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Abstract

Newton's method is applied to an operator that satisfies stronger conditions than those of
Kantorovich. Convergence and error estimates are compared in the two situations. As
an application, we obtain information on the existence and uniqueness of a solution for
differential and integral equations.

1. Introduction

Consider the equation

F{x) = 0, (1)

where F is a nonlinear operator between two Banach spaces X and Y. Newton's
well-known method

xn+i =xn- F'{xn)-lF(xn), n > 0, (2)

allows us to find a solution of (1) or, at least, to obtain information on the existence
and uniqueness of such a solution. Working in Banach spaces also allows us to apply
our results to different problems such as scalar equations, differential equations or
integral equations.

In [3] the convergence of Newton's method is studied under stronger conditions
than those of Kantorovich ([6, 7, 9]). When these hold, the results on the existence
and uniqueness of the solution of (1) are different to those of Kantorovich and are
sometimes better, as we show later. In this paper we apply these results to the case
of differential and integral equations. Finally, a method is developed to find regions
where the solution is located and where it is unique.

1 Department of Mathematics and Computation, University of La Rioja, C/ Luis de Ulloa s/n, 26004,
Logrono, Spain.
© Australian Mathematical Society 2001, Serial-fee code 0334-2700/01

372

https://doi.org/10.1017/S1446181100012001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012001


[2] An application of Newton's method 373

2. Newton's method under strong-type Kantorovich conditions

From now on, we assume that the operator F defined in (1) is twice Frechet
differentiable in

J20 = B(x0, r0) = {x eX; \\x -xo\\ < r0]

(let B(x0, rQ) be the respective open ball). Let us assume too that there exists Fo =
F'(xo)~

l € Jgf (Y, X) (the space of bounded linear operators from Y to X) and that F"
satisfies the Lipschitz condition

\\ro[F"(x)-F"(xo)]\\<k\\x-xo\\, x€Q0. (3)

Most authors study the sequence (2) under the so-called Kantorovich conditions,
that is,

(II) lroF"(x)\\<
(IH) aM < 1/2 and

M - r o '

or even slightly weaker conditions. In [1,11] and [13], condition (II) is relaxed to
(HO | r o [F '0i) - F'(y)]|| < M\\x - y\\,x,y € £2O,

or to
(H") \\ro[F'(x) - F'(y)]\\ <M\\x- yW>,x, y 6 Q0,P € [0,1].

The next theorem guarantees the convergence of Newton's method under stronger
conditions. The details of the proof can be seen in [3], where the majorizing function
that helps us to prove the convergence of (2) is established. In this case that function
is a third-degree polynomial, instead of the classic second-degree polynomial given
by Kantorovich. Results on uniqueness of solution and error estimates are also given.

THEOREM 2.1. Let us assume that F satisfies

|roF(;co)||<a, \\r0F"(xo)\\ < b

and (3). Let us suppose too that the polynomial

p (t) = (k/6)t3 + (b/2)t2 -t + a (4)

has two positive mots rt < r-i, that is, p(m) < 0, where

2
m =
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374 J.M. Gutierrez and M. A. Hernindez [3]

Then, ifr\ < TQ, the sequence [xtt] defined in (2) converges to x*, the solution of(l)
in B(x0, ri). Further, the solution is unique in B(x0, r2)for r\ < r2orin B(x0, r{)for
n = r2. Finally, if {tn) denotes the sequence of iterates in Newton's method to solve
p (t) = 0, starting at to = 0, we have

\\x*-xn\\<ri-tn.

Ifrt< r2, we have the error estimates

. a2"
<ri-ttt< (r2 -

depending on the roots ofp, where —r3 is the negative root ofp, and

r3 - r, r3 + r,

r < l 0<6 R < 1
r2

Ifrl = r2, then

2r3-rJ 5r i-'"-2'.-

PROOF. Here we give only a sketch of the proof. For details, see [3]. For each
x € X, the linear operator on X defined by

LF(x) = F'(xy1F"(x)F\x)-lF(x) : X - • X

is the derivative of the operator

G(x)=x-F'(x)-1F(x)

that defines Newton's method [4].
Under the previous assumptions it can be shown that

where x e [xn,xn+i], t € [tn, tn+1] are such that x = xn + r(xn+1 - xa), t = tB

*(tn+\ — tn).
Observe that the expression on the right-hand side of the equation above is

L (,) = PWP"M

where p is the polynomial defined in (4).
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So, we have for n e. N,

375

-xn\\ = \\G(xtt)-G(xn-l)\\ = \LLF(x)dx

Therefore {*„} is a majorizing sequence of {*„} and the classic theory on majorizing
sequences ([6,10]) allows us to conclude the result To obtain the error expresions for
the sequence {(„} we use the technique developed by Ostrowski [7] for a second-degree
polynomial.

