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EXTREME VALUES FOR DIVISOR FUNCTIONS
R.A. MAcLEOD

Maximum and minimum values are obtained for some sums invovling the divisor functions
of number theory.

1. INTRODUCTION

Let t be an arbitrary real number, and f any numerical function. In number

theory we often study the summatory functions

Z ntf(n);

ngez

the cases t = 0 and ¢t = —1 tend to be of particular interest. In many cases, there are

known elementary functions g;(z) such that

(1) Z n'f(n) = gu(z) + Eu(z),

n<x

where Ey(z), the “error term”, is usually known in terms of rather awkward sums or
to an order of magnitude. For example, if ¢(n) is the sum of the divisors of n, and

t = 0, then we have

2
(2) Z o(n) = sz + 0(zlog z),

n<z

or, more precisely,

(3) Z:a'(n)zlr—;zz—z Z }:Bl(g)—%x— Z d31(3)+0(x%),
n<z d<vz d<vz

where B, (z) is the quantity {z} — 3 and {z} denotes the fractional part of z; here

go(z) is ’1'—::132 , while E,(z) depends (primarily) on the sum 3 ‘]—iBl (%) . Suprisingly
d< vz
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often, the values of Ey(x), over the integers, show at least initially a preponderance of
either positive values or negative values. For the example of (2), E;(z) is positive for
the first ten integers and for 88 of the first 100. Since we presumably have

lim 24®)

2—oco gi(z)

=0,

a fairly natural question seems to be to establish the minimum or maximum values of
(E(z)/ge(z)) over the integers = > 1. We obtain several results along this line for
functions related to divisor functions. If we write d(n) for the number of divisors of n,
and o4(n) for the sum of the a-th powers of the divisors of n, then some of the more
interesting results are:

1 2,
F(Z a(n) — 7 )

n<e

has its minimum at ¢ = 23 (maximum at z = 1,2);

1
zlogz + (27 — 1)z (Z d(n) —zlogz — (2y — 1):::)

n<z
has its minimum at z = 179 (maximum at z =1);
1 z
z (Z{;} -@a- 7)-'6)
ngz
has its maximum at ¢ = 179 (minimum at = 1,2);

1 ((a+1
gati (Z 7a(n) — (—all_)>

n<z

is always positive for @ = 2,3,4, has limit 0, and is negative for at most a finite number
of positive integers z for any integer a > 5;

(Z o —-210g :c—2'ylogz>

%logzz + 2ylogz nse

is always positive and has limit 0;
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is always positive and has limit 0;

1
Zd(n)—zlogz—(}y—l)w <VT+ 3
n<z
2 L 1 1 3
Za(n)——l—iw gzzlogw+(§'y+z +2Vz.

n<e

Our objects, therefore, are twofold: to obtain good usable upper bounds for the
functions FEi(z), as in the last two mentioned above, and to use these to study the
relavent extreme values.

Our methods are completely elementary.

Among results known for other arithmetic functions, we mention the following:

%z (Z #n) — ;?—)

n<z

has its minimum at z = 1276 (where 1276 gives only the second negative value);

Zﬁ(_”l

nge

has its minimum at z = 13;

has its minimum at z = 176. For proofs, see respectively [2], [3] and {5].

2. SOME PRELIMINARIES
In what follows, let [z] and {z} denote respectively the integer and fractional
parts of z, and let B,(z) = Bi({z}) where By(z) is the Bernoulli polynomial. Let
k = k(z) be defined by k = [/z], and let B, = B,(0) be the Bernoulli number. The

following are well-known:

1 1 3 1
(4) Bl(z)=z—§, B2(’3)-_—$2—z+‘6‘, B3($)=$3—§I2+~2-:c,
. 1 . 1 . \/§ 1
<> <z <L .
6)  Bwi<y By Bwi< <, el
LEMMA 1.
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(a) g % = logz +7 - (B(2)/z) + Ra(z), where |Ry(z)| < % -2,

(b) ;% —logz +v - (Bi(e)/z) - %(Bz(:c)/zz) + Ri(),
where |R'(z)| < 31—0:6_3.

(<) % 5 =60 = == = (Batw/e) + Rule),

where |Ry(z)| < —t:c—(H'l) t>2

@ > ;117 = (1) - ——1 2= (Bl(m)/z') = -;—t(Bg(:c)/zH'l) + Ri(z),

t —

n<z

where |Ry(z)| < (t + 1)z~ > 2.

