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Abstract. We decompose the Marsden—Weinstein reductions for the moment map associated to
representations of a quiver. The decomposition involves symmetric products of deformations of
Kleinian singularities, as well as other terms. As a corollary we deduce that the Marsden—
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1. Introduction

Let K be an algebraically closed field of characteristic zero, and let Q be a quiver with
vertex set I. If « € N’ the space of representations of Q of dimension vector o is

Rep(Q, %) = @) Mat(o) x %), K),
aeQ

where A(a) and #(a) denote the head and tail vertices of an arrow a. The group

G(x) = (]_[ GL(w;, K)) / K*

iel

acts by conjugation on Rep(Q, «) and on its cotangent bundle, which may be iden-
tified with Rep(Q, ), where Q is the double of Q, obtained from Q by adjoining
a reverse arrow a*:j — i for each arrow a:i — j in Q. There is a corresponding
moment map

1,: Rep(Q, o) — End(2)y,  p1,(x); = Z XaXar — Z XaxXa

aeQ aeQ
Ia)=i fa)=i
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where

End(2), = {0 e PMat(w;, K) | Y tr(0;) = 0 = (LieG(w)",

iel iel

and the Marsden—Weinstein reductions (or symplectic reductions) are the affine
quotient varieties

N(A, ) = 11, (2)//G(w),

where / is an element of K/ with 4.« = > s 4io equal to zero, and it is identified
with the element of End(a), whose ith component is 4;/. (Although it is possible
to equip N(/, o) with the structure of a scheme, possibly not reduced, we do not
do so in this paper.)

We studied this situation in a previous paper [2], to which we refer for further
information. We showed there that y;'(1) and N(/, o) are nonempty if and only
if « € NRY, the set of sums (including 0) of elements of the set R} of positive roots
o with /- o = 0 (using the root system in Z/ associated to Q, see [3]).

The elements of 1 !'(Z) correspond to modules for a certain algebra T, the
deformed preprojective algebra of [1], and the points of N(A,a) correspond to
isomorphism classes of semisimple IT*-modules of dimension «. In [2] we showed
that the possible dimension vectors of simple IT1*-modules are the elements of
the set

r

X, =10 €R | p() > Zp(ﬂ(’)) whenever r > 2,0 = Zﬁ(’) and g e Rj’}

=1 =1
where p(o) =1 —o - o+ ZGEQ Oy(a)On(a)- Moreover, we showed that if o € X, then
1;'(2) and N(Z, o) are irreducible varieties of dimension o-o — 1+ 2p(x) and
2p(x) respectively. For general o € NRI it seems that u,'(1) may be rather
complicated, but we show here that N(4, «) is well-behaved. If X is an affine variety
we denote by S”X the symmetric product of m copies of X. Our main result is
as follows.

THEOREM 1.1. Any « € NR} has a decomposition o = oV 4+ ...+ 6" as a sum of
elements of X,, with the property that any other decomposition of o as a sum of
elements of X, is a refinement of this decomposition. Collecting terms and rewriting
this decomposition as o= ;_mac? where oV, ... 69 are distinct and
my, ..., ms are positive integers, we have
S
N(G,a) 2= [ [S™N(4 o).

t=1

The first part of the theorem means that if o = Z]’Ll Y with p¥ € ¥,, then
o =Y p B for some partition (J;_; P, of {1.....n}.
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Recall that the roots f§ can be divided into three classes: the real roots which have
p(B) = 0, the isotropic imaginary roots which have p(f) = 1, and the nonisotropic
imaginary roots which have p(f/) > 1. We have some observations concerning these
classes.

PROPOSITION 1.2. (1) If B is a real root in X;, then N(J, ) is a point.

(2) If B is an isotropic imaginary root in X, then it is indivisible (its components
have no common divisor) and N(A, f) is isomorphic to a deformation of a Kleinian
singularity.

(3) If B is anonisotropic imaginary root in X, then any positive multiple of f is also in
2.

