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1. Introduction

Let K be an algebraically closed ¢eld of characteristic zero, and let Q be a quiver with
vertex set I . If a 2 NI , the space of representations of Q of dimension vector a is

RepðQ; aÞ ¼
M
a2Q

MatðahðaÞ � atðaÞ;KÞ;

where hðaÞ and tðaÞ denote the head and tail vertices of an arrow a. The group

GðaÞ ¼
Y
i2I

GLðai;KÞ

 !�
K�

acts by conjugation on RepðQ; aÞ and on its cotangent bundle, which may be iden-
ti¢ed with RepðQ; aÞ, where Q is the double of Q, obtained from Q by adjoining
a reverse arrow a�: j ! i for each arrow a: i ! j in Q. There is a corresponding
moment map

ma: RepðQ; aÞ ! EndðaÞ0; maðxÞi ¼
X
a2Q

hðaÞ¼i

xaxa� �
X
a2Q

tðaÞ¼i

xa�xa
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where

EndðaÞ0 ¼ y 2
M
i2I

Matðai;KÞ j
X
i2I

trðyiÞ ¼ 0

( )
ffi ðLieGðaÞÞ�;

and the Marsden^Weinstein reductions (or symplectic reductions) are the af¢ne
quotient varieties

Nðl; aÞ ¼ m�1
a ðlÞ==GðaÞ;

where l is an element of KI with l � a ¼
P

i2I liai equal to zero, and it is identi¢ed
with the element of EndðaÞ0 whose ith component is liI . (Although it is possible
to equip Nðl; aÞ with the structure of a scheme, possibly not reduced, we do not
do so in this paper.)

We studied this situation in a previous paper [2], to which we refer for further
information. We showed there that m�1

a ðlÞ and Nðl; aÞ are nonempty if and only
if a 2 NRþ

l , the set of sums (including 0) of elements of the set Rþ
l of positive roots

a with l � a ¼ 0 (using the root system in ZI associated to Q, see [3]).
The elements of m�1

a ðlÞ correspond to modules for a certain algebra Pl, the
deformed preprojective algebra of [1], and the points of Nðl; aÞ correspond to
isomorphism classes of semisimple Pl-modules of dimension a. In [2] we showed
that the possible dimension vectors of simple Pl-modules are the elements of
the set

Sl ¼ a 2 Rþ
l j pðaÞ >

Xr

t¼1

pðbðtÞÞ whenever rX 2; a ¼
Xr

t¼1

bðtÞ and bðtÞ 2 Rþ
l

( )

where pðaÞ ¼ 1 � a � aþ
P

a2Q atðaÞahðaÞ. Moreover, we showed that if a 2 Sl then
m�1
a ðlÞ and Nðl; aÞ are irreducible varieties of dimension a � a� 1 þ 2pðaÞ and

2pðaÞ respectively. For general a 2 NRþ
l it seems that m�1

a ðlÞ may be rather
complicated, but we show here that Nðl; aÞ is well-behaved. If X is an af¢ne variety
we denote by SmX the symmetric product of m copies of X . Our main result is
as follows.

THEOREM 1.1. Any a 2 NRþ
l has a decomposition a ¼ sð1Þ þ � � � þ sðrÞ as a sum of

elements of Sl, with the property that any other decomposition of a as a sum of
elements of Sl is a re¢nement of this decomposition. Collecting terms and rewriting
this decomposition as a ¼

Ps
t¼1 mtsðtÞ where sð1Þ; . . . ; sðsÞ are distinct and

m1; . . . ;ms are positive integers, we have

Nðl; aÞ ffi
Ys

t¼1

SmtNðl; sðtÞÞ:

The ¢rst part of the theorem means that if a ¼
Pn

j¼1 b
ðjÞ with bðjÞ 2 Sl, then

sðtÞ ¼
P

j2Pt
bðjÞ for some partition

Sr
t¼1 Pt of f1; . . . ; ng.
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Recall that the roots b can be divided into three classes: the real roots which have
pðbÞ ¼ 0, the isotropic imaginary roots which have pðbÞ ¼ 1, and the nonisotropic
imaginary roots which have pðbÞ > 1. We have some observations concerning these
classes.

PROPOSITION 1.2. (1) If b is a real root in Sl, then Nðl; bÞ is a point.
(2) If b is an isotropic imaginary root in Sl, then it is indivisible (its components

have no common divisor) and Nðl; bÞ is isomorphic to a deformation of a Kleinian
singularity.

(3) If b is a nonisotropic imaginary root inSl then any positive multiple of b is also in
Sl.

