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Abstract

The paper proposes a fresh look at the concept of goal and advances that motivational

attitudes like desire, goal and intention are just facets of the broader notion of (acceptable)

outcome. We propose to encode the preferences of an agent as sequences of “alternative

acceptable outcomes”. We then study how the agent’s beliefs and norms can be used to filter

the mental attitudes out of the sequences of alternative acceptable outcomes. Finally, we

formalise such intuitions in a novel Modal Defeasible Logic and we prove that the resulting

formalisation is computationally feasible.
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1 Introduction and motivation

The core problem we address in this paper is how to formally describe a system

operating in an environment, with some objectives to achieve, and trying not to

violate the norms governing the domain in which the system operates.

To model such systems, we have to specify three types of information: (i) the

environment where the system is embedded, i.e., how the system perceives the world,

(ii) the norms regulating the application domain, and (iii) the system’s internal

constraints and objectives.

A successful abstraction to represent a system operating in an environment where

the system itself must exhibit some kind of autonomy is that of BDI (Belief, Desire,

Intention) architecture (Rao and Georgeff 1991) inspired by the work of Bratman

(1987) on cognitive agents. In the BDI architecture, desires and intentions model

the agent’s mental attitudes and are meant to capture the objectives, whereas beliefs
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describe the environment. More precisely, the notions of belief, desire and intention

represent respectively the informational, motivational and deliberative states of an

agent (Wooldridge and Jennings 1995).

Over the years, several frameworks, either providing extensions of BDI or inspired

by it, were given with the aim of extending models for cognitive agents to also

cover normative aspects (see, among others, (Broersen et al. 2002; Thomason 2000;

Governatori and Rotolo 2008)). (This is a way of developing normative agent

systems, where norms are meant to ensure global properties for them (Andrighetto

et al. 2013).) In such extensions, the agent behaviour is determined by the interplay

of the cognitive component and the normative one (such as obligations). In this

way, it is possible to represent how much an agent is willing to invest to reach some

outcomes based on the states of the world (what we call beliefs) and norms. Indeed,

beliefs and norms are of the utmost importance in the decision process of the agent.

If the agent does not take beliefs into account, then she will not be able to plan what

she wants to achieve, and her planning process would be a mere wishful thinking. On

the other hand, if the agent does not respect the norms governing the environment

she acts in, then she may incur sanctions from other agents (Bratman 1987).

The BDI approach is based on the following assumptions about the motivational

and deliberative components. The agent typically defines a priori her desires and

intentions, and only after this is done the system verifies their mutual consistency

by using additional axioms. Such entities are therefore not interrelated with one

another since “the notion of intention [. . . ] has equal status with the notions of

belief and desire, and cannot be reduced to these concepts” (Rao and Georgeff 1991).

Moreover, the agent may consequently have intentions which are contradictory with

her beliefs and this may be verified only a posteriori. Therefore, one of the main

conceptual deficiencies of the BDI paradigm (and generally of almost all classical

approaches to model rational agents) is that the deliberation process is bound to

these mental attitudes which are independent and fixed a priori. Here, with the term

independent, we mean that none of them is fully definable in terms of the others.

Approaches like the BOID (Belief, Obligation, Intention, Desire) architecture

(Broersen et al. 2002) and Governatori and Rotolo (2008)’s system improve previous

frameworks, for instance, by structurally solving conflicts between beliefs and

intentions (the former being always stronger than any conflicting intention), while

mental attitudes and obligations are just meant to define which kinds of agent

(social, realistic, selfish, and so on) are admissible.

Unlike the BDI perspective, this paper aims at proposing a fresh conceptual and

logical analysis of the motivational and deliberative components within a unified

perspective.

Desideratum 1: A unified framework for agents’ motivational and deliberative compo-

nents. Goals, desires, and intentions are different facets of the same phenomenon, all

of them being goal-like attitudes. This reduction into a unified perspective is done

by resorting to the basic notion of outcome, which is simply something (typically, a

state of affairs) that an agent expects to achieve or that can possibly occur.