It follows from the proposition (or directly from the proof of the theorem) that
m; = 1 whenever ¢ is a nonisotropic imaginary root. Thus the theorem actually
gives

N

N
NG.o)= [T S™N@.a") x [] NG.a").
/l(af(f)l):l p(u'[(T)l)> 1

EXAMPLE 1.3. If Q is an extended Dynkin quiver with vertex set {0, 1, ..., n} and
A=0, then £y = {J, €, ...,¢&,} where J is the minimal positive imaginary root
and ¢ are the coordinate vectors. Thus the decomposition of « € N is

a=84 - +d+eo+ et ot +en
—————

m o9 —modg o —moy,

where m is the largest integer with md < a. Thus N(0, o) =2 S"N(0, ), and N(0, d) is
the Kleinian singularity of type Q. See for example [1, Theorem 8.10].

If « € NR}, we denote by |x|; the maximum value of S p(BD) over all
decompositions o =) 7, B9 with the p? in RS. In fact one may assume that
all ﬁ(i) are in X,;, for amongst all decompositions which realize the maximum,
one that has as many terms as possible clearly has this property. Now by
Theorem 1.1, any decomposition of o as a sum of elements of X, is a refinement
of one special decomposition o = Y";_, o). The defining property of £, then shows
that the maximum is only achieved by this special decomposition. In particular
lorl;, = ZL]P(G(’))- )

Recall that N(4, «) classifies the semisimple IT*-modules of dimension o. If X is a
semisimple IT*-module, one says that X has representation type (ki,Y;...;
kn, B™) if it has composition factors of dimensions ' occurring with multiplicity
k;. Now Theorem 1.1 and [2, Theorems 1.3,1.4] have the following immediate con-
sequence.
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COROLLARY 1.4. If o€ NRf, then N(i,a) is an irreducible variety of
dimension 2|a|;. The general element of N(A,a) has representation type
(my, 6W; .. my, 6W).

2. Preliminary Results

Let Q be a quiver with vertex set /. We denote by (—, —) the symmetric bilinear form
on 7/,

@A) =20 = owPBua

iel acQ

and by ¢g(o) = %(OC, o) the corresponding quadratic form. Thus p(a) = 1 — g(a). We
denote by & € N the coordinate vector for a vertex i € 1.

If i is a loopfree vertex (so (&, &) = 2) there is a reflection s;: Z/ — 7! defined by
si(a) = o — (o, &)e;, and a dual reflection r;: K/ — K with ri(2); = & — (i, &) .
The reflection at vertex i is said to be admissible for the pair (4, o) if 4; # 0. In this
case it is shown in [1] that there are reflection functors relating IT*-modules of
dimension « with IT"*-modules of dimension s;(c). Let ~ be the equivalence relation
on K! x 7' generated by (1, o) ~ (ri(1), si(1)) whenever the reflection at i is admiss-
ible for (4, a). We say that (v, f§) is obtained from (4, &) by a sequence of admissible
reflections if they are in the same equivalence class.

LEMMA 2.1. If (v, p) is obtained from (4, a) by a sequence of admissible reflections
then N(v, p) =2 N(4, a).
Proof. This follows from [2, Lemma 2.2]. O

If p is an oriented cycle in O then for any « € N’ there is a trace function
tr,: Rep(Q, o) = K, X1 tr(Xg, - - - Xq,)

where p = a; ...a,. It is invariant under the action of G(«).

LEMMA 2.2. If /. € K and o € N then the ring of invariants K[,u;l()L)]GL(“) is gen-
erated by the restrictions of the trace functions tr, where p runs through the oriented
cycles in Q.

Proof. By [5] the ring of invariants K[Rep(0, 2)]°® is generated by the tr,. Now
,u;l(i) is a closed subvariety of Rep(Q, a), so the restriction map on functions

K[Rep(Q, »)] = K[, (1)]

is surjective. Since G(«) is reductive and the base field K has characteristic zero, there
is a Reynolds operator, and so it remains surjective on taking invariants. O
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The following result was pointed out to the author by A. Maffei in the context of
Nakajima’s quiver varieties. (The proof is our own.) If 4; =0 we denote by S;
the IT*-module with dimension vector ¢; in which all arrows are zero.