It follows from the proposition (or directly from the proof of the theorem) that
mt ¼ 1 whenever sðtÞ is a nonisotropic imaginary root. Thus the theorem actually
gives

Nðl; aÞ ffi
Ys

t¼1
pðsðtÞÞ¼1

SmtNðl; sðtÞÞ �
Ys

t¼1
pðsðtÞÞ>1

Nðl; sðtÞÞ:

EXAMPLE 1.3. If Q is an extended Dynkin quiver with vertex set f0; 1; . . . ; ng and
l ¼ 0, then S0 ¼ fd; e0; . . . ; eng where d is the minimal positive imaginary root
and ei are the coordinate vectors. Thus the decomposition of a 2 NI is

a ¼ dþ � � � þ d|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m

þ e0 þ � � � þ e0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
a0�md0

þ � � � þ en þ � � � þ en|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
an�mdn

;

where m is the largest integer with mdW a. Thus Nð0; aÞ ffi SmNð0; dÞ, and Nð0; dÞ is
the Kleinian singularity of type Q. See for example [1, Theorem 8.10].

If a 2 NRþ
l , we denote by jajl the maximum value of

Pn
i¼1 pðbðiÞÞ over all

decompositions a ¼
Pn

i¼1 b
ðiÞ with the bðiÞ in Rþ

l . In fact one may assume that
all bðiÞ are in Sl, for amongst all decompositions which realize the maximum,
one that has as many terms as possible clearly has this property. Now by
Theorem 1.1, any decomposition of a as a sum of elements of Sl is a re¢nement
of one special decomposition a ¼

Pr
t¼1 s

ðtÞ. The de¢ning property of Sl then shows
that the maximum is only achieved by this special decomposition. In particular
jajl ¼

Pr
t¼1 pðsðtÞÞ.

Recall that Nðl; aÞ classi¢es the semisimple Pl-modules of dimension a. If X is a
semisimple Pl-module, one says that X has representation type ðk1; b

ð1Þ; . . . ;

kn; b
ðnÞ
Þ if it has composition factors of dimensions bðiÞ occurring with multiplicity

ki. Now Theorem 1.1 and [2, Theorems 1.3,1.4] have the following immediate con-
sequence.
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COROLLARY 1.4. If a 2 NRþ
l , then Nðl; aÞ is an irreducible variety of

dimension 2jajl. The general element of Nðl; aÞ has representation type
ðm1; sð1Þ; . . . ;ms; sðsÞÞ:

2. Preliminary Results

Let Q be a quiver with vertex set I . We denote by ð�;�Þ the symmetric bilinear form
on ZI ,

ða; bÞ ¼
X
i2I

2aibi �
X
a2Q

ahðaÞbtðaÞ

and by qðaÞ ¼ 1
2 ða; aÞ the corresponding quadratic form. Thus pðaÞ ¼ 1 � qðaÞ. We

denote by ei 2 NI the coordinate vector for a vertex i 2 I .
If i is a loopfree vertex (so ðei; eiÞ ¼ 2) there is a re£ection si:Z

I
! ZI de¢ned by

siðaÞ ¼ a� ða; eiÞei, and a dual re£ection ri: KI ! KI with riðlÞj ¼ lj � ðei; ejÞli.
The re£ection at vertex i is said to be admissible for the pair ðl; aÞ if li 6¼ 0. In this
case it is shown in [1] that there are re£ection functors relating Pl-modules of
dimension a with PriðlÞ-modules of dimension siðaÞ. Let � be the equivalence relation
on KI �ZI generated by ðl; aÞ � ðriðlÞ; siðlÞÞ whenever the re£ection at i is admiss-
ible for ðl; aÞ. We say that ðn; bÞ is obtained from ðl; aÞ by a sequence of admissible
re£ections if they are in the same equivalence class.

LEMMA 2.1. If ðn; bÞ is obtained from ðl; aÞ by a sequence of admissible re£ections
then Nðn; bÞ ffi Nðl; aÞ.

Proof. This follows from [2, Lemma 2.2]. &

If p is an oriented cycle in Q then for any a 2 NI there is a trace function

trp: RepðQ; aÞ ! K; x 7! trðxa1 . . . xa‘ Þ

where p ¼ a1 . . . a‘. It is invariant under the action of GðaÞ.

LEMMA 2.2. If l 2 KI and a 2 NI then the ring of invariants K½m�1
a ðlÞ�GLðaÞ is gen-

erated by the restrictions of the trace functions trp where p runs through the oriented
cycles in Q.

Proof. By [5] the ring of invariants K ½RepðQ; aÞ�GðaÞ is generated by the trp. Now
m�1
a ðlÞ is a closed subvariety of RepðQ; aÞ, so the restriction map on functions

K ½RepðQ; aÞ� ! K ½m�1
a ðlÞ�

is surjective. Since GðaÞ is reductive and the base ¢eld K has characteristic zero, there
is a Reynolds operator, and so it remains surjective on taking invariants. &
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The following result was pointed out to the author by A. Maffei in the context of
Nakajima’s quiver varieties. (The proof is our own.) If li ¼ 0 we denote by Si

the Pl-module with dimension vector ei in which all arrows are zero.