Even when considering the vast literature on goals of the past decade, most of the

authors studied the content of a goal (e.g., achievement or maintenance goals) and
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conditions under which a goal has to be either pursued, or dropped. This kind of

(a posteriori ) analysis results orthogonal to the one proposed hereafter, since we want

to develop a framework that computes the agent’s mental attitudes by combining

her beliefs and the norms with her desires.

As we shall argue, an advantage of the proposed analysis is that it allows agents

to compute different degrees of motivational attitudes, as well as different degrees

of commitment that take into account other, external, factors, such as beliefs and

norms.

Desideratum 2: Agents’ motivations emerge from preference orderings among outcomes.

The motivational and deliberative components of agents are generated from pref-

erence orderings among outcomes. As done in other research areas (e.g., rational

choice theory), we move with the idea that agents have preferences and choose the

actions to bring about according to such preferences. Preferences involve outcomes

and are explicitly represented in the syntax of the language for reasoning about

agents, thus following the logical paradigm initially proposed in Brewka et al.

(2004); Governatori and Rotolo (2006).

The combination of an agent’s mental attitudes with the factuality of the world

defines her deliberative process, i.e., the objectives she decides to pursue. The agent

may give up some of them to comply with the norms, if required. Indeed, many

contexts may prevent the agent from achieving all of her objectives; the agent must

then understand which objectives are mutually compatible with each other and

choose which ones to attain the least of in given situations by ranking them in a

preference ordering.

The approach we are going to formalise can be summarised as follows. We

distinguish three phases an agent must pass through to bring about certain states

of affairs: (i) The agent first needs to understand the environment she acts in; (ii)

The agent deploys such information to deliberate which objectives to pursue; and

(iii) The agent lastly decides how to act to reach them.

In the first phase, the agent gives a formal declarative description of the envi-

ronment (in our case, a rule-based formalism). Rules allow the agent to represent

relationships between pre-conditions and actions, actions and their effects (post-

conditions), relationships among actions, which conditions trigger new obligations

to come in force, and in which contexts the agent is allowed to pursue new objectives.

In the second phase, the agent combines the formal description with an input

describing a particular state of affairs of the environment, and she determines which

norms are actually in force along with which objectives she decides to commit to (by

understanding which ones are attainable) and to which degree. The agent’s decision

is based on logical derivations.

Since the agent’s knowledge is represented by rules, during the third and last

phase, the agent combines and exploits all such information obtained from the

conclusions derived in the second phase to select which activities to carry out in

order to achieve the objectives. (It is relevant to notice that a derivation can be

understood as a virtual simulation of the various activities involved.)

While different schemas for generating and filtering agents’ outcomes are possible,

the three phases described above suggest to adopt the following principles:

https://doi.org/10.1017/S1471068416000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000053


The rationale behind the concept of goal 299

• When an agent faces alternative outcomes in a given context, these outcomes

are ranked in preference orderings;

• Mental attitudes are obtained from a single type of rule (outcome rule)

whose conclusions express the above mentioned preference orderings among

outcomes;

• Beliefs prevail over conflicting motivational attitudes, thus avoiding various

cases of wishful thinking (Thomason 2000; Broersen et al. 2002);

• Norms and obligations are used to filter social motivational states (social

intentions) and compliant agents (Broersen et al. 2002; Governatori and Rotolo

2008);

• Goal-like attitudes can also be derived via a conversion mechanism using other

mental states, such as beliefs (Governatori and Rotolo 2008). For example,

believing that Madrid is in Spain may imply that the goal to go to Madrid

implies the goal to go to Spain.

Our effort is finally motivated by computational concerns. The logic for agents’

desires, goals, and intentions is expected to be computationally efficient. In particular,

we shall prove that computing agents’ motivational and deliberative components in

the proposed unified framework has linear complexity.

