide f in $B[X]$, we get that $n-s=r$, and so $n=r+s$, as we desired.

Example 6 Let $B=K\left[Y^{2}, Y Z, Z^{2}\right]$, where K is a field. Then B is a two-dimensional Noetherian Krull domain with $|\mathrm{Cl}(B)|=2$ [1, Example 3.4]. Thus B (and hence $B[X]$) is not a UFD. Note that, for a Krull domain $D, D[X]$ is an HFD if and only if $|\mathrm{Cl}(D)| \leq 2$ [21, Theorem 2.4]. Thus $B[X]$ is an HFD which is not a UFD. Let $R=K+X B[X]$. Then R is an HFD by Theorem 5 .

Corollary 7 Let A be an integral domain with quotient field K and let B be an extension of A such that $K \subseteq B$ and $B[X]$ is an HFD. Then $A+X B[X]$ is an HFD if and only if A is a field.

Proof This follows from Theorem 5 and the remarks after [5, Theorem 5.3].
Question 8 Let $R=K+X B[X]$, where $K \subseteq B$, and K is a field. Is $B[X]$ an HFD if R is an HFD?

Remark 9 In [12, Example 3.7], they observed that even if A and $B[X]$ are HFDs, the domain $A+X B[X]$ need not be an HFD. For example, let $A=\mathbf{Z}$ and $B=\mathbf{Z}[\sqrt{-5}]$. Then A is a UFD, $B[X]$ is an HFD, but $A+X B[X]$ is not an HFD. While, in [16, Example 3.7 (b)], there is an example such that A and B are HFDs, but not UFDs, and $A+X B[X]$ is also an HFD. For example, take $A=\mathbf{Z}[\sqrt{85}]$ and $B=\mathbf{Z}\left[\frac{1+\sqrt{85}}{2}\right]$.

In [6, Definition 2.1], they defined a splitting multiplicatively closed set as follows: Let R be an integral domain. A saturated multiplicatively closed subset S of R is said to be a splitting set if for each $0 \neq r \in R$, we can write r as the product $r=s a$ for some $s \in S$ and $a \in R$ with $s^{\prime} R \cap a R=s^{\prime} a R$ for all $s^{\prime} \in S$.

For S any multiplicatively closed subset of R, let $T=\{0 \neq t \in R \mid s R \cap t R=s t R$ for all $s \in S\}$. It is easily proved that T is a saturated multiplicatively closed subset of R. Thus S is a splitting set if and only if $S T=R-\{0\}$. Hence if S is a splitting set of R, each nonzero element $r \in R$ may be written in the form $r=s t$ for some $s \in S$ and $t \in T$, and this factorization is unique up to unit factors. The set T is called the complementary multiplicatively closed set for S (or m-complement for S). Note that T is also a splitting set with S for its m-complement. Several conditions equivalent to S being a splitting set are given in [6, Theorem 2.2].

Note that the following theorem generalizes [10, Proposition 5.4], but its proof is essentially the same as in [10, Proposition 5.4]. For completeness we will give a proof.

Theorem 10 Let $A \subseteq B$ be an extension of integral domains such that $U(A)=U(B), A$ is a $U F D, B[X]$ is an HFD, and each prime element in A is a prime of B. Then $R=A+X B[X]$ is an HFD.

Proof Let p be a prime of A. By hypothesis, p is prime in B, and hence also in $B[X]$. Note that $p B \cap A=p A$. For if $p b=a \in A$, then some prime factor of a in A must be an associate of p in B, and hence in A since $U(A)=U(B)$. Thus $p R=p B[X] \cap R$, and so p is also prime
in R. Hence by [7, Corollary 1.7], $S=A-\{0\}$ is a splitting multiplicative set of R (resp., $B[X]$) generated by principal primes since R satisfies ACCP by [10, Corollary 1.3] (resp., $B[X]$ is an HFD). Thus $R_{S}=q f(A)+X B_{S}[X]$ is an HFD by Theorem 5 since $B_{S}[X]=$ $(B[X])_{S}$ is an HFD [7, Corollary 2.5], and hence R is an HFD by [7, Theorem 3.3].

Example 11 Let A be a UFD, and let X, Y, Z be indeterminates. Then $B=A\left[Y^{2}, Y Z, Z^{2}\right]$ is a Krull domain with $\mathrm{Cl}(B) \cong \mathbf{Z} / 2 \mathbf{Z}$, and hence an HFD by [21, Theorem 1.4]. Thus $R=A+X A\left[Y^{2}, Y Z, Z^{2}\right][X]$ is an HFD by Theorem 10. In particular, $\mathbf{Z}+X \mathbf{Z}\left[Y^{2}, Y Z, Z^{2}\right][X]$ is an HFD.