LEMMA 2.3. If i is a vertex with li ¼ 0 and ða; eiÞ > 0, then any representation of Pl

of dimension a has Si as a composition factor, and there is an isomorphism
Nðl; a� eiÞ ffi Nðl; aÞ:

Proof. Since ða; eiÞ > 0 the vertex i must be loopfree. Now some composition factor
must have dimension b with ðb; eiÞ > 0. Then b ¼ ei by [2, Lemma 7.2]. Since there is
no loop at vertex i, the relevant composition factor is isomorphic to Si. Now because
li ¼ 0, the choice of a decomposition Kai ffi Kai�1 � K induces an embedding
m�1
a�ei

ðlÞ ! m�1
a ðlÞ and hence a map y:Nðl; a� eiÞ ! Nðl; aÞ which by the obser-

vation above is a bijection. We want to prove that is is an isomorphism of varieties.
For this it suf¢ces to prove that it is a closed embedding. That is, that the map
of commutative algebras

y�:K ½m�1
a ðlÞ�GðaÞ

! K ½m�1
a�ei

ðlÞ�Gða�eiÞ

is surjective. Now it is easy to see that this map sends the trace function trp for
dimension a to the trace function trp for dimension a� ei. Thus the assertion follows
from Lemma 2.2. &

3. Symmetric Products

Throughout this section Q is an extended Dynkin quiver, d is its minimal positive
imaginary root, and l 2 KI satis¢es l � d ¼ 0. We choose an extending vertex 0
for Q, which means that d0 ¼ 1.

We say that an element of the set NRþ
l is indecomposable if it is nonzero and it

cannot be written as a sum of two nonzero elements of this set.

LEMMA 3.1. The elements of Sl are d and the indecomposable elements of NRþ
l . All

elements are W d.
Proof. Clearly any real root a in Sl must be indecomposable since pðaÞ ¼ 0. Con-

versely, by [2, Lemma 5.5] any indecomposable element is in Sl. If a 2 Sl n fdg
is not W d then a� d is a root with some positive component, hence a positive root.
But a ¼ dþ ða� dÞ, contradicting indecomposability.

LEMMA 3.2. Any decomposition of md as a sum of elements of Sl is a re¢nement of
the decomposition

md ¼ dþ � � � þ d|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m

:
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Proof. Say að1Þ; . . . ; aðqÞ are elements of Sl with
Pr

t¼1 a
ðtÞ ¼ md. By induction it

suf¢ces to ¢nd a subset P of f1; . . . ; qg with
P

t2P aðtÞ ¼ d. We prove this by another
induction: if P is a subset for which the sum is a root b < d, we show how to
enlarge P so that the sum is a root W d. Now ðd; bÞ ¼ 0 and ðb; bÞ ¼ 2, so
ðb;

P
t 62P aðtÞÞ ¼ �2. Thus ðb; aðsÞÞW � 1 for some s 62 P. Clearly aðsÞ 6¼ d, so

qðbþ aðsÞÞ ¼ qðbÞ þ qðaðsÞÞ þ ðb; aðsÞÞW 1 þ 1 � 1 ¼ 1;

so bþ aðsÞ ¼
P

t2P[fsg a
ðtÞ is a root. Moreover bþ aðsÞ W d, for otherwise g ¼

bþ aðsÞ � d is a root (since qðgÞW 1) with some positive component, hence a positive
root. But then aðsÞ ¼ gþ ðd� bÞ, a sum of elements of Rþ

l , which contradicts the
fact that aðsÞ 2 Sl. &

LEMMA 3.3. K ½m�1
d ðlÞ�GLðdÞ is generated by the trace functions for paths in Q which

start and end at the extending vertex 0.
Proof. Since d0 ¼ 1, the trace function trp for a path which starts and ends at 0

involves the trace of a 1 � 1 matrix, which is just the unique entry of the matrix.
The assertion thus follows from [1, Corollary 8.11]. &

If X is an af¢ne variety, we write SmX for its mth symmetric product, the af¢ne
variety ðX � . . .� X Þ=Sm.