LEMMA 2.3. If i is a vertex with J; = 0 and (a., &) > 0, then any representation of T1*
of dimension o has S; as a composition factor, and there is an isomorphism
N, 0 —¢&) =2 N4, o).

Proof. Since («, &) > 0 the vertex i must be loopfree. Now some composition factor
must have dimension  with (8, ¢;) > 0. Then f§ = ¢; by [2, Lemma 7.2]. Since there is
no loop at vertex i, the relevant composition factor is isomorphic to S;. Now because
Ji =0, the choice of a decomposition K% = K%' @ K induces an embedding
1!, (2) = p;'(4) and hence a map 0: N(4, o — &) — N(4,«) which by the obser-
vation above is a bijection. We want to prove that is is an isomorphism of varieties.
For this it suffices to prove that it is a closed embedding. That is, that the map
of commutative algebras

o K[.U;l(/l)]G(a) N K[M;_ISi(;L)]G(a—e,-)

is surjective. Now it is easy to see that this map sends the trace function tr, for
dimension « to the trace function tr, for dimension o — ¢;. Thus the assertion follows
from Lemma 2.2. O

3. Symmetric Products

Throughout this section Q is an extended Dynkin quiver, ¢ is its minimal positive
imaginary root, and 4 € K’ satisfies /-5 = 0. We choose an extending vertex 0
for Q, which means that oy = 1.

We say that an element of the set NR] is indecomposable if it is nonzero and it
cannot be written as a sum of two nonzero elements of this set.

LEMMA 3.1. The elements of £, are d and the indecomposable elements of NR}. All
elements are < 0.

Proof. Clearly any real root o in X, must be indecomposable since p(x) = 0. Con-
versely, by [2, Lemma 5.5] any indecomposable element is in X,. If a € X, \ {5}
isnot < ¢ then o — ¢ is a root with some positive component, hence a positive root.
But o = 0 + (¢ — 9), contradicting indecomposability.

LEMMA 3.2. Any decomposition of md as a sum of elements of X, is a refinement of
the decomposition

mo=0+---49.
———

m
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Proof. Say oV, ..., @ are elements of £; with Y _, ol = md. By induction it
suffices to find a subset P of {1,...,¢q} with ), «) = 5. We prove this by another
induction: if P is a subset for which the sum is a root f < J, we show how to
enlarge P so that the sum is a root <dJ. Now (J,6) =0 and (f, ) =2, so
(B, X sgp @) = =2. Thus (,a9) < —1 for some s ¢ P. Clearly o) # 4, so

4B +5) = 4B + g + (B < T+1—1=1,

50 f+a =3 oo is a root. Moreover f+o) <4, for otherwise y =
B+ o) — §is a root (since ¢(y) < 1) with some positive component, hence a positive
root. But then o =7 + (5 — B), a sum of elements of R}, which contradicts the
fact that o® € X;. O

LEMMA 3.3. K[ugl(i)]GL(‘s) is generated by the trace functions for paths in Q which
start and end at the extending vertex 0.

Proof. Since 69 = 1, the trace function tr, for a path which starts and ends at 0
involves the trace of a 1 x 1 matrix, which is just the unique entry of the matrix.
The assertion thus follows from [1, Corollary 8.11]. O

If X is an affine variety, we write S X for its mth symmetric product, the affine
variety (X x ... x X)/Sy.

Writing 7™ A4 for the mth tensor power of an algebra 4, we have K[S"X]=
(T"KIXD*.

THEOREM 3.4. The direct sum map
[[85' 3 = 1,500
j=1

induces an isomorphism
f:S"N(A, 0) = N(4, md)

Proof. By Lemma 3.2 we know that f is surjective. Thus it suffices to prove that it is
a closed embedding, that is, that the map on functions

£ Kb )OS s (TR 5 ()50

is surjective.