_ z ki s
(e) 'Z:klogn_(k—i—z)logk k+210g27r+12k + Q(k),
1,3

where |Q(k)| < 186

log z

logn
(f) E"i lng+A1—Bl() + W_i(e),
n<z
llogz —1
where |W_,(z)| < AT

(8) Let L,(z) = Z d*. Then for u > 0

dgz
Lu(z) = L gkt — i——(-—l)r “ B (z)zH™"
" - u+1 =T +1\r !

1 1
e [u+1]'

PrOOF: These follow immediately from the Euler-Maclaurin summation

formulae.

Note that, for an integer z,

N 1 - 1
Bi(z) = -2 B,(z) = 5 Bi(x) = 0.
From Lemma 1(b) and (5), Lemma 1(a) could be strengthened to

1 1
Riz) € —2=? 4 g
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while from Lemma 1(d) and (5), Lemma 1(c) could be strengthened to

t tt+1) _
<ttt T ) 59
(7 Ry(2)] < a4 a0,
LEMMA 2.
1 1 B ith h(t) < 1
C(t) =1+ E{ + -3_t + (t), wit (t) 5SS —-———2t—1(2t-1 — 1).

COROLLARY 2.1.

1 .
2531(3) < ——-;——}--;—;l;-i-é-t(z—t_l—_T), fort > 2 (integer z ).
d<z d -0.3, fort =1.
PROOF OF LEMMA: ) )
< 4 + 8 + 16 n
T4t 8t 16t
_ 1
- 2t—1(2t—l _ 1)'
1
PROOF OF COROLLARY: For z even, we have
1 . sz 1 1 1 . rz
S A(E) - X 34 ()
t t+1 t )
iz d d 2 2 sSits d d
while for z odd, we have
. (T 1 1l . sz
S () =-1r X x5
< dt d) 2 1% d d)
1. sz 1 1 1 1
> 2nE)|<: T s<3(w-1-3)
t t
sod%n d d) 2 soats d 2 2t
the result now follows from Lemma 2; ¢(2) — 1 ~ 7 < 0.4. |
We note that Corollary 2.1 can be sharpened slightly; for integer =, B, (%) < %—i ,
so that
(8) ZiB (z) <l -ce+1)<o0
dt7\g) T 2y '

d<z
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LEMMA 3. Let L,(z) = Y. d*, let ¢ be any numerical function, let f(n) =
d<z

> c(d), and let t be any real number. Then

din
Z ntf(n) = Z n* Z mte(m

n<z ngz rn<§

In particular, for ¢(m) = m®, we have

= 2 et ()

nge ngz
PROOF:
Z ntf(n) = Z nt Z co(m) = Z mtdte(m) = Z nt mbe(m).
n<z n m|n mdgz n<z mg%
]
COROLLARY 3.1. Let a and t be integers, with 0 <t < a. Then
—t+1
ga(n) 1 L@ t+1 Z 1 : r
Z t T a— +1 _ Z (=1)
= n a t+1 dqd“ t+1
a—1t+1 a—t+l—r 1 2 T
% ( T )z Z da+l-rBr(a—)
d<z
1 1 1
———B - —
(a—t+1 a-tt1t [a,——t+1])d< dt
Kz
PRrROOF: Put Lemma 1(g) into Lemma 3. |

LEMMA 4. Let ¢ be any numerical function and t a positive integer, and define
C.(z) by

C.(z) = Z c(n)n”

n<z

Then for any integer k such that 1 < k < [z],

S em{G = X (T} + o (0uter - 0ai(F))

n<z nsfi—
t r
+ Z] (:>( 1 r t r ( 3 ( ) 1)3+1 Zdr—ac—(t_r) (%)
r= =1 d<k
_-k"C_(t_,)(%)) .
PROOF: This is Lenuna 6 in [4]. ' ]

In our applications, we will take k& to be [\/z] and take c(n) to be 1, in which case
Cris L.
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3. THE MAIN RESULTS.