REMARKS. An equivalent condition to p (m) < 0 is (see [14])

a <

In [5] it was stated that p (m) < 0 holds provided that one of the conditions:

2b oo3

or

9a2*2 + \Zabk < 3b2 + 8*

30k2 + 3bk + b3< [b2 + 2k]3'2 (5)

is satisfied.
• We can give a similar result to Theorem 2.1 (see [3]) assuming, instead of (3),

|ro[F"(;c) - F"(*o)]|| < k\\x -xo\\
p, x e Qo, p > 0.

In this case the function "test" that allows us to prove convergence is

The following example [S] contains a function and a starting point that do not
satisfy the Kantorovich conditions but do, however, satisfy the conditions of the
previous theorem. The convergence of the sequence (2) cannot then be established
from the Kantorovich theorem but can be established from Theorem 2.1.

EXAMPLE 1. Let X = [-1,1], Y = U. and le t / : X -»• Y be the polynomial
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FIGURE 1. Location of the roots of p and q.

with JC0 = 0.

With the notation of Theorem 2.1 we have a = 2/5, M — 8/5, b = 2/5 and
k = 6/5. Consequently, aM = 16/25 > 1/2 and the Kantorovich condition fails.

However,

3a*2 + 3bk + 9 = ̂ g < | | =

so (5) is fulfilled, p(t) has two positive roots and we can use Theorem 2.1 to prove
the convergence of Newton's method.

Sometimes the convergence of (2) can be established using either the Kantorovich
theorem or Theorem 2.1. Then we wonder which result gives us the most accurate
information about the solutions of (1). Under the assumptions of Theorem 2.1 we
may determine the solutions of (1) in terms of the roots of the polynomial (3). Under
the Kantorovich assumptions the information is obtained from the polynomial

Let us denote by fx < r2 the roots of q. Then

Observe that

(6)

7 = 1 , 2 .

p(r!)<0 <=* k (l - VI - 2aM} < 3M(M - b),

P(r2)<0 «=» A: ( l + Vl - 2aA/) < 3M(M - b).

We consider three distinct situations (see Figure 1):

Case 1. Suppose k (1 + VI - 2aM) < 3M(M - b). Then rx < ru r2 < r2 and,
consequently, the solution x* is located in B(XQ, r{) and is unique in B(xo, r2).
Case 2. Suppose k (l - VI - 2aM) < 3M(Af - b) < k (l + Vl - 2aM). In this
situation r\ < fu r2 < r2, and the solution x* is located in B(x0, n) and is unique in
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Case 3. Suppose 3M(M - b) < k (l - VI - 2aM). Now we have rt < ru r2 < f2,
thus x* is located in B(x0, h) and is unique in B(x0, f2).

3. Application to differential and integral equations

Now we are going to study some differential and integral equations applying the
results of the previous section. In particular, we obtain results on the existence and
uniqueness of solutions for these equations.

In this way let us consider, for instance, the Banach space X of functions differen-
tiable in [0, T] and vanishing at t = 0, where

X = {y € Cl[0, T] ; v(0) = 0}

and is equipped with the norm

||v|| = max |y(01 +A max
»€[O,rJ J€[0,T]

where X > 0 is a coefficient to be determined later.
We are going to study the differential equation

(y(0) = 0.

Suppose 4>(t,u) is continuous and has a continuous second derivative in u in the region

0 < t < T, \u- yQ(t)\ <&, y0 € X.