2 The intuition underneath the framework

When a cognitive agent deliberates about what her outcomes are in a particular

situation, she selects a set of preferred outcomes among a larger set, where each

specific outcome has various alternatives. It is natural to rank such alternatives in a

preference ordering, from the most preferred choice to the least objective she deems

acceptable.

Consider, for instance, the following scenario. Alice is thinking what to do on

Saturday afternoon. She has three alternatives: (i) she can visit John; (ii) she can

visit her parents who live close to John’s place; or (iii) she can watch a movie at

home. The alternative she likes the most is visiting John, while watching a movie is

the least preferred. If John is not at home, there is no point for Alice to visit him.

In this case, paying a visit to her parents becomes the “next best” option. Also, if

visiting her parents is not possible, she settles for the last choice, that of staying

home and watching a movie.

Alice also knows that if John is away, the alternative of going to his place makes

no sense. Suppose that, Alice knows that John is actually away for the weekend.

Since the most preferred option is no longer available, she decides to opt for the

now best option, namely visiting her parents.

To represent the scenario above, we need to capture the preferences about her

alternatives, and her beliefs about the world. To model preferences among several

options, we build a sequence of alternatives A1, . . . , An that are preferred when the

previous choices are no longer feasible. Normally, each set of alternatives is the

result of a specific context C determining under which conditions (premises) such a

sequence of alternatives A1, . . . , An is considered.
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Accordingly, we can represent Alice’s alternatives with the notation

If saturday , then visit John , visit parents , watch movie.

This intuition resembles the notion of contrary-to-duty obligations presented by

Governatori and Rotolo (2006), where a norm is represented by an obligation rule

of the type

r1 : drive car ⇒OBL ¬damage � compensate � foreclosure

where “⇒OBL” denotes that the conclusion of the rule will be treated as an obligation,

and the symbol “�” replaces the symbol “,” to separate the alternatives. In this

case, each element of the chain is the reparative obligation that shall come in force

in case the immediate predecessor in the chain has been violated. Thus, the meaning

of rule r1 is that, if an agent drives a car, then she has the obligation not to cause

any damage to others; if this happens, she is obliged to compensate; if she fails to

compensate, there is an obligation of foreclosure.

Following this perspective, we shall now represent the previous scenario with a

rule introducing the outcome mode, that is an outcome rule:

r2 : saturday ⇒OUT visit John � visit parents � watch movie.

In both examples, the sequences express a preference ordering among alternatives.

Accordingly, watch movie and foreclosure are the last (and least) acceptable situa-

tions.

To model beliefs, we use belief rules, like

r3 : John away ⇒BEL ¬visit John

meaning that if Alice has the belief that John is not home, then she adds to her

beliefs that it is not possible to visit him.

In the rest of the section, we shall illustrate the principles and intuitions relating

sequences of alternatives (that is, outcome rules), beliefs, obligations, and how to use

them to characterise different types of goal-like attitudes and degrees of commitment

to outcomes: desires, goals, intentions, and social intentions.

2.1 Desires as acceptable outcomes

Suppose that an agent is equipped with the following outcome rules expressing two

preference orderings:

r : a1, . . . , an ⇒OUT b1 � · · · � bm s : a′1, . . . , a
′
n ⇒OUT b′1 � · · · � b′k

and that the situations described by a1, . . . , an and a′1, . . . , a
′
n are mutually compatible

but b1 and b′1 are not, namely b1 = ¬b′1. In this case b1, . . . , bm, b
′
1, . . . , b

′
k are all

acceptable outcomes, including the incompatible outcomes b1 and b′1.

Desires are acceptable outcomes, independently of whether they are compati-

ble with other expected or acceptable outcomes. Let us contextualise the previ-

ous example to better explain the notion of desire by considering the following

setting.
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Example 1

F = {saturday , John sick} R = {r2, r4 : John sick ⇒OUT ¬visit John � short visit}.