Writing TmA for the mth tensor power of an algebra A, we have K ½SmX � ¼

ðTmK ½X �Þ
Sm :

THEOREM 3.4. The direct sum map

Ym
j¼1

m�1
d ðlÞ ! m�1

mdðlÞ

induces an isomorphism

f :SmNðl; dÞ ! Nðl;mdÞ

Proof. By Lemma 3.2 we know that f is surjective. Thus it suf¢ces to prove that it is
a closed embedding, that is, that the map on functions

f �:K ½m�1
kd ðlÞ�

GLðkdÞ
! TkK ½m�1

d ðlÞ�GLðdÞ� �Sk

is surjective.
By Lemma 3.3 the ring K ½m�1

d ðlÞ�GLðdÞ is generated by the trace functions trp for p a
path in Q starting and ending at 0. Since the ring is ¢nitely generated, a ¢nite number
of paths p1; . . . ; pN suf¢ces.

For 1W j Wm let pj be the projection from the product of m copies of Nðl; dÞ onto
the jth factor. Thus the coordinate ring of this product is generated by elements
trpi � pj .
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There is a surjective map from the polynomial ring K ½xij: 1W iWN; 1W j Wm� to
TmðK ½m�1

d ðlÞ�GLðdÞ
Þ sending xij to trpi � pj. This induces a surjective map

K ½xij�
Sm ! TmK ½m�1

d ðlÞ�GLðdÞ� �Sm

Now by Lemma 3.5 below, K ½xij �
Sm is generated by the power sums

sr1;...;rN ¼
X

j

xr1
1j . . . x

rN
Nj:

Thus TmK½m�1
d ðlÞ�GLðdÞ� �Sm is generated by the elements

s0r1;...;rN
¼
X

j

ðtrp1 � pjÞ
r1 . . . ðtrpN � pjÞ

rN ¼
X

j

ðtrr1
p1
. . . trrN

pN
Þ � pj :

Since d0 ¼ 1 we have trptrq ¼ trpq for any paths p; q which start and end at 0, so
trr1

p1
. . . trrN

pN
¼ trp where p is the path pr1

1 . . . prN
N . Thus

s0r1;...;rN
¼
X

j

trp � pj:

This shows that s0r1;...;rN
is the image under f � of the trace function trp for m�1

mdðlÞ. Thus
the image of f � contains a set of generators, so f � is surjective, as required. &

LEMMA 3.5. If Sm acts on the polynomial ring K ½xij: 1W iWN; 1W j Wm� by
permuting the xij for each i, then the ring of invariants is generated by the power sums

sr1;...;rN ¼
X

j

xr1
1j . . . x

rN
Nj:

(r1; . . . ; rN X 0).
Proof. By [6, Chapter II, Section 3] the ring of invariants is generated by

polarizations of the elementary symmetric polynomials, so by elements of the form

fi1;i2;...;ik ¼
X

xi1j1xi2j2 . . . xikjk

where the sum is over all distinct j1; j2; . . . ; jk in the range 1 to m. Now the elementary
symmetric polynomials can be expressed as polynomials in the power sums by
Newton’s formulae, and on polarizing this expresses fi1;i2;...;ik as a polynomial in
the sr1;...;rN . For example polarizing the formula

X
j<k<‘

zjzkz‘ ¼
1
6

X
j

zj

 !3

�3
X

j

zj

 ! X
j

z2
j

 !
þ 2

X
j

z3
j

0
@

1
A
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with respect to the sets of variables xi1;j, xi2;j and xi3;j gives

fi1;i2;i3 ¼
X

j

xi1;j

 ! X
j

xi2;j

 ! X
j

xi3;j

 !
�

X
j

xi1;j

 ! X
j

xi2;jxi3;j

 !
�

�
X

j

xi2;j

 ! X
j

xi1;jxi3;j

 !
�

X
j

xi3;j

 ! X
j

xi1;jxi2;j

 !
þ

þ 2
X

j

xi1;jxi2;jxi3;j;

and all sums on the right hand side are of the form sr1;...;rN for suitable r1; . . . ; rN . &

4. Adding a Vertex to an Extended Dynkin Quiver

In this section let Q0 be an extended Dynkin quiver, let k be an extending vertex for
Q0, and let Q be a quiver obtained from Q0 by adjoining one vertex j and one arrow
joining j to k. Let I be the vertex set of Q and let d 2 NI be the minimal positive
imaginary root for Q0.

For any a 2 ZI we de¢ne a0 ¼ a� ajej . Thus a0j ¼ 0 and a0i ¼ ai for i 6¼ j. One can
think of a0 as the restriction of a to Q0.

Throughout this section we assume that l 2 KI satis¢es l � d ¼ lj ¼ 0. We prove
the following result which is used in the next section.

PROPOSITION 4.1. If a 2 Sl, aj ¼ 1 and md� a0 2 NRþ
l for some mX 0, then

a ¼ ej .

An example shows the necessity of the hypothesis that md� a0 2 NRþ
l .