By Lemma 3.3 the ring K| [,ugl(/l)]GL(&) is generated by the trace functions tr, for p a
path in Q starting and ending at 0. Since the ring is finitely generated, a finite number
of paths py, ..., py suffices.

For 1 <j < mlet ; be the projection from the product of m copies of N(4, §) onto
the jth factor. Thus the coordinate ring of this product is generated by elements
try, o 7.
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There is a surjective map from the polynomial ring K[x;: 1 <i < N, 1 <j < m] to
T"(K[uz ' (2)]°™?) sending x; to tr,, o m;. This induces a surjective map

KL% — (T"Klu; ' ()]°-)”

Now by Lemma 3.5 below, K[xij]S”’ is generated by the power sums
Seyry = Zxﬁ .. xf\?j
J

Thus (T "’K[,ugl().)]GL(‘S))S'” is generated by the elements

J

S;‘l YYYY = Z(trpl o TCj)rl e (trpN ] E/)rN = Z(tr;‘] R tr;‘x) o T;.
J

Since dp = 1 we have tr,tr, = tr,, for any paths p, ¢ which start and end at 0, so
trj} ...t = tr, where p is the path p}'...py. Thus

! — .
Sttty = E tr, o m;.
J

This shows thats; . is the image under /* of the trace function tr, for 14,5(2). Thus
the image of f* contains a set of generators, so f* is surjective, as required. [J

LEMMA 3.5. If' S, acts on the polynomial ring K[x;:1 <i<N,1<j<m] by
permuting the x;; for each i, then the ring of invariants is generated by the power sums

— § U rn
SV[,“.,I‘N - : xl/ . e .XN/.
J

(r17'~"rN 20)'
Proof. By [6, Chapter II, Section 3] the ring of invariants is generated by
polarizations of the elementary symmetric polynomials, so by elements of the form

Biv iy, iy = E Xijy Xinjy - - - X

where the sum is over all distinct ji, j», . . ., ji in the range 1 to m. Now the elementary
symmetric polynomials can be expressed as polynomials in the power sums by

Newton’s formulae, and on polarizing this expresses ¢; ; , as a polynomial in

the s,,,..,,. For example polarizing the formula
: 3
; 27Kz =g (Z Z_/) —3<Z Z./) (Z Zf) +2) 7
Jj<k<t J J J J
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with respect to the sets of variables x; j, x;; and x;,; gives

oo () () (2] (o (o)
() (2 (B

+2 E Xiy jXi jXiy
7

and all sums on the right hand side are of the form s,, _,, for suitable ry, ..., ry. [

4. Adding a Vertex to an Extended Dynkin Quiver

In this section let Q' be an extended Dynkin quiver, let k& be an extending vertex for
Q’, and let O be a quiver obtained from Q' by adjoining one vertex j and one arrow
joining j to k. Let I be the vertex set of Q and let 6 € N’ be the minimal positive
imaginary root for Q.

For any « € 7! we define o/ = o — %;¢j. Thus o = 0 and o} = o; for i # j. One can
think of o’ as the restriction of o to Q.

Throughout this section we assume that 4 € K’ satisfies 4- 6 = 4; = 0. We prove
the following result which is used in the next section.

PROPOSITION 4.1. If 0 € X,, oy =1 and mé — o' € NR} for some m >0, then
o = Sj.

An example shows the necessity of the hypothesis that md — o’ € NR}.

EXAMPLE 4.2. Let Q be the quiver
3
1 2 / l
4

with vertex set {1,2,3,4},soj=1, k=2, Q is of type ;12 and 6 =(0,1,1,1). If
A=(0,1,-2,1) then = (1,3,2,1) € £, since by admissible reflections at the
indicated vertices the pair (4, ) transforms as

(0,1, =2, 1),(1,3,2, 1) 2 (1, =1, =1,2), (1, 1,2, 1)) ~ ((1, =2, 1, 1), (1, 1, 0, 1))
21, =1,2,-1),(1,1,0,0)) % ((0, 1,1, =2), (1, 0, 0, 0))
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and it is clear that (1, 0, 0, 0) € X9 1,1,—2). However, it is easy to see that there is no m
with md — o' = (0,m —3,m—2,m—1) in NR}.