THEOREM 5. Let d(n) be the number of divisors of n. Let Ry(x) be the error

term in the Euler-MacLaurin expansion of ), % ; that is
ngz

1 B (:
Z— -——logw-{-'y—ﬁ—{-Rl(z).
n T
ngz
Then, writing k = [/z],
Zd(n) =zloge + (27 - 1)z — ZBI(

nge d<k dgi-

als
T
|
my
-
~~
a8
h
+
by
—_
|

where we have for z > 1:
(i) To(z)==zRi(}) +eRal(k) + 3{£};
(i) |To(=)| < 1;
(i) X, ¢ d(n) —zlogz — (27 - 1)z| < VT + 3.

PROOF: We have, putting ¢t =0 and ¢(n) =1 in Lemma 3,
(9) Zd(n)_—_Z[%] ::cL_,(:c)—Z{g}.
n<z d<z d<z
Now, by Lemma 4,
(10) Z{g} =Y {3} +zL_y(z)—zL_, (%) -y Lo(g) + kLo(i).
d<z a<E d<k
Hence we have
(11) Sodm) ==L (7) + 2 Lo(3) —kLe(F) - {5}
ngz d<k d<g

Here, we have

z1_ 1
zL_, (E) =z|logz —logk + v — {k}#z + Ry (E) (from Lemma 1(a))
(12) ¢ i C
=:clog:c—:z:logk+:c'y—k{%}-}-%k-*-z]{l(%),
Lo(2) = kLe(2) = S [2) = &[]
g (d) (k) gd k
z T
(13) =zL—1(k)'dz<;{g}—z+k{;}
log k 1z z z
=zlogk+ay+ g3 +eRi(k) =D {g}-=+4{g).

d<sk
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Hence, putting (12) and (13) into (11), we get

(14) ;d 11)_’clog’c+(2'y-1)»c+ k %%
T z T
- Z{E} - Z{E} +"CR1 7;) + Ry (k
d<k d<g
(15) ::vlog:c+(27—1)x_ZBl(3)
d<k
1 s
_ ZBI( )+v:R1( )+1:R] )+§{%}_
d\'k'
As regards results (ii) and (iii), we have, since
. 11 T 1k* 1=
Also,

d<k d<i d<k d<§
(17) e -
=3t 3li) + 5 (D)
1 lz
=sk+sT-
Now,
(18) Vz = k+{Va} = &=k 4+ 2k{Vz} + {Vz}*
= Z =k +2{Vz} + {‘/—}2
(19) — kT ook (VA + L
- {\/—}
Also,
(20) kz =1+ {\/_}+{\/—}2 L - ‘?;{\/5}—&5}_2
(21) N :_2+;2:2+4{{}2+4{:w}3 {;C/;}4.
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Hence, putting (16)—(21) into (15), we have

1 1 21 21 11
Zd(n)—zlogw—(Z'y—l):c \/_+-—-+ + -t st o5
3z 3kz 6k
(22) n<e
<z + % for z < 21.
It is easy to check that (22) is still valid for all real z in the range 1 < z € 21. [ |

COROLLARY 5.1.

Z d(n) =zlogz + (2y — 1)z — 2231 (%) +0(1).

n<z d<k

Note. Solving the “Dirichlet divisor problem” is equivalent to showing

>, (%) =o(et).

d<k

COROLLARY 5.2. Y d(n) > zlogz, for all integers = > 1 and all real numbers

n<zx
x 2> 1 except for = in the following intervals (seven decimal accuracy):

[1.7632228,2),  [2.8573908,3), [3.7686795,4),  [4.9819032,5),
[5.7289256,6),  [7.7927415,8), [9.9921716,10), [11.7643527,12),
(17.9931387,18), and [23.9345673,24) .

PROOF: (2y—1)z > v/z + 3 for' = > 49. Thus the result follows from Theorem
5 (ili) for = > 49, and it is not dlfﬁcult to check for 1 € z < 49. ]

The first part of this Corollary appears in [1].
COROLLARY 5.3.
<Z d(n) —zlogz — (27 - l)x) /(zlogz + (27 — 1)z)
ngz

has its minimum over integers ¢ at = = 179; its value is —0.003331224.... (Its

maximum over integersis at ¢ =1.)