EXAMPLE 4.2. Let Q be the quiver

with vertex set f1; 2; 3; 4g, so j ¼ 1, k ¼ 2, Q0 is of type ~AA2 and d ¼ ð0; 1; 1; 1Þ. If
l ¼ ð0; 1;�2; 1Þ then a ¼ ð1; 3; 2; 1Þ 2 Sl since by admissible re£ections at the
indicated vertices the pair ðl; aÞ transforms as

ðð0; 1;�2; 1Þ; ð1; 3; 2; 1ÞÞ �
2
ðð1;�1;�1; 2Þ; ð1; 1; 2; 1ÞÞ �

3
ðð1;�2; 1; 1Þ; ð1; 1; 0; 1ÞÞ

�
4
ðð1;�1; 2;�1Þ; ð1; 1; 0; 0ÞÞ �

2
ðð0; 1; 1;�2Þ; ð1; 0; 0; 0ÞÞ
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and it is clear that ð1; 0; 0; 0Þ 2 Sð0;1;1;�2Þ. However, it is easy to see that there is no m
with md� a0 ¼ ð0;m � 3;m � 2;m � 1Þ in NRþ

l .
Before proving the proposition we need some lemmas. Observe that for a vertex

i 62 fj; kg we have riðlÞ � d ¼ 0 and riðlÞj ¼ 0. On the other hand rkðlÞ � d ¼ 0, but
we may have rkðlÞj 6¼ 0.

LEMMA 4.3. If a 2 Sl and aj ¼ 1, then by a sequence of admissible re£ections at
vertices 6¼ j one can send ðl; aÞ to ðn; ejÞ for some n.

Proof. We consider the pairs ðn; bÞ which can be obtained from ðl; aÞ by a sequence
of such admissible re£ections. Always b is positive, since it is in Sn by [2, Lemma 5.2].
Thus we can choose a pair ðn; bÞ with b minimal. Clearly we have bj ¼ 1. For a
contradiction, suppose that b0 6¼ 0.

Since d is unchanged by these re£ections, we have n � d ¼ l � d ¼ 0. Also, for each
vertex i 6¼ j we have ðb; eiÞW 0, for either there is a loop at i, in which case it is
automatic, or ni ¼ 0, in which case it follows from [2, Lemma 7.2], or there is
an admissible re£ection at i, and it follows from the minimality of b. We deduce
that ðb0; eiÞW 0 for i 62 fj; kg, and ðb0; ekÞW 1.

Suppose ¢rst that ðb0; ekÞ ¼ 1. Then

0 ¼ ðb0; dÞ ¼
X
i 6¼j

ðb0; eiÞdi ¼ 1 þ
X

i 62fj;kg

ðb0; eiÞdi;

and all terms in the second sum are W 0. Thus exactly one of the terms is �1, and all
others are zero. That is, there is a vertex s 6¼ k in Q0 with ds ¼ 1 and ðb0; esÞ ¼ �1, and
ðb0; eiÞ ¼ 0 for all vertices i 62 fk; sg in Q0. This is impossible by [2, Lemma 8.8].

Thus ðb0; ekÞW 0. It follows that ðb0; b0ÞW 0, so since Q0 is extended Dynkin we
have b0 ¼ md for some m > 0. Now the decomposition b ¼ ej þ dþ � � � þ d is easily
seen to satisfy

pðbÞ ¼ 1 � qðej þ mdÞ ¼ �mðej; dÞ ¼ m ¼ pðejÞ þ pðdÞ þ � � � þ pðdÞ:

We have seen that d 2 Rþ
n . Also nj ¼ n � ej ¼ n � b ¼ l � a ¼ 0 since a 2 Sl, so that

ej 2 Rþ
n . This contradicts the fact that b 2 Sn.

Thus b0 ¼ 0, as required. &

LEMMA 4.4. If a 2 Sl and aj ¼ 1 then gk � 1W ða0; gÞW gk for any g 2 Rþ
l with g < d.

Proof. Some sequence of admissible re£ections at vertices 6¼ j sends ðl; aÞ to ðn; ejÞ.
If g 2 Rþ

l and gj ¼ 0 then by [2, Lemma 5.2] the re£ections send it to a positive root b,
still with bj ¼ 0. Thus ða; gÞ ¼ ðej; bÞW 0, and so

ða0; gÞ ¼ ða; gÞ � ðej; gÞW 0 � ð�gkÞ ¼ gk;

which is one of the inequalities. The other one is obtained by replacing g with
d� g 2 Rþ

l . &
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Choose a total ordering � on K as in [1, Section 7]. Let Q00 be the Dynkin quiver
obtained from Q0 by deleting the vertex k. Let I 00 be the vertex set of Q00. Recall
that a vector m 2 KI 00 is said to be dominant if mi � 0 for all i 2 I 00.