Before proving the proposition we need some lemmas. Observe that for a vertex
i ¢ {j,k} we have ri(4) -6 =0 and r;(4); = 0. On the other hand ri(4) - 6 = 0, but
we may have ri(2); # 0.

LEMMA 4.3. If « € X, and o; = 1, then by a sequence of admissible reflections at
vertices # j one can send (1, a) to (v, &) for some v.

Proof. We consider the pairs (v, f) which can be obtained from (4, o) by a sequence
of such admissible reflections. Always f; is positive, since it is in X, by [2, Lemma 5.2].
Thus we can choose a pair (v, f) with f minimal. Clearly we have $; = 1. For a
contradiction, suppose that ' # 0.

Since 0 is unchanged by these reflections, we have v- 6 = 4- 6 = 0. Also, for each
vertex [ #j we have (f,¢) < 0, for either there is a loop at i, in which case it is
automatic, or v; =0, in which case it follows from [2, Lemma 7.2], or there is
an admissible reflection at i, and it follows from the minimality of . We deduce
that (f,¢) <0 for i ¢ {j, k}, and (B, &) < 1.

Suppose first that (8, &) = 1. Then

0=(F.0) =) (B.a)d =1+ Y (B &)
i#] i#{j.k}

and all terms in the second sum are < 0. Thus exactly one of the terms is —1, and all
others are zero. That is, there is a vertex s # k in Q' with 6, = 1 and (8, &) = —1, and
(B, &) = 0 for all vertices i & {k, s} in Q. This is impossible by [2, Lemma 8.8].

Thus (8, &) < 0. It follows that (8, ') <0, so since Q' is extended Dynkin we
have ' = mé for some m > 0. Now the decomposition f =g + 6 + - -- + J is easily
seen to satisfy

p(B) =1 = qlg; +md) = —m(e;, 0) = m = p(g;) + p(d) + - - - + p(0).

We have seen that 6 € Rf". Also v =v-¢;=v-f=/4-0=0since « € X, so that
¢j € Rf. This contradicts the fact that f € X,.
Thus ' =0, as required. O

LEMMA 4.4. Ifa € 2 andaj = 1 theny, — 1 < (o, y) <y foranyy € R} withy < 6.
Proof. Some sequence of admissible reflections at vertices # j sends (4, a) to (v, ).
Ify € R} and 7; = 0 then by [2, Lemma 5.2] the reflections send it to a positive root f,
still with f8; = 0. Thus (, y) = (¢;, f) < 0, and so
@) = (1) = (7)< 0= (=) =

which is one of the inequalities. The other one is obtained by replacing y with
d—y€RS. O

https://doi.org/10.1023/A:1013793632709 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013793632709

234 WILLIAM CRAWLEY-BOEVEY

Choose a total ordering < on K as in [1, Section 7]. Let Q" be the Dynkin quiver
obtained from Q' by deleting the vertex k. Let I” be the vertex set of Q”. Recall
that a vector u € K" is said to be dominant if u, = 0 for all i € I".

LEMMA 4.5. By a sequence of admissible reflections at vertices in I" one can send
(A, @) to a pair (&, B) where & is a vector whose restriction to 1" is dominant.
Proof. Apply [1, Lemma 7.2] to Q”, and then consider the sequence of reflections as
reflections for Q. Of course nonadmissible reflections can be omitted, for if & € K/
and & =0 then ri(&) = &. O

LEMMA 4.6. If the restriction of A to I" is dominant, and if y € NR} has 7, =0, then
there is some r = 0 with y; = ro; for all vertices i with J; # 0.