Proor: ]
VE+ g <0.0033 for z > 1650;
zlogz + (2y — 1)z
thus it suffices to check 1 € z < 1650. i
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COROLLARY 5.4. Let k = [/z]. Then

S {EY=(1-m)=+U(2),

ngz

where we have:

() U(e)= 3 Bi(2)+ 2 Bi(Z) +eRa(z)—zRa(

n<k ng

14
Gi) | U(z)| < VZ+1 forz>1;

8
o
|
8
=
—_
bl
S
>
—
8
~—
!
o=
——
b
N

(iii) ( > {z}-(- 7):1:) /(1 — v)z has its maximum over the integers ¢ at z =

ngz

179; its value is 0.048689 ... (minimumat ¢ =1 and 2).

PrOOF: Result (i) follows from (9), (14) and Lemma 1(a).
Result (ii) is proven the same way as part (iil) of Theorem 5.

For result (iii), we note

Vz+1

a ) < 0.048689... for z > 2460,
— )T

so that it suffices to check 1 < = < 2460. ]
We note that E {2} — (1 — 7)z is negative for the first 22 integers and for 92 of

n<e

the first 100.

THEOREM 6. Let R;(z) be the error term in the Euler-MacLaurin expansion of
>, Jr; thatis,

n<z

1 ™ 1 1 .
— = — — = — = By(z) + Ra(z).
n<:n2 6 z z2 1(2) + Ra(2)

Then, writing k = [/z], we have

where we have, for ¢ > 1
() T(=) = 32’ Re(3) + 3kP1(§) + 1 Zacg (2 1({E) - 1)5
() IT(z)| < 35 vZ + 355
(iii) (>, 0(n) ;’—;zzl < izlogz + 3y + i)z + 2.
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ProoF: We have, putting { = 0 and ¢(n) = n in Lemma 3,

oty = 3 2 21((5]+1)

() %zgm;g@
=%:c2L_2(w)—$Z Z{ } —:z;L m)-——Z{ }

ngx n<:: n<zx

Now, by Lemma 4, with ¢(n) =1 and t =1, and ¢(n)=1 and t =2, 1,

12} % L et e(3)

<z n<§
(24) -3 ()+kL ()
d<k .
M
n<e n<E
—2?L_, ()—2:ch<EL ()+2ka (k)

(25) | +ZZdL0() ZLO( )—kzLo(%),
S {8} 3 (2} et ()

nsz ﬂﬁ'k-

= -5 n(3) )

d<k

Hence we have

n<z
= -;—:ch_g(z)—:c Z %{%} — 2 L_s(x)+ 22 L_, (%) +z ZLI (3)
n<§ d<k
~wkloi (T ) 5y 5 lor_ 2(1:)—-1: =(3)-= 2 (%)
nsf d<k
(27)  +zkL_ ( ) ZdLO( )——ZLO(S-)——kzLo(k)+lzL_,(a:)
d<k d<k
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“3 2 gl g () 15 D0 (3) -0 ()

=3w2L (7) + 2 ame(3) + 5o (3) - 3400 (7) - 3450 (5)
e T D)

"\7:' n\-’e-

> 8

In this last expression, we note that

> dLo(3) = Zd[ _wk—gd{g}

d<k
(28) =””"“Z‘”§1(3)”%Zd
d<k d<k
= ok — :11k2 - %k - B (2);
d<k
and

3L (3) - 590 (5) - 340 (7)

2
= ——k'c—-—kz{ }+ k2+ w2R2 -
. - 8
—Eka;+—k2{—}--:c+—k{—}
_7r2 2 2 1 1, ;@

(30) —:cz { s Lo ():—xz B,()

nS}- n&f

Thus we have

(31) > a(n) = .’1%;62 _ Z ( ) ZdBl( )——z+T(:l:),

n<z ngf d<k

where we have, as required,

(32) T(z)= s Ra(F) + 35} - 3k 45 S {22} -1).

ngl—
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Now from (7), with ¢t = 2, we have