Let £2 = {y € X; \\y - yo\\ < S) and let F : Q c X -* C[0, T] be the operator
defined by

The problem of solving (7) is equivalent to finding a solution of F(y) — 0.
For yo € £2, we have

F'(y0)y(0 = / ( / ) - # ( r , yo(O)y (0,

= -4%{tt yo(t))x(t)y(t),

forx.y € £2.
Put Fo = F'Cyo)"1. Our goal is to find an upper bound for ||ro||. In order to do

that, let x = ro(y). Then x is a solution of the differential equation

https://doi.org/10.1017/S1446181100012001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012001


378 J. M. Gutierrez and M. A. Hemindez [7]

that is, by [2] and [12],

Xit) =

where rfr(.t) = exp (/„' #,(*, yo(s)) ds).
Notice that

min,e[o,T]

and

max |x'(0l < max |#(f, yo(t))\ max |x(0l + By II <
f€[O,rJ <6[0,T] »6[0,r]

where

min,e[0,T]

Consequently,

min,€t0,t,

This bound enables us to apply Theorem 2.1 and obtain information on the existence
and uniqueness of solutions for (7).

THEOREM 3.1. Let y0 € Q satisfy

(i) |y£(0 - 4>(f, yo(t))\ <a',te [0, r ] ,
(ii) l01(r,

(iii) |*£(r,
( iv) | ^ ( r , « ) - ^ ( * , w)| < if In - v\,t € [0, T ] , |u - yo(t)\ <S,\v- yo(t)\ < S.

Put 0, = re2™', 02 = 1 + M^, , B = 0i + X02, a = a'fl, b = b'B andk = k'B. If
the polynomial

p(t) = (k/6) t3 + (i/2) f2 - r + a

has two positive mots rx < r2 and m < 8 (where m is the minimum of p), the
differential equation (7) has a solution y* defined in [0, T]. Further

\y\t)-yo(t)\<ru f e [ 0 , r ]

and the solution is unique in \\u — yo|| < ri-

PROOF. Observe that

max |^(f) | < e™\ min |i^W| > e'™1
|^()| \

f6[0,i] f€[0,r)
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and, from (8), ||ro|| <9i+X&2 = B. Then

l|roF(xo)||<||ro||||F(xo)||<£a' = a
and, in a similar way,

|lroF"(xo)|| < b, | r 0 [F"(y) - F"(yo)]\\ < k\\y - yo\\.

So the result follows from Theorem 2.1.

Notice that if we take B = 6\ and the polynomial p has two different positive roots,
then we can guarantee the existence of a solution for (7) by taking A small enough.

We now consider the problem of applying Newton's method to an integral equation

x(s) = f K(s, t, x(0) dt, s 6 [0,1], (9)
Jo

where the kernel K(s, t, u) is continuous in all its arguments and has continuous
derivatives of all orders required. In the function space X we introduce the operator
F such that F(x) = y, where

y(s)=x(s)- I K{s,t,x{t))dt.
Jo

We study the equation F(x) = 0. Let x0 be the initial approximation. Assume that X
and K are such that F'(x0) can be obtained by differentiating under the integral sign,
that is, that z = F'(xo)x means that

z(s) =x(s) - I K'u{s, t,xo(t))x(t)dt. (10)
Jo

It is well-known ([6, 8]), that To = F'(xoy
l has the form w = ro(y), where

w(s) = y(s) + I G(s,t)y(t)dt,
Jo

and G(s, t) is the resolvent of (10) for the kernel K(s, t) = K'u(s, t, xo(t)). Then, if

f \G(s,t)\dt<B', 5 €[0,1],
Jo

we have || ro|| < \ + B' = B.
From this bound and taking Theorem 2.1 into account, we can establish results on

the existence and uniqueness of a solution for (9).

THEOREM 3.2. Suppose K is continuous in all its arguments and has continuous
derivatives of all orders required and assume that
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(i) | fi K(s, t, * 0 ( 0 ) dt - xo(s) \<a',se [0 ,1] ,
(ii) j / ; K'^{s, t,*0(0)dt\ <V,se [0,1],

(iii) I fo[K'^(s, t, u) - K'^(s, t, v)]dt\ < K\u - w|, fors.uandvsatisfyings €
[0, 1], \u-xo(s)\ < S, \v -xo(s)\ < S.

Leta = a'B, b = b'B and k = KB. If the polynomial

p(t) = (*/6) t3 + (fe/2) t2 - t + a

has two positive roots n < r2 andifm < S (where m is the minimum ofp), then the
integral equation (9) has a solution x* defined in [0,1]. Moreover,

|x*(0-*o(O|<r,, re [0,1]

and the solution is unique in {u e X; \\u — yo\\ < r2).

