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Abstract

In this paper we have introduced extensions yv(a, x; b) and fu(a, x; b) of the generalized
Gamma functions y (a, x; b) and V(a, x\ b) considered recently by Chaudhry and Zubair.
These extensions are found useful in the representations of the Laplace and tf-transforms
of a class of functions. We have also defined a generalization of the inverse Gaussian
distribution. The cumulative and the reliability functions of the generalized inverse Gaus-
sian distribution are expressed in terms of these functions. Some useful properties of the
functions are also discussed.

1. Introduction

The inverse Gaussian density function

g(t) = (v/lnt3)"1 e-^-rtM, t,li,v> 0, (1)

arises as the density of the first passage time of the Brownian motion with positive
drift (see, [23], [24], [36], [44], [45], [50], [53], [58], [59], [71], [74]). The model has
been used in the reliability theory and in the theory of demographic rates (see, [38],
[44], [54], [68], [70], [73]). Good [33] proposed the generalized inverse Gaussian
distribution

h{t) = t°-ie-°>-bt-' it > 0, a > 0, b > 0, -oo < a < oo), (2)
/ ice; a, b)

which was used by Sichel ([68], [69]) to construct mixture of Poisson distributions.
Barndorff-Nielsen ([10], [11]) used the generalized inverse Gaussian distribution
(2) as a mixing distribution to obtain the generalized hyperbolic distribution as a
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mixture of normal distributions. Wise [74] used the model (2) in biomedicine and
Marcus [44] used it as a unified stochastic model for the power laws in compartment
analysis. Blaesild [14] discussed some probabilistic properties of (2). He computed the
moments and cumulants and considered the shape of the density. Barndorff-Nielsen
([10], [11]) and Halgreen [36] showed that the density (2) is infinitely divisible and
Halgreen [36] proved that (2) is self-decomposable (see also [40], [41]). Chhikara
and Folks ([23], [24]) used the inverse Gaussian distribution (1) as a lifetime model
and discussed its statistical applications.

Jorgensen [44] studied the distribution (2) systematically and discussed its ap-
plications in different fields like fractures of airconditioning equipment, traffic data,
fracture toughness of MIG welds and repair time data (see also, [9], [11], [23], [38],
[42], [54], [66]).
A natural generalization of the generalized inverse Gaussian model (2) is

f{t) = C(a; a, b)ta~le""Wo v+i{2b/1) (a > 0, b > 0, t > 0, -oo < a < oo),
(3)

where

C = C{a;a,b) = (j t^e"" W0,v+> {2b/t)dt\ (4)

is the normalizing constant and Wkill is one of the Whittaker functions [47]. It should
be noted that for v = 0 in (3) we get the generalized inverse Gaussian distribution (2).
Several classical densities like Weibull, Gamma, Erlang, Exponential, Raleigh, and
Chi-square can be derived from (2) by simple transformation of the variable t or by
specialization of the parameters a, a and b. Therefore all of these classical densities
arising in diverse fields of applications are special cases of the model proposed in (3).

The study of the model (3) will provide a unified approach to the systematical
analysis of the probability densities encountered in forestry, reliability theory and in
demographic rates (see [19], [20], [54], [73]). The cumulative density function of the
density (3) is

f dt, ix>0, b> 0), (5)Fix)

and its reliability

= c/<
Jo

function

pcr-l e-ai j y (

is given by

R(x) =

ilb/t)dt,

1 - Fix). (6)

The study of the functions Fix) and Rix) is important in statistics and in reliability
theory. In particular, the systematic study of these functions will extend the usefulness
of the generalized inverse Gaussian distributions in reliability and lifetesting situations
with censored data.
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It should be noted that according to ([47], page 279) the Whittaker function W0,v
can be expressed in terms of the Macdonald function to give

o.w(2z); (7)

therefore, equations (3), (4) and (5) can be simplified in terms of the Macdonald
function Kv by using (7).

In this paper we introduce a pair of new functions

Yv(a,x;b) = (^\ I" t-\ e-Kv+i(b/t)dt (8)

and

rv(a,x;b) = l — \ J t°-ie-'Kv+i

(Re x > 0, Re b > 0, -oo < a < oo). (9)

It follows from (5) - (9) that

F(x) = Ca-ayv(a, ax; ab) (10)

and

R(x) = l-Ca-arv(a,ax;ab). (11)
It should be noted that the closed form solutions to a considerable number of problems
in applied mathematics, astrophysics, nuclear physics, statistics and engineering can
be expressed in terms of incomplete Gamma functions ([18], [21], [30], [35], [37],
[43], [42], [47], [52], [57], [62], [59], [65], [75-77])

(or, x) = [ ta-xe~' dt, (Re a > 0)
Jo

y(a,x)= I t"-le-'dt, (Re a > 0) (12)

and

t,x)= I
Jx

oo
u-\ -tY(a,x)= \ ta-le"dt. (13)