Proof. Any indecomposable element of NR} which vanishes at j is <, so it
suffices to prove that if y € N’ is a vector with y < and -y =0, then either
y; = 0 for all i with 4; # 0, or y; = ¢; for all i with 4; # 0.

Since k is an extending vertex for Q' we have d; = 1, and so by replacing y by 6 —y
if necessary, we may assume that y, = 0.

Now the equality 4 - y = 0 implies that ) _,_,, y;4; = 0. By the dominance condition
it follows that y; = 0 for any vertex i € I” with 4; # 0. ]

Proof of Proposition 4.1. First suppose that 4 = 0. If « # ¢; then the expression for
« as a sum of coordinate vectors is a nontrivial decomposition into elements of R} .
Since p(«) = 0 by Lemma 4.3, this contradicts the fact that « € X;.

Thus we may suppose that 1 # 0. Replacing (4, o) by the pair (&, ) of Lemma 4.5,
we may assume that the restriction of A to /” is dominant. Observe that the reflections
involved, at vertices in /", can change «, but they do not affect the dimension vectors
¢; and ¢. The standing hypotheses on /4 still hold, as do the hypotheses of the prop-
osition by [2, Lemma 5.2].

Now the restriction of A to I” is nonzero, for otherwise the condition that -6 =0
implies that 4, = 0, and then since 4; = 0 we have 1 = 0. Thus 4, = — >, did; < 0.

By Lemma 4.6 there is some integer r with (mo — o); = rd; for all i with 4; # 0. Let
B=o —(m—r)e?Z'. Of course B; = 0 and for any vertex i with 4; # 0 we have
pi = 0.

Suppose that f§ is nonzero. Consider the restriction of ff to a connected component
of the quiver obtained from Q' by deleting all vertices i with 4; # 0. It is actually a
subquiver of Q”, so Dynkin. If 5 is a positive root for this connected component,
then n € R, and

B.m) = (') — (m—r)(©0,m) = (o, n),
so Lemma 4.4 implies that —1 < (f8, n) < 0. But this is impossible by Lemma 4.7

below.
Thus =0, so « = ¢ + (m —r)d. Now since p(x) = 0 we have m =r. O
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The above proof uses the following result about Dynkin quivers.

LEMMA 4.7. If Q° is a Dynkin quiver with vertex set I° then there is no nonzero vector
ae 7" with =1 < (a, ) <0 for all positive roots n for Q°.

Proof. We cannot have («, ¢;) = 0 for all i, for otherwise (o, o) = 0, so o = 0 since
Q° is Dynkin.

Embed Q° in an extended Dynkin quiver of the same type by adding an extending
vertex s, and consider o as a dimension vector for this quiver. Let § be the minimal
positive imaginary root.

Since § — ¢, is a root for Q° we have («,0 —&) = — 1. Now it is equal to
> s 0i(a, &), and all terms in the sum are < 0, but not all are zero. Thus exactly
one term is nonzero, say for i =r, and it is equal to —1. This implies that r is
an extending vertex, and (¢, ¢,) = —1. Thus the vector —a and the extending vertices
r and s contradict [2, Lemma 8.8]. O

5. Decomposing the Quiver

In this section we suppose that Q is a quiver whose vertex set 7 is a disjoint union
J UK, and we write any o € N’ as o = o7 + o where the summands have support
in 7 and K respectively.

LEMMA 5.1. If the dimension vector of any composition factor of a II*-module of
dimension o has support contained either in J or in K then

N(A,a) =2 N(A,07) x N(4, ox).

Proof. We can identify u;}(2) x u;!(2) with a G(a)-stable closed subvariety of
1, 1(2) (defined by the vanishing of all arrows with one end in J and the other

end in K). The inclusion thus induces a closed embedding
N, 07) X N(A, a) = N(4,a),

and by the assumption on composition factors this is a bijection.
We give some cases when this can be applied. First we need a lemma.