The meaning of r4 is that Alice would not visit John if he is sick, but if she does so,

then the visit must be short.

Being the premises of r2 and of r4 the case, then both rules are activated, and

the agent has both visit John and its opposite as acceptable outcomes. Eventually,

she needs to make up her mind. Notice that if a rule prevails over the other, then

the elements of the weaker rule with an incompatible counterpart in the stronger

rule are not considered desires. Suppose that, Alice has not visited John for a long

time and she has recently placed a visit to her parents. Then, she prefers to see

John instead of her parents despite John being sick. In this setting, r2 prevails over

r4 (r2 > r4 in notation). Given that she explicitly prefers r2 to r4, her desire is to

visit John (visit John) and it would be irrational to conclude that she also has the

opposite desire (i.e., ¬visit John).

2.2 Goals as preferred outcomes

We consider a goal as the preferred desire in a chain.

For rule r alone the preferred outcome is b1, and for rule s alone it is b′1. But if

both rules are applicable, then a state where both b1 and b′1 hold is not possible:

the agent would not be rational if she considers both b1 and ¬b1 as her preferred

outcomes. Therefore, the agent has to decide whether she prefers a state where b1

holds to a state where b′1 (i.e., ¬b1) does (or the other way around). If the agent

cannot make up her mind, i.e., she has no way to decide which is the most suitable

option for her, then neither the chain of r nor that of s can produce preferred

outcomes.

Consider now the scenario where the agent establishes that the second rule

overrides the first one (s > r). Accordingly, the preferred outcome is b′1 for the chain

of outcomes defined by s, and b2 is the preferred outcome of r. b2 is the second

best alternative according to rule r: in fact b1 has been discarded as an acceptable

outcome given that s prevails over r.

In the situation described by Example 1, visit John is the goal according to r2,

while short visit is the goal for r4.

2.3 Two degrees of commitment: intentions and social intentions

The next issue is to clarify which are the acceptable outcomes for an agent to commit

to. Naturally, if the agent values some outcomes more than others, she should strive

for the best, in other words, for the most preferred outcomes (goals).

We first consider the case where only rule r applies. Here, the agent should commit

to the outcome she values the most, that is b1. But what if the agent believes that

b1 cannot be achieved in the environment where she is currently situated in, or she

knows that ¬b1 holds? Committing to b1 would result in a waste of the agent’s

resources; rationally, she should target the next best outcome b2. Accordingly, the
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agent derives b2 as her intention. An intention is an acceptable outcome which does

not conflict with the beliefs describing the environment.

Suppose now that b2 is forbidden, and that the agent is social (a social agent is

an agent not knowingly committing to anything that is forbidden (Governatori and

Rotolo 2008)). Once again, the agent has to lower her expectation and settle for b3,

which is one of her social intentions. A social intention is an intention which does not

violate any norm.

To complete the analysis, consider the situation where both rules r and s apply

and, again, the agent prefers s to r. As we have seen before, ¬b1 (b′1) and b2 are the

preferred outcomes based on the preference of the agent over the two rules. This

time we assume that the agent knows she cannot achieve ¬b1 (or equivalently, b1

holds). If the agent is rational, she cannot commit to ¬b1. Consequently, the best

option for her is to commit to b′2 and b1 (both regarded as intentions and social

intentions), where she is guaranteed to be successful.

This scenario reveals a key concept: there are situations where the agent’s best

choice is to commit herself to some outcomes that are not her preferred ones (or even

to a choice that she would consider not acceptable based only on her preferences)

but such that they influence her decision process, given that they represent relevant

external factors (either her beliefs or the norms that apply to her situation).

Example 2

F = {saturday , John away , John sick} R = {r2, r3, r4} > = {(r2, r4)}.
Today, John is in rehab at the hospital. Even if Alice has the desire as well as the

goal to visit John, the facts of the situation lead her to form the intention to visit

her parents.