The following definition is due to D. D. Anderson et al. in [6, Example 4.8]. Note that the condition (1) of the following definition was used (with the name C_{2}^{*}) in [16] to study elasticity of $A+X B[X]$ domains.

Definition 12 Let $A \subseteq B$ be an extension of integral domains. We say that this extension satisfies (*) if for $0 \neq b \in B$ (1) $b=a u$, where $a \in A$ and $u \in U(B)$, and (2) $b=a u=a^{\prime} u^{\prime}$ $\left(a, a^{\prime} \in A, u, u^{\prime} \in U(B)\right)$ implies that $\frac{u}{u^{\prime}} \in U(A)$.

Note that the extension $A \subseteq B$ satisfies $(*)$ precisely when the map $P_{+}(A) \rightarrow P_{+}(B)$ given by $A x \mapsto B x$ is an isomorphism or, equivalently, when $P(A) \rightarrow P(B)$ is an orderisomorphism. Also note that if the extension $A \subseteq B$ satisfies ($*$), then $U(B) \cap A=U(A)$ and A is an HFD if and only if B is an HFD (cf. [16, Proposition 2.7]).

The following extensions of integral domains satisfy ($*$) [6, Example 4.8].
(1) $A \subseteq A$.
(2) $K \subseteq L$, where K and L are fields. (Note that if $A \subseteq B$ satisfies (*) and A or B is a field, then so is the other.)
(3) $A \subseteq \hat{A}$, where \hat{A} is the completion of A for A a quasi-complete local integral domain (that is, the map $J \mapsto J \hat{A}$ is a lattice isomorphism).
(4) $A \subseteq A\left(\left\{Y_{\alpha}\right\}\right)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in A\left[\left\{Y_{\alpha}\right\}\right], C(g)=A\right\}$, where A is a Bézout domain.

Our final result is a special case of [16, Proposition 2.7]. However, the proofs are very different.

Theorem 13 Let $A \subseteq B$ be an extension of integral domains satisfying (*). Let $R=A+$ $X B[X]$. Then R is an HFD if and only if $B[X]$ is an HFD.

Proof Suppose that $B[X]$ is an HFD. Then clearly B satisfies ACCP. Since $U(B) \cap A=U(A)$, R satisfies ACCP [12, Proposition 1.2], and hence R is atomic. Now we will show that $\rho(R)=1$. Let $S=\left\{u X^{n} \mid u \in U(A)\right.$ for $n=0$ and $u \in U(B)$ for $\left.n \geq 1\right\}$. Then S is a saturated multiplicatively closed subset of R. In fact, S is a saturation of $\left\{X^{n}\right\}_{n=0}^{\infty}$. Let $T=\{f(X) \in R \mid f(0) \neq 0\}$. Clearly T is a saturated multiplicatively closed set of R. Now by the condition (1) of Definition 12, ST $=R^{*}$. By the condition (2) of Definition 12, this representation is unique up to a unit factor. Hence S is a splitting multiplicatively closed set with m-complement T. Then $R_{S}=B\left[X, X^{-1}\right]=B[X]_{X}$ is an HFD [7, Corollary 2.5] since $B[X]$ is an HFD. Note that $R_{T}=(K+X L[X])_{T^{\prime}}$ by (1) of Definition 12, where K (resp., L) is quotient field of A (resp., B) and $T^{\prime}=\{f(X) \in K+X L[X] \mid f(0) \neq 0\}$. Thus R_{T} is atomic [7, Theorem 2.1] since $K+X L[X]$ is atomic [4, Proposition 3.1] and
T^{\prime} is a splitting set. Now we show that R_{T} is an HFD. Note that $D=K+X L[X]$ is an HFD [5, Theorem 5.3]. Set $S^{\prime}=\left\{u X^{n} \mid u \in K^{*}\right.$ for $n=0$ and $u \in L^{*}$ for $\left.n \geq 1\right\}$. Since the pair $K \subseteq L$ satisfies $(*)$, applying the same argument as above, S^{\prime} is a splitting multiplicatively closed subset of D with m-complement T^{\prime}. Since $1=\rho(D) \geq \rho\left(D_{T^{\prime}}\right) \geq 1$ by $\left[11\right.$, Theorem 2.3(1)], $\rho\left(R_{T}\right)=\rho\left(D_{T^{\prime}}\right)=1$. Thus $\rho(R)=\max \left\{\rho\left(R_{S}\right), \rho\left(R_{T}\right)\right\}=1$ by [11, Theorem 2.3 (2)]. Hence R is an HFD. Conversely, suppose that R is an HFD. Let S be as above. Then $R_{S}=B\left[X, X^{-1}\right]=B[X]_{X}$. Thus R_{S} is atomic by [7, Theorem 2.1] and so $B[X]$ is atomic by [7, Theorem 3.1]. Now we have $1=\rho(R) \geq \rho\left(R_{S}\right)=\rho\left(B[X]_{X}\right) \geq 1$ by [11, Theorem 2.3 (1)]. Thus $\rho\left(B[X]_{X}\right)=1$, and hence $B[X]_{X}$ is an HFD since it is atomic [7, Theorem 2.1]. Thus by [7, Theorem 3.3] $B[X]$ is an HFD.