LEMMA 5.2. Suppose there is a unique arrow with one end in J and the other in IC, say
connecting vertices j € J and k € K. Let Q be the quiver with vertex set KC U {j} con-
taining this arrow, and all arrows with head and tail in K. Let u be the vector for
Q whose restriction to K is the same as A, and with W= 0.

Let o € N and assume that w=1and -0z =2 o =0. Then o € NR} if and
only if o7 € NR} and & + ax € NR}.

Proof. The statement does not depend on the orientation of the arrows in Q, so we
may suppose that the arrow connecting 7 and K is b:k — j.

By [2, Theorem 4.4] the condition that « € NR} is that there is a [1*-module of
dimension «. Similarly for the other two conditions.
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Now if the module is given by an element x € Rep(Q, «), then for any vertex i we
have

E XgXgr — E XgXg = A1,

h(@)=i (by=i

Taking the trace and summing over all i € 7, all but one term cancels, leaving
tr(xpxp<) = 0. Since thisis a 1 x 1 matrix we have x;x,« = 0. It follows that the com-
ponents of x corresponding to arrows with head and tail in 7 define a IT*-module
of dimension ¢ 7, and the remaining components of x define a H"(Q)-module of
dimension ¢ + ox. Clearly two such modules can also be used to construct a
IT*-module of dimension o. O

LEMMA 5.3. Suppose that A - a7 = 0, there is a unique arrow b with one end in J and
the other in K, say connecting vertices j € J and k € K, and o; = ax = 1. Then the
dimension vector of any composition factor of a IT*-module of dimension o has support
contained in J or K.

Proof. Because of the existence of a module of dimension o we have A - o = 0, hence
also 4-ax = 0. For a contradiction, suppose there is a composition factor whose
dimension f does not have supportin 7 or K. Then f8; = ; = 1. Since the dimension
vector y of any other composition factor must have support in J or &, and has
A-yp =0, we deduce that 1- ;=7 =0.

By Lemma 5.2 we have f; € NR}, and by symmetry also . € NR}. But clearly
(B> B7) = —1, so that p(B) = p(B ;) + p(B), contradicting the fact that f e X;. [

LEMMA 5.4. Suppose that 1 - oy = 0, there is a unique arrow with one end in J and
the other in IC, say connecting vertices j € J and k € K, a; =1, the restriction of
0 to K is extended Dynkin with extending vertex k and minimal positive imaginary
root d, and ax = md withm = 2. Then the dimension vector of any composition factor
of a *-module of dimension o has support contained in J or K.

Proof. Because of the existence of a module of dimension «, we have 4 - o = 0.
Since the field K has characteristic zero, we deduce that 1-6 = 0.

For a contradiction, suppose there is a composition factor whose dimension § does
not have support in 7 or K. Then f8; = 1. Since the dimension vector y of any other
composition factor must have y; =0, it has support in J or K, and since it has
A7 =0, we deduce that 1-f; =1 =0. Also mé — fy € NR}.

Let Q be the quiver obtained from Q as in Lemma 5.2, and let x be the corre-
sponding vector. Since md — i has support in K it can be considered as an element
of NRF. By Lemma 5.2 we have fi; € NRI and ¢ + f € NR;. Now by assumption
P is nonzero, so Proposition 4.1 implies that ¢; + - & Z,. By [2, Theorem 5.6] this
implies that there are nonzero ¢,y € NRF with ¢+ =¢+pc and
((;’),t/J)Q > — 1. Without loss of generality, ¢; =0 and y; = 1. Considered as a
dimension vector for Q we clearly have ¢ € NRS. Also, Lemma 5.2 applies to
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the dimension vector  + f; — ¢, and shows that it belongs to NR}. Since also
Y +Br—e) =g > —1,

we have f = ¢+ (f 4+, —¢) € Z; by [2, Theorem 5.6]. A contradiction. OJ

6. Proof of the Theorem

Proof of Theorem 1.1. We prove this for all 0, /. and o € NR} by induction on the
maximum possible number of terms in an expression for « as a sum of elements of
RZ’. If o € Z, then the assertions are vacuous, so assume that o & Z;.

