
JFP 29, e1, 10 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796818000230

PhD Abstracts

G R A H A M H U T T O N
University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish nine abstracts in this round and hope that JFP readers will
find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000230
mailto:graham.hutton@nottingham.ac.uk
https://doi.org/10.1017/S0956796818000230


2 G. Hutton

Functional Abstraction for Programming Multi-Level Architectures:
Formalisation and Implementation

VICTOR ALLOMBERT
Université Paris-Est, France

Date: July 2017; Advisor: Frédéric Gava and Julien Tesson
URL: https://tinyurl.com/ybvp8b5x

From personal computers using an increasing number of cores, to supercomputers
having millions of computing units, parallel architectures are the current standard. The
high performance architectures are usually referenced to as hierarchical, as they are com-
posed from clusters of multi-processors of multi-cores. Programming such architectures is
known to be notoriously difficult. Writing parallel programs is, most of the time, difficult
for both the algorithmic and the implementation phase. To answer those concerns, many
structured models and languages were proposed in order to increase both expressiveness
and efficiency. Among other models, Multi-BSP is a bridging model dedicated to hierar-
chical architecture that ensures efficiency, execution safety, scalability and cost prediction.
It is an extension of the well known BSP model that handles flat architectures.

In this thesis we introduce the Multi-ML language, which allows programming Multi-
BSP algorithms “à la ML” and thus, guarantees the properties of the Multi-BSP model and
the execution safety, thanks to a ML type system. To deal with the multi-level execution
model of Multi-ML, we defined formal semantics which describe the valid evaluation of
an expression. To ensure the execution safety of Multi-ML programs, we also propose
a typing system that preserves replicated coherence. An abstract machine is defined to
formally describe the evaluation of a Multi-ML program on a Multi-BSP architecture. An
implementation of the language is available as a compilation toolchain. It is thus possible
to generate an efficient parallel code from a program written in Multi-ML and execute it
on any hierarchical machine.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/ybvp8b5x
https://doi.org/10.1017/S0956796818000230


PhD Abstracts 3

Adventures in Formalisation:
Financial Contracts, Modules, and Two-Level Type Theory

DANIL ANNENKOV
University of Copenhagen, Denmark

Date: May 2018; Advisor: Martin Elsman
URL: https://tinyurl.com/ycf4gabn

This thesis present three projects concerned with applications of certified programming
techniques and proof assistants in the area of programming language theory and
mathematics.

The first project develops a certified compilation technique for a domain-specific pro-
gramming language for financial contracts (the CL language). The code in CL is translated
into a simple expression language well-suited for integration with software components
implementing Monte Carlo simulation techniques (pricing engines). The compilation pro-
cedure is accompanied with formal proofs of correctness carried out in the Coq proof
assistant. Moreover, we develop techniques for capturing the dynamic behaviour of con-
tracts with the passage of time. These techniques potentially allow for efficient integration
of contract specifications with high-performance pricing engines running on GPGPU
hardware.

The second project presents a number of techniques that allow for formal reasoning with
nested and mutually inductive structures built up from finite maps and sets (also called
semantic objects). The techniques, which build on the theory of nominal sets combined
with the ability to work with multiple isomorphic representations of finite maps, make it
possible to give a formal treatment, in Coq, of a higher-order module system, including the
ability to eliminate entirely, at compile time, abstraction barriers introduced by the module
system. The development is based on earlier work on static interpretation of modules and
provides the foundation for a higher-order module language for Futhark, an optimising
compiler targeting data-parallel architectures, such as GPGPUs.

The third project presents an implementation of two-level type theory, a version of
Martin-Lof type theory with two equality types: the first acts as the usual equality of homo-
topy type theory, while the second allows us to reason about strict equality. In this system,
we can formalise results of partially meta-theoretic nature. We develop and explore in
details how two-level type theory can be implemented in a proof assistant, providing a
prototype implementation in the proof assistant Lean. We demonstrate an application of
two-level type theory by developing some results on the theory of inverse diagrams using
our Lean implementation.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/ycf4gabn
https://doi.org/10.1017/S0956796818000230


4 G. Hutton

Extending Type Theory with Syntactic Models

SIMON BOULIER
IMT Atlantique, Nantes, France

Date: November 2018; Advisor: Nicolas Tabareau
URL: https://tinyurl.com/y8w9ndas

This thesis is about the metatheory of intuitionistic type theory. We consider variants of
Martin-Löf type theory or of the Calculus of Constructions, and we pay attention to two
recurring questions: the coherence of these systems and the independence of axioms with
respect to them. We address this kind of problems by constructing syntactic models, which
are models reusing type theory to interpret type theory.