These functions were investigated for real x by Legendre ([48], [49]). The functional
behavior of these functions and the decomposition formula

y(a, x) + r(a,x) = r(a) (14)

were studied by Prym ([27], page 152). The older theory of the incomplete Gamma
functions (12) - (13) and references to the literature are given by Nielsen ([55], [56])
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and Bohmer [15]. Recently, Chaudhry and Zubair [22] have introduced generalized
Gamma functions

y(a,x;b)= r^e—"'-'*, (15)
J-[

-IT{a,x;b)=j t"-xe-'-br dt, (16)
J X

found useful in the analytic study of a considerable number of heat conduction prob-
lems in a semi-infinite solid with time dependent boundary conditions ([22], [21],
[75 - 77]) and in probability theory ([19], [20]). It should be noted that the substitu-
tion v = 0 in (8) - (9) leads to

yo(a,x;b) = y(a,x;b) (17)

and
ro(a, x; b) = r > , x; b). (18)

Therefore the functions yv(a, x\b) and Yv(a, x;b) can be regarded as extensions
of the generalized Gamma functions (15) - (16) found useful in statistics, applied
mathematics and engineering.

In this paper we have studied important properties of these functions such as
decomposition formula, special cases, differentiation formula, recurrence relations
and Laplace transform representations. It is anticipated that the work presented in this
paper will inspire scientists and engineers to find wide applications of these functions
in several physical problems. It should be noted that for the most part the expressions
used are analytic and hence retain their validity for the complex case because of the
principle of analytic continuation. The proofs of some of the identities follow from
the simple manipulations of the definitions (8) - (9); we have stated these identities
as theorems for completeness.

2. Main Results and Applications

THEOREM 1. (Decomposition theorem)

(-00 < a < 00, Re b > 0). (19)

PROOF. Substituting /* = \ in ([29], page 375(25)) and using the fact ([47], page 112)

z, (20)
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we get

i/2

Replacing v by v + | in (21) and simplifying we get

x°-h-*Kv+i(b/x)dx

(22)

From (8) - (9) and (22) we get the proof.

COROLLARY.

y (o, x; b) + T(a, x; b) = 2ba/2Ka(2^b)- (23)

PROOF. This follows from (18) when we substitute v = 0 and use the fact ([28], page
217(18))

-J. i (I - 0 • (I - *))=
COROLLARY.

y(a,x) + r(a,x) = r(a), (Rea>0). (25)

PROOF. This follows from (23) when we let b —> 0+ and use the fact ([47], page 136)

limb" Ka(b) = 2o- ' r (a) , (Rea > 0). (26)
b0

REMARK.

r_v_i(a,x;b) = rv(a,x;b). (27)

PROOF. This follows from the fact ([47], page 110) that Kv(z) = K_v(z). In particular,
for v = 0 in (27) we get

r_,(a, x; b) = ro(a, x\ b) = T{a, x; b). (28)
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THEOREM 2. (Recurrence relation)

ll I vir^,,;») + MV.,6, - 1. x;» + ( ^ f . - r -1 *„• Wx>.
\n J

(Re b > 0, - c o < a < oo). (29)
PROOF. According to ([34], page 970(8.486)(12)), we have

+ (v + -)t~l Kv+i (b/t). (30)

Differentiating fa~5e~'ATv+i (ft/r) with respect to t and using (30), we get

Multiplying both sides in (31) by (^) and integrating from x to oo and using (9),
we get

= (a + v)rv(a,x;b) + bTv_x(a - \,x\b) - Tv{a + l,x;b). (32)

A rearrangement of the terms in (32) yields the proof of the theorem.

COROLLARY. (See [22])

r(or + 1,JC; b) = «r(o, x; b) + bV(a - 1, x; b) + x"e-x-bx'\ (33)

PROOF. This follows from (29) when we substitute v = 0 and use equations (20) and
(28). In particular substituting b = 0 in (33) we get the recurrence relation ([34], page
942(8.356))

(34)

for the classical incomplete Gamma function.

THEOREM 3. (Laplace transform representations) Let

l , r > 0
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be the Heaviside unit step function and L be the Laplace transform operator. Then

1/2
a3

ta-iKv+
(35)

and

(x > 0, Re b > 0, - o o < or < oo).

PROOF. By definition of the Laplace transformation we have

n ( a , SX; sb),

(36)

= I™ t"-iKv+k{b/t)e-s'dt. (37)
Jx

Substituting t = z/s, dt = dx/s, we get

/

oo /<oo

ta-i>Kv+,_(b/t)e-sldt=s-a+'i T"-h-TKv+!.(bs/T)dT. (38)
JSX

From (9), (37) and (38), we get the proof of (35). The proof of (36) follows similarly.

COROLLARY.

L{rl/2e-b"H{t-x);s]

'-)\. (39)

L{r3/2e-""H(t-xy,s)

[ (
PROOF. These identities follow from (35) when we substitute v = 0, a = ±1/2 and
use the fact [22]

(41)
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and

3 [ ^
(42)

It should be noted that the identities (39) and (40) are sharp and do not seem to be
known in the literature. In particular, when we take b = 0 in (39) we get (see [28],
page 135(15))

L{rl/2H(t-x);s} = Vxs-1'2 Erie (y/sx), x > 0, s > 0. (43)

THEOREM 4. (Evaluation of Tv(a, x; b) for integral values of v) Let T(a, x; b) be the
generalized gamma function as defined by (9). Then

:-b) ( « 6 {0,1,2,3,...}).