By [2, Lemma 5.2] and Lemma 2.1 we can always apply a sequence of admissible
reflections to the pair (4, o). Let F; be the set of [2, Section 7]. If o & F; then by
applying a sequence of admissible reflections to (4, «) we may assume that there
is a loopfree vertex i with 4; = 0 and (¢, &) > 0. Clearly in any decomposition of
o as a sum of elements of X, one of the terms, say f, has (8, ¢;) > 0. But by [2, Lemma
7.2] this implies that f = &;. Now o — ¢; € NRY, and by the inductive hypothesis the
assertions hold for o — ¢;. If the decomposition is

OC—Sj:G(l)+"'+U(r)
then clearly
OC=8i+O'(l)+"'+G(r)

is a suitable decomposition of «. Moreover, if we have

N(G,o—g) =] [S™N( a").
=1
then since N(4, ¢;) is just a point, any term S N(4, ¢;) if it occurs, can be removed, and
replaced by S"*!'N(/, ¢;) without changing the product. Thus by Lemma 2.3 we
obtain the required expression for N(4, «).

Thus we are reduced to the case when o € F; \ X,. By applying a sequence of
admissible reflections to the pair (4, ), and then passing to the support quiver
of o, we may assume that one of the cases (I), (I) or (IIT) of [2, Theorem §8.1] holds.
We deal with each of these in turn.

Case (I). Here Q is extended Dynkin, 4-6 =0, and o = md for some m > 2. By
Lemma 3.2 and Theorem 3.4 the decomposition & = 0 + - - -+ ¢ has the required
properties.

Case (IT). Here Q decomposes as in Lemma 5.3. In the notation of Section 5 we
write o = a7 + . Since o € NR] there is a IT*-module of dimension o. Since
the dimension vector of any composition factor has support in 7 or K we deduce
that oy and ox are in NR}. By the inductive hypothesis the conclusions of the
theorem hold for o7 and ax. Adding together the decompositions of o7 and ok
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we obtain a decomposition of «. Obviously, since « 7 and o have disjoint support, no
summand occurs in both parts. The result thus follows from Lemmas 5.1 and 5.3.

Case (IIT). Here Q decomposes as in Lemma 5.4. We write « = o7 + md. Again o7
and moé are in NR] and by the inductive hypothesis the conclusions of the theorem
hold for them. This gives a decomposition of & which has the required properties
by Lemmas 5.1 and 5.4. O

Proof of Proposition 1.2. (1) If f is a real root in X,, then N(4, ) is a point by [2,
Corollary 1.4].

(2) If pis an isotropic imaginary root in X, then it is indivisible, for if f = ry then y
is a root, it has A-y = 0 since the base field K has characteristic zero, and the
decomposition f =y + --- 4+ y has p(f) < p(y) + - - - + p(y), contrary to the definition
of 2,1.

By [2, Theorem 5.8], some sequence of admissible reflections sends the pair (4, f§) to
a pair (4, p') with ' in the fundamental region. Since it is isotropic imaginary we
have (B, ;) = 0 for any vertex i in the support of . By [3, §1.2] this implies that
the support quiver Q' of B’ is extended Dynkin and B = J, its minimal positive
imaginary root.

Finally N(4, B) = N(//, §) by Lemma 2.1, and this is a deformation of the Kleinian
singularity of type Q' by Kronheimer’s work [4] (see, for example [1, Section §]).

(3) Suppose that ff is a nonisotropic imaginary root in X, and m > 2. If F) is the set
of [2, Section 7], then [2, Lemma 7.4] implies that f§ € F) and, hence, also mf; € F;.
Now in [2, Theorem 8.1], case (I) cannot occur since mf is nonisotropic, and cases
(IT) and (IIT) cannot occur since all components of mfi are divisible by m. Thus
mﬁ €. ]
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