In a first part, we introduce type theory through a minimal system with several possible
extensions. We also introduce Categories with Families which are models of type theory.
We recall two examples: the standard model and the setoid model.

In a second part, we introduce a particular class of models: the syntactic models given by
a program translation. In this paradigm, a term is translated to a term, a type to a type and a
context to a context. These models are simple in that a lot of constructions are reinterpreted
by themselves (universes, contexts, . . .). We give several program translations:

• the times bool translations, which are used to negate some extensionality principles
by adding a boolean in the right place;

• a translation implementing pattern-matching on the universe;
• several variants of parametricity.

For each one, we make precise which axioms are negated or preserved by the translation.
In a third part, we present Template-Coq, a plugin for metaprogramming in Coq. This

plugin provides a reification of Coq syntax and typing derivations. We demonstrate how
to use it to implement directly some syntactic models.

Last, we consider type theories with two equalities: a strict one and a univalent one.
We propose a re-reading of works of Coquand et. al. and of Orton and Pitts on the cubi-
cal model by introducing degenerate fibrancy. This notion of fibrancy has a defect: the
universe of degenerately fibrant types is not univalent. Nonetheless, degenerate fibrancy
seems worthy of attention, in particular because it admits a fibrant replacement. The fibrant
replacement can be used to interpret some Higher Inductive Types and to define a model
structure on the universe. This last result can be reinterpreted as the construction of a model
structure on the category of cubical sets.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/y8w9ndas
https://doi.org/10.1017/S0956796818000230


PhD Abstracts 5

Unified Notions of Generalised Monads and Applicative Functors

JAN BRACKER
University of Nottingham, UK

Date: September 2018; Advisor: Henrik Nilsson
URL: https://tinyurl.com/yb6cyhtf

Monads and applicative functors are staple design patterns to handle effects in pure
functional programming, especially in Haskell with its built-in syntactic support. Over the
last decade, however, practical needs and theoretical research have given rise to generali-
sations of monads and applicative functors. Examples are graded, indexed and constrained
monads. The problem with these generalisations is that no unified representation of stan-
dard and generalised monads or applicatives exists in theory or practice. As a result, in
Haskell, each generalisation has its own representation and library of functions. Hence,
interoperability among the different notions is hampered and code is duplicated.

To solve the above issues, I first survey the three most wide-spread generalisations of
monads and applicatives: their graded, indexed and constrained variations. I then examine
two approaches to give them a unified representation in Haskell: polymonads and super-
monads. Both approaches are embodied in plugins for the Haskell compiler GHC that
address most of the identified concerns. Finally, I examine category theory and propose
unifying categorical models that encompass the three discussed generalisations together
with the standard notions of monad and applicative.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/yb6cyhtf
https://doi.org/10.1017/S0956796818000230


6 G. Hutton

Single-Assignment Program Verification

CLÁUDIO BELO LOURENÇO
Universidade do Minho, Portugal

Date: July 2018; Advisor: Jorge Sousa Pinto
URL: https://tinyurl.com/y9bn8yhm

Many program verification tools rely on the translation of code annotated with proper-
ties into an intermediate single-assignment (SA) form (in a more or less explicit way), and
then on an algorithm that generates verification conditions (VCs) from it. In this thesis, we
revisit two major methods that are widely used to produce VCs for SA programs: predi-
cate transformers (used mostly by deductive verification tools) and the conditional normal
form transformation (used in bounded model checking of software). Different aspects in
which the methods differ are identified and combined to produce new hybrid VC genera-
tors; the resulting algorithms form what we call the VCGen cube, which we propose as a
framework for synthesizing and comparing VC generators.

At the theoretical level we propose two fully proved verification frameworks based
on the translation into SA and subsequent generation of VCs. On one hand we formal-
ize program verification based on the translation of While programs annotated with loop
invariants into an iterating SA language with a dedicated iterating construct. Soundness
and completeness proofs are given for the entire workflow, including the translation of
annotated programs into iterating SA form. The formalization is based on a program logic
that we show to be adaptation-complete.