Consider now the following theory:

F = {saturday , John home confined , third week}
R = {r2, r3, r4, r5 : John home confined , third week ⇒OBL ¬visit John}
> = {(r2, r4)}.

Unfortunately, John has a stream of bad luck. Now, he is not debilitated but has

been home convicted for a minor crime. The law of his country states that during

the first two months of his home conviction, no visits to him are allowed. This time,

even if Alice knows that John is at home, norms forbid Alice to visit him. Again,

Alice opts to visit her parents.

3 Logic

Defeasible Logic (DL) (Antoniou et al. 2001) is a simple, flexible, and efficient rule

based non-monotonic formalism. Its strength lies in its constructive proof theory,

which has an argumentation-like structure, and it allows us to draw meaningful

conclusions from (potentially) conflicting and incomplete knowledge bases. Being

non-monotonic means that more accurate conclusions can be obtained when more

pieces of information are given (where some previously derived conclusions no

longer follow from the knowledge base).
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The framework provided by the proof theory accounts for the possibility of

extensions of the logic, in particular extensions with modal operators. Several of

such extensions have been proposed, which then resulted in successful applications in

the area of normative reasoning (Governatori 2005), modelling agents (Governatori

and Rotolo 2008; Governatori et al. 2009; Kravari et al. 2011), and business

process compliance (Governatori and Sadiq 2008). A model theoretic possible world

semantics for modal Defeasible Logic has been proposed in Governatori et al. (2012).

In addition, efficient implementations of the logic (including the modal variants), able

to handle very large knowledge bases, have been advanced in Lam and Governatori

(2009); Bassiliades et al. (2006); Tachmazidis et al. (2012).

Definition 1 (Language)

Let PROP be a set of propositional atoms, and MOD = {B,O,D,G, I,SI} the set

of modal operators, whose reading is B for belief, O for obligation, D for desire, G

for goal, I for intention, and SI for social intention. Let Lab be a set of arbitrary

labels. The set Lit = PROP ∪ {¬p|p ∈ PROP} denotes the set of literals. The

complement of a literal q is denoted by ∼q; if q is a positive literal p, then ∼q
is ¬p, and if q is a negative literal ¬p, then ∼q is p. The set of modal literals is

ModLit = {Xl,¬Xl|l ∈ Lit, X ∈ {O,D,G, I,SI}}. We assume that modal operator

“X” for belief B is the empty modal operator. Accordingly, a modal literal Bl is

equivalent to literal l; the complement of B∼l and ¬Bl is l.

Definition 2 (Defeasible theory)

A defeasible theory D is a structure (F, R,>), where (1) F ⊆ Lit ∪ModLit is a set

of facts or indisputable statements; (2) R contains three sets of rules: for beliefs,

obligations, and outcomes; (3) > ⊆ R×R is a binary superiority relation to determine

the relative strength of (possibly) conflicting rules. We use the infix notation r > s

to mean that (r, s) ∈>. A theory is finite if the set of facts and rules are so.

Belief rules are used to relate the factual knowledge of an agent, that is to say,

her vision of the environment she is situated in. Belief rules define the relationships

between states of the world; as such, provability for beliefs does not generate modal

literals.

Obligation rules determine when and which obligations are in force. The conclu-

sions generated by obligation rules take the O modality.

Finally, outcome rules establish the possible outcomes of an agent depending on

the particular context. Apart from obligation rules, outcome rules are used to derive

conclusions for all modes representing goal-like attitudes: desires, goals, intentions,

and social intentions.

Following ideas given in (Governatori and Rotolo 2006), rules can gain more

expressiveness when a preference operator � is adopted. An expression like a � b

means that if a is possible, then a is the first choice, and b is the second one; if ¬a
holds, then the first choice is not attainable and b is the actual choice. This operator

is used to build chains of preferences, called �-expressions. The formation rules for

�-expressions are:
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(1) every literal is an �-expression;

(2) if A is an �-expression and b is a literal then A� b is an �-expression.