LEMMA 4.5. By a sequence of admissible re£ections at vertices in I 00 one can send
ðl; aÞ to a pair ðx; bÞ where x is a vector whose restriction to I 00 is dominant.

Proof. Apply [1, Lemma 7.2] to Q00, and then consider the sequence of re£ections as
re£ections for Q. Of course nonadmissible re£ections can be omitted, for if x 2 KI

and xi ¼ 0 then riðxÞ ¼ x. &

LEMMA 4.6. If the restriction of l to I 00 is dominant, and if g 2 NRþ
l has gj ¼ 0, then

there is some rX 0 with gi ¼ rdi for all vertices i with li 6¼ 0.
Proof. Any indecomposable element of NRþ

l which vanishes at j is W d, so it
suf¢ces to prove that if g 2 NI is a vector with gW d and l � g ¼ 0, then either
gi ¼ 0 for all i with li 6¼ 0, or gi ¼ di for all i with li 6¼ 0.

Since k is an extending vertex for Q0 we have dk ¼ 1, and so by replacing g by d� g
if necessary, we may assume that gk ¼ 0.

Now the equality l � g ¼ 0 implies that
P

i2I 00 gili ¼ 0. By the dominance condition
it follows that gi ¼ 0 for any vertex i 2 I 00 with li 6¼ 0. &

Proof of Proposition 4.1. First suppose that l ¼ 0. If a 6¼ ej then the expression for
a as a sum of coordinate vectors is a nontrivial decomposition into elements of Rþ

l .
Since pðaÞ ¼ 0 by Lemma 4.3, this contradicts the fact that a 2 Sl.

Thus we may suppose that l 6¼ 0. Replacing ðl; aÞ by the pair ðx; bÞ of Lemma 4.5,
we may assume that the restriction of l to I 00 is dominant. Observe that the re£ections
involved, at vertices in I 00, can change a, but they do not affect the dimension vectors
ej and d. The standing hypotheses on l still hold, as do the hypotheses of the prop-
osition by [2, Lemma 5.2].

Now the restriction of l to I 00 is nonzero, for otherwise the condition that l � d ¼ 0
implies that lk ¼ 0, and then since lj ¼ 0 we have l ¼ 0. Thus lk ¼ �

P
i2I 00 dili � 0.

By Lemma 4.6 there is some integer r with ðmd� a0Þi ¼ rdi for all i with li 6¼ 0. Let
b ¼ a0 � ðm � rÞd 2 ZI . Of course bj ¼ 0 and for any vertex i with li 6¼ 0 we have
bi ¼ 0.

Suppose that b is nonzero. Consider the restriction of b to a connected component
of the quiver obtained from Q0 by deleting all vertices i with li 6¼ 0. It is actually a
subquiver of Q00, so Dynkin. If Z is a positive root for this connected component,
then Z 2 Rþ

l , and

ðb; ZÞ ¼ ða0; ZÞ � ðm � rÞðd; ZÞ ¼ ða0; ZÞ;

so Lemma 4.4 implies that �1W ðb; ZÞW 0. But this is impossible by Lemma 4.7
below.

Thus b ¼ 0, so a ¼ ej þ ðm � rÞd. Now since pðaÞ ¼ 0 we have m ¼ r. &
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The above proof uses the following result about Dynkin quivers.

LEMMA 4.7. If Q� is a Dynkin quiver with vertex set I� then there is no nonzero vector
a 2 ZI� with �1W ða; ZÞW 0 for all positive roots Z for Q�.

Proof. We cannot have ða; eiÞ ¼ 0 for all i, for otherwise ða; aÞ ¼ 0, so a ¼ 0 since
Q� is Dynkin.

Embed Q� in an extended Dynkin quiver of the same type by adding an extending
vertex s, and consider a as a dimension vector for this quiver. Let d be the minimal
positive imaginary root.

Since d� es is a root for Q� we have ða; d� esÞX � 1. Now it is equal toP
i 6¼s diða; eiÞ, and all terms in the sum are W 0, but not all are zero. Thus exactly

one term is nonzero, say for i ¼ r, and it is equal to �1. This implies that r is
an extending vertex, and ða; erÞ ¼ �1. Thus the vector �a and the extending vertices
r and s contradict [2, Lemma 8.8]. &

5. Decomposing the Quiver

In this section we suppose that Q is a quiver whose vertex set I is a disjoint union
J [ K, and we write any a 2 NI as a ¼ aJ þ aK where the summands have support
in J and K respectively.