(44)

PROOF. This follows from the representation (9) and from the fact ([27], page 10) that

m!

REMARK. Since the generalized gamma function r (̂  + m, x; b), m e {0, ±1 , ±2,
±3 , . . . } , can be simplified in terms of error functions [22], it follows from (44) that for
a = r + 1, r e {0, ±1 , ±2, ±3 , . . . } , the function Tn {r + 5, x; b) is expressible in
terms of error functions. Moreover, according to (27), F_n_i (a, x; b) = Fn(a, x; b),
therefore, Vn (r + ^, x; b) should be simplified in terms of error functions for all
r , n e { 0 , ± l , ± 2 , ± 3 , . . . } .

THEOREM 5. (Parametric differentiation)

r
ob b

PROOF. Differentiating both sides of (9) with respect to the parameter b we get

1/2 /.oo

v.1(a - l,x;b)\ (45)

3 i (2by* r°° a_3
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It should be noted that the process of differentiation under the integral sign in (46)
is justified ([16], pages 427-448). Using the differentiation formula ([32, page
970(8.486)(12)) for the Macdonald function, we get

b~tKv~k {b/t)\dt

\ (47)= i - Tp(a, x; b) - U (v + I ) rv(a, x; b) + bVv_x{a - \,x; b)\ .

The simplification in (47) yields the proof of (45). In particular for v — 0 in (45), we
get the differentiation formula [22]

for the generalized incomplete gamma function.

THEOREM 6. (K-transform Representation) Let Rv be the K-transform operator as
defined by ([23], page 125)

RAf(t);b]= f f(t)Kv(bt)(bty>2dt.
Jo

Then

Rv [t—le-l"H(x - t)H(t); b] = ( | )1 / 2 IV, L, i ; b\ (48)

and

R^t—ie-V'Hit-xy.b] = (|)'/2Xv-i («, l-\b\ . (49)

PROOF. Replacing x by l/x and v by v — £ in (9), we get

( 1 \ /1h '^a>-'b) = [—
Substituting § = \/t, d% = -dt/t2 in (50), we get

I i-a-hSKv(b/$)dt; = f ra-le-l"Kv(bt)tl/2dt. (51)
J\/x J0

(50)
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From (50) and (51), we get

( 1 \ / 2 \ 1 / 2 f*

a'x"'b) = (n) J r<"le~U'[K^bt^bty/2]dt

- J / r"-le-1/lH(x - t)H(f)[Kv(bt)Wl/1] dt. (52)

From (51) and (52), we get the proof of (48).

The proof of (49) follows similarly. It should be noted that several special cases of
(48) - (49) can be listed.

REMARK. The equation (44) gives the relationship between Tv(a, x; b) and F(a,x; b)
for integral values of v. For non-integral values of v we have not been able to express
Tv(a,x;b) in terms of other tabulated classical functions and this remains an open
problem. However, we have the following important result.

THEOREM 7. (Integration with respect to the parameter v)

2' x '
1/2

PROOF. According to (8) we have

— \ J ra-h-'Kiv(b/t)dt. (55)

Substituting t = 1/r, dt = —dz/z2 we get

— ) / z. (56)
\/x

Integrating both sides in (56) with respect to v from v = 0 to v = oo using the fact
([47], page 153(6.5.13)) we get

1/2

(57)

/
oo / irh\ C°°

y-̂ <-«.«»<i.-(T) irl"'^
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It should be noted that the process of integration under the integral sign in (57) is
justified ([16], pages 427^148). Multiplying both sides in (57) by (f )1/2 b" we get the
proof of (53). The proof of (54) follows similarly. In particular substituting a = 0 in
(53) and using (41) we get

f Y-i+iv(0,x;b)dv
Jo

3. Tabular and Graphical Representations

For numerical and scientific computations, the extension functions yv(a, x; b) and
Tv(a, x; b) can be tabulated by using IMSL FORTRAN subroutines for mathematical
applications [39]. The values of the function can be calculated by using the numerical
integration subroutine QDAGI. The subroutine uses a globally adaptive scheme in
an attempt to reduce the absolute error. It should be noted that QDAGI is an imple-
mentation of the subroutine QAGI, which is fully documented by Piessens et al. [61].
The modified Bessel functions of the third kind (equations (8) - (9)) are computed
by the IMSL subroutine BSKS which is based on the work of Cody [25]. On the
other hand, subroutine GAMIC which is based on the computational procedure of
Gautschi [32], is used for the incomplete Gamma function. It should be added that
I"1 (a, x; 0), calculated by using the numerical integration QDAGI provides exactly the
same results as that of the incomplete Gamma function calculated by the subroutine
GAMIC.

The normalized representation of the function Fu(a, x\ b) for v = 0 and various
values of the parameters a and b is given in [22]. The representation for v ^ 0 can
be found similarly.
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