In addition, we stipulate that � obeys the following properties:

(1) a� (b� c) = (a� b)� c (associativity);

(2)
⊙n

i=1 ai = (
⊙k−1

i=1 ai) � (
⊙n

i=k+1 ai) where there exists j such that aj = ak and

j < k (duplication and contraction on the right).

Typically, �-expressions are given by the agent designer, or obtained through

construction rules based on the particular logic (Governatori and Rotolo 2006).

In the present paper, we use the classical definition of defeasible rule in DL

(Antoniou et al. 2001), while strict rules and defeaters are omitted1.

Definition 3 (Defeasible rule)

A defeasible rule is an expression r : A(r) ⇒X C(r), where (1) r ∈ Lab is the name

of the rule; (2) A(r) = {a1, . . . , an}, the antecedent (or body) of the rule, is the set

of the premises of the rule. Each ai is either in Lit or in ModLit; (3) X ∈ {B,O,U}
represents the mode of the rule: ⇒B, ⇒O, ⇒U denote respectively rules for beliefs,

obligations, and outcomes. From now on, we omit the subscript B in rules for beliefs,

i.e., ⇒ is used as a shortcut for ⇒B;

C(r) is the consequent (or head ) of the rule, which is a single literal if X = B, and

an �-expression otherwise2.

A defeasible rule is a rule that can be defeated by contrary evidence. The

underlying idea is that if we know that the premises of the rule are the case,

then we may conclude that the conclusion holds, unless there is evidence proving

otherwise. Defeasible rules in our framework introduce modal literals; for instance,

if we have rule r : A(r)⇒O c and the premises denoted by A(r) are the case, then r

can be used to prove Oc.

We use the following abbreviations on sets of rules: RX (RX[q]) denotes all rules

of mode X (with consequent q), and R[q] denotes the set
⋃

X∈{B,O,U} R
X[q]. With

R[q, i] we denote the set of rules whose head is �n
j=1cj and ci = q, with 1 � i � n.

Notice that labelling the rules of DL produces nothing more but a simple treatment

of the modalities, thus two interaction strategies between modal operators are

analysed: rule conversion and conflict resolution (Governatori and Rotolo 2008).

In the remainder, we shall define a completely new inference machinery that takes

this into account by adding preferences and dealing with a larger set of modalised

conclusions, which are not necessarily obtained from the corresponding rules but

also by using other rule types. For instance, we argued in Section 2 that a goal can

1 The restriction does not result in any loss of generality: (i) the superiority relation does not play any
role in proving definite conclusions, and (ii) for defeasible conclusions Antoniou et al. (2001) prove
that it is always possible to remove strict rules from the superiority relation and defeaters from the
theory to obtain an equivalent theory without defeaters and where the strict rules are not involved in
the superiority relation.

2 It is worth noting that modal literals can occur only in the antecedent of rules: the reason is that the
rules are used to derive modal conclusions and we do not conceptually need to iterate modalities. The
motivation of a single literal as a consequent for belief rules is dictated by the intended reading of the
belief rules, where these rules are used to describe the environment.
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be viewed as a preferred outcome and so the fact that a certain goal Gp is derived

depends on whether we can obtain p as a preferred outcome by using a rule for U.

3.1 Rule conversion

It is sometimes meaningful to use rules for a modality X as if they were for another

modality Y , i.e., to convert one type of conclusion into a different one.

Formally, we define an asymmetric binary relation Convert ⊆ MOD × MOD

such that Convert(X,Y ) means “a rule of mode X can be used also to produce

conclusions of mode Y ”. This intuitively corresponds to the following inference

schema:
Ya1, . . . , Y an a1, . . . , an ⇒X b

Y b
Convert(X,Y ).

