The outer disk of the classical Be star ψ Per

Robert Klement1,2, Alex C. Carciofi3, Thomas Rivinius2, Lynn D. Matthews4, Richard Ignace5, Jon E. Bjorkman6, Rodrigo G. Vieira3, Bruno C. Mota3, Daniel M. Faes3, Stanislav Štefl

1Astronomical Institute of Charles University, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic, email: robertklement@gmail.com
2European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago, Chile
3Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, 05508-090, São Paulo, Brazil
4MIT Haystack Observatory, off Route 40, Westford MA 01886, USA
5Department of Physics & Astronomy, East Tennessee State University, Johnson City, TN 37614, USA
6Ritter Observatory, Department of Physics & Astronomy, University of Toledo, Toledo, OH 43606, USA

†Deceased

Abstract. To this date ψ Per is the only classical Be star that was angularly resolved in radio (by the VLA at $\lambda = 2$ cm). Gaussian fit to the azimuthally averaged visibility data indicates a disk size (FWHM) of ~ 500 stellar radii (Dougherty & Taylor 1992). Recently, we obtained new multi-band cm flux density measurements of ψ Per from the enhanced VLA. We modeled the observed spectral energy distribution (SED) covering the interval from ultraviolet to radio using the Monte Carlo radiative transfer code HDUST (Carciofi & Bjorkman 2006). An SED turndown, that occurs between far-IR and radio wavelengths, is explained by a truncated viscous decretion disk (VDD), although the shallow slope of the radio SED suggests that the disk is not simply cut off, as is assumed in our model. The best-fit size of a truncated disk derived from the modeling of the radio SED is 100^{+5}_{-15} stellar radii, which is in striking contrast with the result of Dougherty & Taylor (1992). The reasons for this discrepancy are under investigation.

Keywords. stars: individual (ψ Per), stars: emission-line, Be, radio continuum: stars

Figure 1. Azimuthally averaged visibility data of Dougherty & Taylor (points) and a Gaussian fit to them (thick line) overplotted with the visibility curves derived from our azimuthally averaged models with different disk sizes (in stellar equatorial radii R_e). The disk size best reproducing the radio SED is 100R_e, which does not agree well with the interferometric data.

References