The Lives and Death-Throes of Massive Stars Proceedings IAU Symposium No. 329, 2016 J.J. Eldridge, J.C. Bray, L.A.S. McClelland & L. Xiao, eds.

The outer disk of the classical Be star ψ Per

Robert Klement^{1,2}, Alex C. Carciofi³, Thomas Rivinius², Lynn D. Matthews⁴, Richard Ignace⁵, Jon E. Bjorkman⁶, Rodrigo G. Vieira³, Bruno C. Mota³, Daniel M. Faes³, Stanislav Štefl[†]

¹Astronomical Institute of Charles University, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic, email: robertklement@gmail.com

²European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile

³Instituto de Astronomia, Geofíisica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, 05508-090, São Paulo, Brazil

⁴MIT Haystack Observatory, off Route 40, Westford MA 01886, USA

 $^5 \mathrm{Department}$ of Physics & Astronomy, East Tennessee State University, Johnson City, TN 37614, USA

⁶Ritter Observatory, Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA

[†]Deceased

Abstract. To this date ψ Per is the only classical Be star that was angularly resolved in radio (by the VLA at $\lambda = 2 \text{ cm}$). Gaussian fit to the azimuthally averaged visibility data indicates a disk size (FWHM) of ~ 500 stellar radii (Dougherty & Taylor 1992). Recently, we obtained new multi-band cm flux density measurements of ψ Per from the enhanced VLA. We modeled the observed spectral energy distribution (SED) covering the interval from ultraviolet to radio using the Monte Carlo radiative transfer code HDUST (Carciofi & Bjorkman 2006). An SED turndown, that occurs between far-IR and radio wavelengths, is explained by a truncated viscous decretion disk (VDD), although the shallow slope of the radio SED suggests that the disk is not simply cut off, as is assumed in our model. The best-fit size of a truncated disk derived from the modeling of the radio SED is 100^{+5}_{-15} stellar radii, which is in striking contrast with the result of Dougherty & Taylor (1992). The reasons for this discrepancy are under investigation.

Keywords. stars: individual (ψ Per), stars: emission-line, Be, radio continuum: stars

Figure 1. Azimuthally averaged visibility data of Dougherty & Taylor (points) and a Gaussian fit to them (thick line) overplotted with the visibility curves derived from our azimuthally averaged models with different disk sizes (in stellar equatorial radii R_e). The disk size best reproducing the radio SED is 100 R_e , which does not agree well with the interferometric data.

References

Carciofi, A.C. & Bjorkman, J.E. 2006, *ApJ*, 639, 1081 Dougherty, S.M. & Taylor A.R. 1992, *Nature*, 359, 808