LEMMA 5.1. If the dimension vector of any composition factor of a Pl-module of
dimension a has support contained either in J or in K then

Nðl; aÞ ffi Nðl; aJ Þ � Nðl; aKÞ:

Proof. We can identify m�1
aJ ðlÞ � m�1

aK ðlÞ with a GðaÞ-stable closed subvariety of
m�1
a ðlÞ (de¢ned by the vanishing of all arrows with one end in J and the other

end in K). The inclusion thus induces a closed embedding

Nðl; aJ Þ � Nðl; aKÞ ! Nðl; aÞ;

and by the assumption on composition factors this is a bijection.
We give some cases when this can be applied. First we need a lemma.

LEMMA 5.2. Suppose there is a unique arrow with one end inJ and the other inK, say
connecting vertices j 2 J and k 2 K. Let ~QQ be the quiver with vertex set K [ fjg con-
taining this arrow, and all arrows with head and tail in K. Let m be the vector for
~QQ whose restriction to K is the same as l, and with mj ¼ 0.

Let a 2 NI and assume that aj ¼ 1 and l � aJ ¼ l � aK ¼ 0. Then a 2 NRþ
l if and

only if aJ 2 NRþ
l and ej þ aK 2 NRþ

m .
Proof. The statement does not depend on the orientation of the arrows in Q, so we

may suppose that the arrow connecting J and K is b: k ! j.
By [2, Theorem 4.4] the condition that a 2 NRþ

l is that there is a Pl-module of
dimension a. Similarly for the other two conditions.
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Now if the module is given by an element x 2 RepðQ; aÞ, then for any vertex i we
have

X
hðaÞ¼i

xaxa� �
X

tðbÞ¼i

xa�xa ¼ li1:

Taking the trace and summing over all i 2 J , all but one term cancels, leaving
trðxbxb� Þ ¼ 0. Since this is a 1 � 1 matrix we have xbxb� ¼ 0. It follows that the com-
ponents of x corresponding to arrows with head and tail in J de¢ne a Pl-module
of dimension aJ , and the remaining components of x de¢ne a Pmð ~QQÞ-module of
dimension ej þ aK. Clearly two such modules can also be used to construct a
Pl-module of dimension a. &

LEMMA 5.3. Suppose that l � aJ ¼ 0, there is a unique arrow b with one end in J and
the other in K, say connecting vertices j 2 J and k 2 K, and aj ¼ ak ¼ 1. Then the
dimension vector of any composition factor of aPl-module of dimension a has support
contained in J or K.

Proof. Because of the existence of a module of dimension awe have l � a ¼ 0, hence
also l � aK ¼ 0. For a contradiction, suppose there is a composition factor whose
dimension b does not have support in J or K. Then bj ¼ bk ¼ 1. Since the dimension
vector g of any other composition factor must have support in J or K, and has
l � g ¼ 0, we deduce that l � bJ ¼ l � bK ¼ 0.

By Lemma 5.2 we have bJ 2 NRþ
l , and by symmetry also bK 2 NRþ

l . But clearly
ðbK; bJ Þ ¼ �1, so that pðbÞ ¼ pðbJ Þ þ pðbKÞ, contradicting the fact that b 2 Sl. &

LEMMA 5.4. Suppose that l � aJ ¼ 0, there is a unique arrow with one end in J and
the other in K, say connecting vertices j 2 J and k 2 K, aj ¼ 1, the restriction of
Q to K is extended Dynkin with extending vertex k and minimal positive imaginary
root d, and aK ¼ md with mX 2. Then the dimension vector of any composition factor
of a Pl-module of dimension a has support contained in J or K.

Proof. Because of the existence of a module of dimension a, we have l � aK ¼ 0.
Since the ¢eld K has characteristic zero, we deduce that l � d ¼ 0.

For a contradiction, suppose there is a composition factor whose dimension b does
not have support in J or K. Then bj ¼ 1. Since the dimension vector g of any other
composition factor must have gj ¼ 0, it has support in J or K, and since it has
l � g ¼ 0, we deduce that l � bJ ¼ l � bK ¼ 0. Also md� bK 2 NRþ

l .
Let ~QQ be the quiver obtained from Q as in Lemma 5.2, and let m be the corre-

sponding vector. Since md� bK has support in K it can be considered as an element
of NRþ

m . By Lemma 5.2 we have bJ 2 NRþ
l and ej þ bK 2 NRþ

m . Now by assumption
bK is nonzero, so Proposition 4.1 implies that ej þ bK 62 Sm. By [2, Theorem 5.6] this
implies that there are nonzero f;c 2 NRþ

m with fþ c ¼ ej þ bK and
ðf;cÞ ~QQ X � 1. Without loss of generality, fj ¼ 0 and cj ¼ 1. Considered as a
dimension vector for Q we clearly have f 2 NRþ

l . Also, Lemma 5.2 applies to
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the dimension vector cþ bJ � ej , and shows that it belongs to NRþ
l . Since also