EXAMPLE 2. Let us illustrate the above theorem with an example. Consider the
initial value problem

\y(0) = 0.

Solving such a problem is equivalent to finding a solution of the equation F : X -*•
C[0,1], where X = {y € C![0,1]; v(0) = 0} and

We define a norm in X by setting

|y(0l + |y()|,
'€[0,1] f€[0,l]

where A. > 0 will be determined later, and we consider the max-norm in the
space C[0,1].

Taking yo(t) = 0 as an initial approximation, it follows that there exists Fo =
F'(xo)-\ defined by

Toy(t) = e' ! e-sy(s)ds.
Jo

Then

| | roF(yo) | = max B/+ 1 - e'\\ + Amax 111 - e'\\ =e-2
11 " »€[0,l] " " re[O,l] « I'

and

\\roF"(y0)\\=O = b.
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Finally, for y e X, we have

\\r0F"(y)l<e-l+ke = M,

Ir0 [F"(y) - F"(y0)] | < (e - 1 + ke)\\y -yo\\

and therefore k = e — 1 + ke. Let Oo, bo, Af0 and ô be the limits when k —• 0 of a,
b, M and £ respectively, that is,

Oo = e - 2, 6o = O, M0 = k0 = e-l.

Analysing the polynomials

we see that q0 has no positive roots (and the polynomial q arising from the Kantorovich
theorem has none either) but, nevertheless, p0 has positive roots. We can write the
polynomial p defined in (4) in the form

U + M.

Then taking A. small enough, we can affirm that p has two positive roots close to the
roots of pQ: /i = 1.0465, r2 = 1.111. So we can guarantee that the initial value
problem (11) has a solution y* defined in [0,1] and satisfying

\y*(t) - yo(t)\ < ru / e [ 0 , i ] .

Further, the solution is unique in {u € X; \\u — yo\\ < r2).

4. Other consequences

In this section we analyse some consequences of Theorem 2.1. First, let us suppose,
instead of the existence of Fo, the existence of an operator close to Fo.

THEOREM 4.1. Suppose there exists a linear operator T € ££(Y, X) having a
continuous inverse, and suppose the following conditions are satisfied:

(1) \\TF{xQ)\\<a',
(2) ||rF'(*o)-/||<c<l,
(3) ||rF"0co)|| < V,
(4) ||r[F"(;c) - F"(xo)]\\ < k!\\x - xQ\\, x € £20-
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Then, provided that the polynomial

| r 3 + | r 2 - ( l - c ) r + a' (12)

has two positive roots, r[ < r^ and r[ < r0, (1) has a solution x* e B(x0, r\) and this
solution is unique in B(x0, r£) ifr[ < r£ or in B(x0, rj) ifr[ = r£.

PROOF. From (3) and taking into account Banach's theorem on the existence of
inverse operators (see [6]), we have that there exists U = [FF'Oco)]"1 and that

Hi/ll = ([r/^cxo)]"1! < YZT^-
So there exists To = F'Oco)"1 = UT and therefore

- 1 - c '

= II UTF"(

Finally, for x € X,

| |r0 [F"(x) - F"(.xo)]\\ = IUT [F"(x) - F"(xo)]\\ < j ^ \\x -xo\\.

The result follows from applying Theorem 2.1 to the polynomial
f 3 V 2_ a'

6(1 - c ) ' + 2 ( l - c ) ' t + \-c

or, equivalently, the polynomial given by (12).

Sometimes we can replace the given equation F(x) = 0 by a simpler equation that
is close to it, and is, in general, easier to solve. Following Kantorovich [6] we obtain
conditions under which it is possible to judge the solubility of the given equation from
a solution of the approximate equation in the form

F(x) = n(x) + fMR(x) = O, (13)

where (JL is a linear operator belonging to Jf{Y, X). In particular, fi may be a numerical
coefficient.

Let x0 be a solution of the simplified equation U(x) = 0. We have that x0 may be
a good choice as an initial approximation to a solution of (13).

COROLLARY 4.2. Suppose that

(1) n0c o )=O,
(2) There exists T = W(x0)-

1 and \\r\\ < B,
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(3) \\R(xo)\\<r),\\R'(x0)\\<a,
(4) ||irc*0)ll<A. ll*"(*o)ll < ft,
(5) »n"(x) - n"(jco)|| < Kill* -y\\, \\R"(x) - R"(XO)\\ < K2\\X - * O | | . X e fl*

Then, provided that ||/x||Bar < 1 and the polynomial

/KM positive roots r(' < fj', (13) /IOJ a solution x* e S(xo, /^'), <w^ *Aw solution is
unique in B(x0, < ) ifr" < ^' or in B(x0, r|') i/r|' = /̂ '.