Acknowledgement It is a pleasure for me to thank my thesis advisor, David F. Anderson, for his support and guidance during this project.

References

[1] D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains. J. Pure Appl. Algebra 80(1992), 217-235.
[2] , Elasticity of factorizations in integral domains, II. Houston J. Math. (1) 20(1994), 1-15.
[3] D. D. Anderson, D. F. Anderson, S. T. Chapman and W. W. Smith, Rational elasticity of factorizations in Krull domains. Proc. Amer. Math. Soc. (1) 117(1993), 37-43.
[4] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains. J. Pure Appl. Algebra 69(1990), 1-19.
[5] Rings between $D[X]$ and $K[X]$. Houston Math. J. 17(1991), 109-129.
[6] \longrightarrow, Splitting the t-class group. J. Pure Appl. Algebra 74(1991), 17-37.
[7] , Factorization in integral domains, II. J. Algebra 152(1992), 78-93.
[8] D. F. Anderson, Elasticity of factorizations in integral domains, a survey. Lecture Notes in Pure and Appl. Math. 189, Dekker, New York, 1997, 1-29.
[9] D. F. Anderson, S.T. Chapman and W.W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group. J. Pure Appl. Algebra 96(1994), 97-112.
[10] D. F. Anderson and D. Nour El Abidine, Factorization in integral domains, III. J. Pure Appl. Algebra, to appear.
[11] D. F. Anderson, J. Park, G. Kim and H. Oh, Splitting multiplicative sets and elasticity. Comm. Algebra 26(1998), 1257-1276.
[12] V. Barucci, L. Izelgue and S. Kabbaj, Some factorization properties of $A+X B[X]$ domains. Lecture Notes in Pure and Appl. Math. 185, Dekker, New York, 1997, 69-78.
[13] P. M. Cohn, Bézout rings and their subrings. Math. Proc. Cambridge Philos. Soc. 64(1968), 251-264.
[14] J. Coykendall, A characterization of polynomial rings with the half-factorial property. Lecture Notes in Pure and Appl. Math. 189, Dekker, New York, 1997, 291-294.
[15] R. Gilmer, Multiplicative Ideal Theory. Dekker, New York, 1972.
$[16]$ N. Gonzalez, Elasticity of $A+X B[X]$ domains. J. Pure Appl. Algebra, to appear.
[17] A. Grams, Atomic domains and the ascending chain condition for principal ideals. Math. Proc. Cambridge Philos. Soc. 75(1974), 321-329.
[18] H. Matsumura, Commutative ring theory. Cambridge Stud. Adv. Math. 8, 1990.
[19] J. L. Steffan, Longueurs des décompositions en produits d'éléments irréductibles dans un anneau de Dedekind. J. Algebra 102(1986), 229-236.
[20] R. J. Valenza, Elasticity of factorizations in number fields. J. Number Theory 36(1990), 212-218.
[21] A. Zaks, Half-factorial domains. Bull. Amer. Math. Soc. 82(1976), 721-724.
[22] \longrightarrow, Half-factorial domains. Israel J. Math. 37(1980), 281-302.

```
Department of Mathematics
The University of Tennessee at Knoxville
Knoxville, TN 37996-1300
USA
email: hwankoo@utkux.utcc.utk.edu
```


[^0]: Received by the editors July 29, 1998.
 AMS subject classification: 13A05, 13B30, 13F15, 13G05.
 Keywords: atomic domain, HFD.
 (c)Canadian Mathematical Society 2000.