On the other hand we formally define an iteration-free SA language with assume, assert,
and exceptions, and introduce a program logic for this language which allows us to prove
the soundness and completeness of the VCGen cube. A verification framework based on
a generic translation of programs into (iteration-free) SA form is then proposed, and the
entire workflow is proved to be sound and complete. We also suggest a concrete SA trans-
lation that transforms annotated loops into assumes and asserts to check that the invariants
are valid and preserved during the iterations.

Finally, we compare the VC generators empirically, both for the LLVM intermedi-
ate representation, and in the context of the Why3 deductive verification tool. Although
the results do not indicate absolute superiority of any given method, they do allow us to
identify interesting trends.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/y9bn8yhm
https://doi.org/10.1017/S0956796818000230


PhD Abstracts 7

Subtyping in Signatures

GEORGIANA ELENA LUNGU
Royal Holloway, University of London, UK

Date: September 2018; Advisor: Zhaohui Luo
URL: https://tinyurl.com/ybtsfmms

Type theories with canonical objects like Martin Lof’s Type Theory or Luo’s UTT have
increasingly gained popularity in the last decades due to their usage in proof assistants,
formal semantics of natural language and formalization of mathematics. The main purpose
of this work is to explore a new way of introducing coercive subtyping in such systems
which facilitates the representation of some practical notions of subtyping.

Introducing subtyping in dependent type theories is not straightforward when the preser-
vation of properties like canonicity and subject reduction is also desired. Previous research
showed how such properties are affected by subsumptive subtyping and offered an alter-
native in the form of coercive subtyping introduced by enriching the system with a set of
coercive subtyping judgements. Here I introduce a new way of adding coercive subtyping,
specifically by annotating certain functions in assumptions, arguing that this is more handy
to represent practical cases. This system is also closer to the programming model of proof
assistants like Coq where coercions are annotated as such at the assumption level.

Assumptions in Type Theory are represented as either contexts, which are sequences of
membership entries for variables that bear abstraction and substitution or signatures, which
are sequences of memberships entries for constants for which abstraction and substitution
are not available. I shall use signatures as an environment for subtyping assumptions. I
will prove that this system is well behaved, in that it is only abbreviational to the original
system, by considering its relation with the previous version of coercive subtyping which
was already proved to be well behaved.

To demonstrate the ability of the system to argue about practical situations, I will present
three case studies. The first one studies the relationship between a subsumptive subtyping
system and coercive subtyping. The second case study discusses how Russell-style uni-
verse inclusions, as found in Homotopy Type Theory, can be understood as coercions in a
system with Tarski-style hierarchy. And the last discussion is the need to treat injectivity
as an assumption in order to capture faithfully some notions of subtyping which are based
on or generalize inclusion.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/ybtsfmms
https://doi.org/10.1017/S0956796818000230


8 G. Hutton

JIT-based Cost Models for Adaptive Parallelism

JOHN MAGNUS MORTON
University of Glasgow, UK

Date: August 2018; Advisor: Phil Trinder and Patrick Maier
URL: https://tinyurl.com/yaksvjtz

The work in this thesis form part of the AJITPar project’s Adaptive Skeleton Library
(ASL) that provides a distributed-memory master-worker implementation of a set of
Algorithmic Skeletons for Pycket, a tracing just-in-time compiled implementation of the
Racket language. As part of ASL, this work presents a novel approach the problem of
parallel performance portability.

The Pycket compiler is extended to enable minimal-overhead runtime access to JIT
traces. A low cost, dynamic computation cost model for estimating the runtime of JIT
compiled Pycket programs, �, is developed and validated. This is believed to be the first
such model. The cost model predicts execution time based on the Pycket JIT instructions
present in compiled JIT traces. Linear regression is used to determine the weightings for the
abstract cost model from execution time measurements and trace data of 41 benchmarks.
A linear relationship between the actual computational cost for a task, and that predicted
by � for five benchmarks on two hardware platforms is demonstrated.

The design and iterative development of a cost model, K, that predicts the serialisa-
tion, deserialisation, and network send times of spawning a task in ASL is presented.
Linear regression of communication timings are used to determine the appropriate weight-
ing parameters for each. K is shown to be valid for predicting arbitrary data structures
by demonstrating an additive property of the model. K is validated by showing a lin-
ear relationship between the combined predicted costs of the simple types in aggregated
data structures, and measured communication time. This validation is performed on five
benchmarks on two hardware platforms.