PROOF. The results follow immediately from taking r = rTfo)"1 in Theorem 4.1.

As an application we study an integral equation in the form

"jfx(t)= / K(s,t,x(s))ds, (14)
Jo

where the kernel K(s,t, u) is continuous in all its arguments and has continuous
derivatives of all orders required.

To find an initial approximation x0 close enough to the solution, let us consider,
instead of the kernel K(s, t, u), a simpler kernel in the form

m

H(s, t, u) = /jAi(s, u)wk(t),
k=l

where {w*)Lia r e linearly independent functions. The solution of an integral equation

x(t)= / H(s,t,x(s))ds
Jo

arising from this kind of kernel (a degenerate kernel) is (see [8])

where Ak, k = 1 , . . . , m, are solutions of the system

M *iO / m \

Aj = I hj (s, xo(s)) ds= hj ( s, Y ] Akwt(s) ) ds, j = 1 m.
Jo Jo \ *£l )

Consider xQ so obtained as the initial approximation to (14). Finding a solution
of (14) is equivalent to solving
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where

= x(t) - f H(s,t,x(s))ds,
Jo

R(x)(t) = / [H(s, t,x(s)) - K(s, t,x(s))]ds, n = 1.
Jo

Then if the conditions of Corollary 4.2 are satisfied, we obtain information on the
existence and uniqueness of a solution for (14). Let us illustrate these comments with
an example.

EXAMPLE 3. Let X = C[0,1] be equipped with the max-norm. Consider the
integral equation

x(t) = l - - t + I stsinx(s)ds, 0 < t < 1, x € C[0,1]. (15)
o Jo

In this case K(s, i, u) = st sin u. Let us take as approximate kernel

H(s, t, u) = stu.

We choose as initial approximation of (15) the solution of the integral equation

7 fl If1

= \ - - t + I H(s,t,x(s))ds = l - - t + stx(s)ds,
o Jo 6 Jo

that is,

xo(t) = \ — t, 0 < r < 1.

To find Fl'^o)"1 we solve the integral equation

[
Jo

which has the solution

H'(s,t,xo(s))x(s)ds=f(t)+ f stx(s)ds,
Jo

l f
*• Jo
l f stf(s)ds.
*• Jo

So T = n'(^o)"' is defined by

r>(0 = y(0 + | f stf (s) ds, y e C[0, 1].
*• Jo
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In this situation, we have

385

HI! < 7/4 = B,

,t,xo(s)-K(s,t,xo(s))]ds

r1 rl s* i
</ st\l-s-sin(l-s)\ds< ~7ds = —.

Jo Jo o 30
Then

\\R(xo)\\<l/3O = r,,

x0(s)-K'(s,t,x0(s))]ds\R'(x0Kt)\= f [H'u(s,t,
Jo

< I st\l-cos(l-s)\ds< - f s(l-s)2ds = ^-
Jo 2 Jo 24

and therefore

With the notation of Corollary 4.2, it is easy to check that Pi = K\ = 0. Further,

{s, t,xo(s) - K'^s, t,xo(s))]ds= I j
= / st sin(l — s) ds < I s(l — s)ds = -

Jo Jo o

and fo = 1/6. Finally, applying the mean-value theorem, we deduce that K2 = 1/2.

On the other hand, if we consider the Kantorovich conditions, we have to obtain an
upper bound for R"(u), for all u in the function space considered:

\R"(u)(t)\= / stsinu(s)ds
Jo

So we can obtain information on the solution of (15) by analysing the roots of the
polynomials defined in (4) and (6). In this case they are

89

89

The polynomial p has two positive roots: rt = 0.0636 and r2 = 2.0318. The roots of
q are r, = 0.0645 and r2 = 2.0541. Notice that Case 2 in Section 1 holds and (15)
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has a solution x* € C[0,1] satisfying

\x*(t)-xo(t)\<ru t€[0,\l

Furthermore, this solution is unique in {« e X; \\u — yo\\ < r2}.
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