In our framework obligations and goal-like attitudes cannot change what the

agent believes or how she perceives the world, we thus consider only conversion from

beliefs to the other modes (i.e., Convert(B, X) with X ∈ MOD \ {B}). Accordingly,

we enrich the notation with RB,X for the set of belief rules that can be used for a

conversion to mode X ∈MOD \ {B}. The antecedent of all such rules is not empty,

and does not contain any modal literal.

Example 3

F = {saturday} R = {r2, r6 : visit John ⇒ chocolate box}
where we stipulate that Convert(B,D) holds.

Alice desires to visit John. John is a passionate of chocolate and, usually, when

Alice goes to meet him at his place, she brings him a box of chocolate. Thus, we

may state that her desire of visiting John implies the desire to bring him a box of

chocolate. This is the case since we can use rule r6 to convert beliefs into desires.

3.2 Conflict-detection/resolution

It is crucial to identify criteria for detecting and solving conflicts between different

modalities. We define an asymmetric binary relation Conflict ⊆MOD×MOD such

that Conflict(X,Y ) means “modes X and Y are in conflict and mode X prevails

over Y ”. In our framework, we consider conflicts between (i) beliefs and intentions,

(ii) beliefs and social intentions, and (iii) obligations and social intentions. In other

words, the agents are characterised by:

• Conflict(B, I), Conflict(B,SI) meaning that agents are realistic (Broersen et al.

2002);

• Conflict(O,SI) meaning that agents are social (Governatori and Rotolo 2008).

Consider the scenario of Example 2 with Conflict(B, I) and Conflict(O,SI). We

recall that rule r5 states the prohibition to visit John during the first month of his

conviction. Thus, Alice has the intention to visit John, but she does not have the

social intention to do so. This is due to rule r5 that prevents through conflict to

prove SIvisit John . At the end, it is up to the agent (or the designer of the agent)

whether to comply with the obligation, or not.
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The superiority relation > among rules is used to define where one rule may

override the (opposite) conclusion of another one. There are two applications of

the superiority relation: the first considers rules of the same mode while the latter

compares rules of different modes. Given r ∈ RX and s ∈ RY , r > s iff r converts X

into Y or s converts Y into X, i.e., the superiority relation is used when rules, each

with a different mode, are used to produce complementary conclusions of the same

mode. Consider the following theory:

F = {go to Rome, parent anniversary , August}
R = {r1 : go to Rome ⇒ go to Italy

r2 : parent anniversary ⇒U go to Rome

r3 : August ⇒U ¬go to Italy}
> = {(r1, r3)}

where we stipulate that Convert(B,G) holds.

It is my parents’ anniversary and they are going to celebrate it this August in

Rome, which is the capital of Italy. Typically, I do not want to go to Italy in August

since the weather is too hot and Rome itself is too crowded. Nonetheless, I have the

goal to go to Italy this summer for my parents’ wedding anniversary, since I am a

good son. Here, the superiority applies because we use r1 through a conversion from

belief to goal.

Aligning with (Cohen and Levesque 1990), Conflict and superiority relations

narrow and regulate the intentionality of conclusions drawn by the Convert relation

in such a way that “agents need not intend all the expected side-effects of

their intentions”. This also prevents the ill-famed “dentist problem” which brings

counterintuitive consequences, as also pointed out by Kontopoulos et al. (2011). If

I want to go to the dentist, either I know that the pain is a “necessary way” to get

better, or I am a masochist. Either way, I intend to suffer some pain for getting

some ends.

Definition 4 (Proof)

A proof P of length n is a finite sequence P (1), . . . , P (n) of tagged literals of the type

+∂Xq and −∂Xq, where X ∈MOD.

The proof conditions below define the logical meaning of such tagged literals. As

a conventional notation, P (1..i) denotes the initial part of the sequence P of length

i. Given a defeasible theory D, +∂Xq means that q is defeasibly provable in D with

the mode X, and −∂Xq that it has been proved in D that q is not defeasibly provable

in D with the mode X. Hereafter, the term refuted is a synonym of not provable and

we use D 
 ±∂Xl iff there is a proof P in D such that P (n) = ±∂Xl for an index n.