Finally, a low cost dynamic cost model, T, that predicts good ASL task sizes by com-
bining information from the computation and communication cost models is developed
and validated. The key insight in this model is to balance the communications cost on the
master node with the computational and communications cost on the worker nodes. T is
tested using six benchmarks, and it is shown to more accurately predict the optimal task
size, reducing total program runtimes when compared with the default ASL prototype.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/yaksvjtz
https://doi.org/10.1017/S0956796818000230


PhD Abstracts 9

Towards Live Programming Environments for
Statically Verified JavaScript

CHRISTOPHER SCHUSTER
University of California, Santa Cruz, USA

Date: December 2018; Advisor: Cormac Flanagan
URL: https://tinyurl.com/ycynhykh

This dissertation includes contributions to both live programming and program
verification and explores how programming environments can be designed to leverage
benefits of both concepts in an integrated way.

Programming environments assist users in both writing program code and understand-
ing program behavior. A fast feedback loop can significantly improve this process. In
particular, live programming provides continuous feedback for live code updates of run-
ning programs. This idea can also be applied to program verification. In general, verifiers
statically check programs based on source code annotations such as invariants, pre- and
postconditions. However, verification errors are often hard to understand, so programming
environment integration is crucial for supporting the development process.

The research for this dissertation involved the implementation of esverify, a program
verifier for JavaScript, as well as prototype implementations of multiple programming
environments. These implementations demonstrate potential benefits and limitations
of proposed solutions and enable empirical evaluation with case and user studies.
Additionally, the proposed designs were formally defined in order to explain the core idea
in a concise way and to prove properties independent of concrete specifics of existing
systems and programming languages.

The resulting systems represent possible solutions in a vast design space with vari-
ous contributions. The research on live programming showed that a programming model
that separates event handling from output rendering enables not only live code updates
but also runtime version control and programming-by-example. For program verification,
esverify represents a novel approach for static verification of both higher-order functional
programs and dynamically-typed programming idioms. esverify can verify nontrivial algo-
rithms such as MergeSort and a formal proof in the Lean theorem prover shows that its
verification rules are sound. Finally, a programming environment based on esverify sup-
ports inspection and live edits of verification conditions including step-by-step debugging
of automatically generated tests that serve as executable counterexamples. As part of a
user study, participants used these features effectively to solve programming tasks and
generally found them to be helpful or potentially helpful.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/ycynhykh
https://doi.org/10.1017/S0956796818000230


10 G. Hutton

Contributions in Programming Languages Theory:
Logical Relations and Type Theory

AMIN TIMANY
KU Leuven, Belgium

Date: May 2018; Advisor: Bart Jacobs and Frank Piessens
URL: https://tinyurl.com/ychqmrjw

Software systems are ubiquitous. Failure in safety- and security-critical systems can
be catastrophic. Hence, it is crucial to ensure that safety- and security-critical software
systems are correct. Types play an important role in helping us achieve this goal. They
help compilers check for (some) programmer’s mistakes. They also form the basis of a
group of proof assistants. A proof assistant is a software that allows for formalization and
mechanization of mathematics, including the theory of types, theory of programming lan-
guages, program verification, etc. In this thesis we contribute to the study of programming
languages and type theory.

In the first part of this thesis we formalize category theory in Coq and extend the cumu-
lativity (subtyping relation) of Coq to inductive types. This novel extension to the type
theory of Coq is integrated into the proof assistant Coq as of the official release of Coq 8.7.

In the second part of this thesis we develop logical relations models for a number
of programming languages for proving type soundness and equivalence of programs for
programming languages with advanced features, e.g., concurrency, impredicative poly-
morphism, continuations, etc. We use our logical relations models, among other things, to
establish the equivalence of concurrent counter and stack modules. One of the main results
of this thesis is a logical relations model which establishes proper encapsulation of state
in STLang, a programming language featuring a Haskell-style ST monad which is used to
encapsulate state. This problem was open for almost two decades. We solve this problem
by showing that certain program equivalences hold in the presence of the ST monad that
would not hold if the state was not properly encapsulated.

It is well known that developing and working with logical relations models for advanced
type systems such as those we study is very intricate. We mitigate this issue by working
in the Iris program logic. Working in Iris allows us to work at a higher level of abstraction
and thus avoid the usual intricacies. Furthermore, we take advantage of Iris’s formalization
to formalize our logical relations models and their applications in Coq.

https://doi.org/10.1017/S0956796818000230 Published online by Cambridge University Press

https://tinyurl.com/ychqmrjw
https://doi.org/10.1017/S0956796818000230

	PhD Abstracts