1 z TR 1k 1 1
33 2R (Z) <« =+ == < —=k+ =< = —
(33) 2” Z(k) 27 T2 S12° T S */—+

1, . /2 1.1 1 1

—K - <=k == - — - Tr.
(34) lszl(k) Sghog=gve-glvel

Because Izz - :c| has a maximum on [0,1) at © = % , we have

) 5 DG )| <555l <5h=5vE gV 5

nS-E

and the second result now follows. Finally, we note that £ < \/z + 2, so that

1 1 1 1 1 2
3 2 n<3 2wtz

Si=
F)
—~
Jis
~—
N

n<§ n<VE+2 n<Vz
(36) <1(loz+ 4 +‘11 +1
S LW z
1 51 11
= log”+ i TR
- (T 1 1 1 1
(37) S dBi(=)| <D d=Sk + -k < Sz + =V,
i<k ( ) zdsk 4 4 4 4
and thus
1 1 3 47 1 1
2
Zo(n)—-—w Sleogz+<§’y+z)w+ﬁﬁ+<ﬁ+%)
(38) n<e
1 3
€ —zlogz + E'y—l-z z+ 2z for all z > 11,

and it is easy to check that (38) holds for 1 € z < 11.

Note. It is known that (see Walfisz [6, p. 99])

z a(n) = :—;xz + 0(:clog2/3 :c),

ngz

or, equivalently,
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COROLLARY 6.1. Let f(z) = J¥ ; a(n)-%. Then f(z) has its minimum value
ngz
over the positive integers at © = 23. (Its maximumisat z =1 and z = 2.)

PRrROOF: The second negative value of f(z) is at 23; indeed,
f(23) = —0.007722....

From Theorem 2(iii), we see
|f(z)| £ 0.007722, for = > 338.

It is a simple matter to check the result for 1 < = < 337. [ ]
THEOREM 7. Let a 2 2. Then
1
Z oa(n) — __C(a-}- )$°+l /:z:‘"+1
e a+1

has limit 0 (as z — oo ), is always positive for a = 2,3 and 4, and is negative for at

most a finite number of positive integers ¢ for any fixed integer @ 2 5.

Proor: By Corollary 3.1, the limit is 0, and by Corollary 3.1 and Lemma 1(c),

3 oulrn) = ail (cern -2 2 S+ Rente)) oo

n<z
a+1
(39) Z( 1) (a+1) a-{—]—r‘zda+l — r(—)
d<z
h a-}-lBaﬂm'

For a = 2, this gives

Zaz(n)_%((:;)a;3 z 4 S+ :c (x) - = ZdzBl( )

(40) ngz . d<hz: .
+z;dzm<d>—ggm<g>-

Now, from Corollary 2.1,

(41) —z ZdzB,( )>0.3:c2,

d<z
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while, by Lemma 1 and (5),

=g+ gt gr R+ X b (3) -5 3 B(3)]

d<z dgz
(42) <1+1+11+ log &+ +1+11+1\/§1
< = —4+-=—4+-zlogz :c —_ == ———
6" 76 6c 6 o T8 712" 36z 336
< 0.3z2 for = > 2.
For a > 2, we have
(43) Z oga(n) — ! C(a+ 1)zt = —z° Z iBI (E) + Qq(z),
a+1 de d
ngz d<z
where we have
a+1
a+ 1 at+l-—r 1 o, T
le) = 7 2 (- (" T et D B(5)
(44) r=2 d<z
1 B, 1 1
+ Ra+1($)$a+].

"~ a(a+1) a,+1$+2(a+1)+a+1

By Corollary 2.1,

1 1 11 1 .
4 —B(EY>(--=2=_ L P
(45) g d= ( ) (2 53~ a(za-1_ 1))"’

Since the terms of Q,(z) are of lower order (of order z®~!), except possibly for small
values of = we have that the right side of (43) is positive. It is easy enough to check
small values of a. ]

Note. These results do not hold for real z. Here, 3, 03(n)— 3((3)z® is a decreasing

ngz

function of = between integers; thus, in effect, one must examine

> a2(n) - 5¢(3)(= +1)°;

nsz

> oz(n) - %cw)(z +1)° = (Z aa(n) — %as)ws) ~((3)z* - ¢(3)z — §<(3),

ngz ngz

)-

als

and the term —((3)z% now dominates —z* ) ZI;B (
dgz
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THEOREM 8. Let A_;, R, and W_; be as defined in Lemma 1 and U as defined
in Corollary 5.4; let k = [/z]. Then we have
d 1
Z _(.n_) = -z—logza: + 2ylogz + W(z),

n
ngz

where we have, for ¢ > 1:

. 1 1 T B ()
— 42 - hut Zy 422
(i) W(z)=7" +7 -3 A-l*Z«;an(n) 7=
Ule 1{z
¥ (log +)Bs(x) — Wy (2) - 22 112h,
T 2z
(11) 0.35 < W(z) <0.60, for z > 2000;
d(n) 1 2 1 2
(ii1) (Z—h——ilog z — 2ylogz |/ ~2-log a:+2'ylog:c)
nge
is always positive, and goes to 0.
PROOF:
d(n) 1 1 1 1
Z n —Z;ZI~Z mm' n m
n<z nge  min mm/<z n<z mgE
1 T
(46) =2 3E4(3)
1 .
= —-(logm+'y—logn——EBl(£)+R1(E)>.
=n T n n

Result (i) now follows from Lemma 1 and Corollary 5.4. The constant A_; can be
evaluated by the method of ([4], p. 202); its value to six decimals is 0.0728158. Thus,
to six decimals, v2 +v — % — A_; has the value 0.483210. Now,

1 z 1 1 11
- -] <= €=+ =
Z an(n) = 62 ST + 12z
n<z n<gz
By (= Ux) 1{z
+222) | (toga 4 ) Ri(e) ~ W_(e) - L) 1izd
T T 2 z

< 1 + 1 + 3\ 1 + llogz
SV \2T T ) T3 e
so that, for > 2000, W(z) differs from 0.483210 by less than 0.1067. To prove result
(iii) it suffices to check 1 < = < 2000. 1
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Note. It is known (see, for example, ([4], p. 223)) that there exists a constant c_,
such that

Z @ = %1052z+2710gz+c_1 —;Zdég(g) +0(£—>.

n<e d<k

Thus, there is the deeper question of the sign changes, or extrema, of

d 1
(Z (:) —Elogzw—27loga:—c_l)/(%ﬂogzm+27logz+c_1).

n<z

THEOREM 9. Let R;, R; and Q be defined as in Lemma 1; let k = [\/z]. Then

we have

2
D L LG L

n<g
- % Y dB, (E) + V()
d<k

where we have for ¢ > 1:
V() = oRa(2) + 3281 (2) - (k+ DRa(F) - &} - Q) + Tucu Ra(3);
(i) |V(2) < 3%

n) 2

(iii) (Zns: AL -%:c)/l";—z is always negative, and goes to 0.

n

ProoF: Putting a =t =1 in Lemma 3, we have
a(n) 1 :c 1.z
“ I I RO SO
ngz n<z n<z ngz
To prove result (iii), we re-write the right side of (47):
o(n) w? 1 1,z
2o =werr w2k
ngz n>zx ngz
and the result is now obvious. On the other hand, from (47) and (24) we have
a(n) _ 1 I, (5
$ () T8 (E) - () () )

Result (ii) now follows from Lemma 1; result (iii) follows from the estimates in Lemma

1. |
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Note. It is known (Walfisz ([8], p. 99)) that

Z @ = 7l-?2:1: - —;—logz +0(log2/3z>.

ngz

Thus, there is the deeper question of the sign changes, or extrema, of
Z a(n) m? 1 ] / w? 1 1
— — | —z — -log=z —z — =logz ).
2T 6 28 6 2%

THEOREM 10. Let a > 2. Then (Z %a(n) - Clat 1).1,“) /z® has limit 0 (as

n<z n a

x — oo ), is always positive for ¢ = 2, 3 and 4, and is negative for at most a finite

number of positive integers « for any fixed integer a > 5.

PROOF: By Corollary 3.1, with ¢ =1, we have for a > 2

. 1. 1 1
Z—a,(zn)=;w PBE 12531(3)

n<z d<z d<z
1 r oaer 1 . /z B, 1
F L DY B (3 i I
r=2 d<z dsz
The argument now proceeds as in Theorem 7. n

Note. Had our object been solely to obtain our extreme values, then weaker and more
easily proven estimates would have sufficed. For example, one easily sees that

2.2

<1l ++1
zzogz z+3.

For we have

12 2 2’
and also
le/z 1 1 1
Sotm> T2 4 (2 Sk -- 2 1)
ngz n<x 2nin ) 2 n<z n ngz n
>7r""nz_az:_2 Zl _zlogz =
12 2 n>zn2 2 2
m2z?  zloge 1
2 -~ —T— -
12 2 2

We now obtain Corollary 6.1 by observing that |f(z)] < 007722 for z > 600.
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