ðf;cþ bJ � ejÞ ¼ ðf;cÞ ~QQ X � 1;

we have b ¼ fþ ðcþ bJ � ejÞ 62 Sl by [2, Theorem 5.6]. A contradiction. &

6. Proof of the Theorem

Proof of Theorem 1.1. We prove this for all Q, l and a 2 NRþ
l by induction on the

maximum possible number of terms in an expression for a as a sum of elements of
Rþ

l . If a 2 Sl then the assertions are vacuous, so assume that a 62 Sl.
By [2, Lemma 5.2] and Lemma 2.1 we can always apply a sequence of admissible

re£ections to the pair ðl; aÞ. Let Fl be the set of [2, Section 7]. If a 62 Fl then by
applying a sequence of admissible re£ections to ðl; aÞ we may assume that there
is a loopfree vertex i with li ¼ 0 and ða; eiÞ > 0. Clearly in any decomposition of
a as a sum of elements of Sl one of the terms, say b, has ðb; eiÞ > 0. But by [2, Lemma
7.2] this implies that b ¼ ei. Now a� ei 2 NRþ

l , and by the inductive hypothesis the
assertions hold for a� ei. If the decomposition is

a� ei ¼ sð1Þ þ � � � þ sðrÞ

then clearly

a ¼ ei þ sð1Þ þ � � � þ sðrÞ

is a suitable decomposition of a. Moreover, if we have

Nðl; a� eiÞ ffi
Ys

t¼1

SmtNðl; sðtÞÞ;

then since Nðl; eiÞ is just a point, any term SmNðl; eiÞ if it occurs, can be removed, and
replaced by Smþ1Nðl; eiÞ without changing the product. Thus by Lemma 2.3 we
obtain the required expression for Nðl; aÞ.

Thus we are reduced to the case when a 2 Fl n Sl. By applying a sequence of
admissible re£ections to the pair ðl; aÞ, and then passing to the support quiver
of a, we may assume that one of the cases (I), (II) or (III) of [2, Theorem 8.1] holds.
We deal with each of these in turn.

Case (I). Here Q is extended Dynkin, l � d ¼ 0, and a ¼ md for some mX 2. By
Lemma 3.2 and Theorem 3.4 the decomposition a ¼ dþ � � � þ d has the required
properties.

Case (II). Here Q decomposes as in Lemma 5.3. In the notation of Section 5 we
write a ¼ aJ þ aK. Since a 2 NRþ

l there is a Pl-module of dimension a. Since
the dimension vector of any composition factor has support in J or K we deduce
that aJ and aK are in NRþ

l . By the inductive hypothesis the conclusions of the
theorem hold for aJ and aK. Adding together the decompositions of aJ and aK
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we obtain a decomposition of a. Obviously, since aJ and aK have disjoint support, no
summand occurs in both parts. The result thus follows from Lemmas 5.1 and 5.3.

Case (III). Here Q decomposes as in Lemma 5.4. We write a ¼ aJ þ md. Again aJ
and md are in NRþ

l and by the inductive hypothesis the conclusions of the theorem
hold for them. This gives a decomposition of a which has the required properties
by Lemmas 5.1 and 5.4. &

Proof of Proposition 1.2. (1) If b is a real root in Sl, then Nðl; bÞ is a point by [2,
Corollary 1.4].

(2) If b is an isotropic imaginary root in Sl, then it is indivisible, for if b ¼ rg then g
is a root, it has l � g ¼ 0 since the base ¢eld K has characteristic zero, and the
decomposition b ¼ gþ � � � þ g has pðbÞ < pðgÞ þ � � � þ pðgÞ, contrary to the de¢nition
of Sl.

By [2, Theorem 5.8], some sequence of admissible re£ections sends the pair ðl; bÞ to
a pair ðl0; b0Þ with b0 in the fundamental region. Since it is isotropic imaginary we
have ðb0; eiÞ ¼ 0 for any vertex i in the support of b0. By [3, ‰1.2] this implies that
the support quiver Q0 of b0 is extended Dynkin and b0 ¼ d, its minimal positive
imaginary root.

Finally Nðl; bÞ ffi Nðl0; dÞ by Lemma 2.1, and this is a deformation of the Kleinian
singularity of type Q0 by Kronheimer’s work [4] (see, for example [1, Section 8]).

(3) Suppose that b is a nonisotropic imaginary root in Sl and mX 2. If Fl is the set
of [2, Section 7], then [2, Lemma 7.4] implies that b 2 Fl and, hence, also mb 2 Fl.
Now in [2, Theorem 8.1], case (I) cannot occur since mb is nonisotropic, and cases
(II) and (III) cannot occur since all components of mb are divisible by m. Thus
mb 2 Sl. &
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