In order to characterise the notions of provability/refutability for beliefs (±∂B),

obligations (±∂O), desires (±∂D), goals (±∂G), intentions (±∂I), and social intentions

(±∂SI), it is essential to define when a rule is applicable or discarded. To this end, the

preliminary notions of body-applicable and body-discarded must be introduced. A

rule is body-applicable when each literal in its body is proved with the appropriate

modality; a rule is body-discarded if (at least) one of its premises has been refuted.
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Definition 5 (Body applicable)

Let P be a proof and X ∈ {O,D,G, I,SI}. A rule r ∈ R is body-applicable (at

P (n + 1)) iff for all ai ∈ A(r): (1) if ai = Xl, then +∂Xl ∈ P (1..n), (2) if ai = ¬Xl,

then −∂Xl ∈ P (1..n), (3) if ai = l ∈ Lit, then +∂Bl ∈ P (1..n).

Definition 6 (Body discarded)

Let P be a proof and X ∈ {O,D,G, I,SI}. A rule r ∈ R is body-discarded (at P (n+1))

iff there is ai ∈ A(r) such that (1) ai = Xl and −∂Xl ∈ P (1..n), or (2) ai = ¬Xl and

+∂Xl ∈ P (1..n), or (3) ai = l ∈ Lit and −∂Bl ∈ P (1..n).

As already stated, belief rules allow us to derive literals with different modal-

ities through the conversion mechanism. The applicability mechanism takes this

constraint into account.

Definition 7 (Conv-applicable)

Let P be a proof. A rule r ∈ R is Conv-applicable (at P (n + 1)) for X iff (1) r ∈ RB,

(2) A(r) �= ∅, (3) A(r) ∩ModLit = ∅, and (4) ∀a ∈ A(r), +∂Xa ∈ P (1..n).

Definition 8 (Conv-discarded)

Let P be a proof. A rule r ∈ R is Conv-discarded (at P (n + 1)) for X iff (1) r /∈ RB,

or (2) A(r) = ∅, or (3) A(r) ∩ModLit �= ∅, or (4) ∃a ∈ A(r) s.t. −∂Xa ∈ P (1..n).

Let us consider the following theory:

F = {a, b, Oc} R = {r1 : a⇒O b, r2 : b, c⇒ d}.

Rule r1 is applicable while r2 is not, given that c is not proved as a belief. Instead,

r2 is Conv-applicable for O, since Oc is a fact and r1 gives Ob.

The notion of applicability gives guidelines on how to consider the next element

in a given chain. Given that a belief rule cannot generate reparative chains but only

single literals, we conclude that the applicability condition for belief collapses into

body-applicability. When considering obligations, each element before the current

one must be a violated obligation. Concerning desires, given that each element in an

outcome chain represents a possible desire, we only require the rule to be applicable

either directly, or through the Convert relation. A literal is a candidate to be a goal

only if none of the previous elements in the chain has been proved as such. An

intention must pass the wishful thinking filter (that is, there is no factual knowledge

for the opposite conclusion), while social intention is also constrained not to violate

any norm.

Definition 9 (Applicable rule)

Given a proof P , r ∈ R[q, i] is applicable (at index i and P (n + 1)) for

(1) B iff r ∈ RB and is body-applicable.

(2) O iff either (2.1) (2.1.1) r ∈ RO and is body-applicable,

(2.1.2) ∀ck ∈ C(r), k < i, +∂Ock ∈ P (1..n) and −∂ck ∈ P (1..n), or

(2.2) r is Conv-applicable.
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(3) D iff either (3.1) r ∈ RU and is body-applicable, or

(3.2) Conv-applicable.

(4) X ∈ {G, I,SI} iff either (4.1) (4.1.1) r ∈ RU and is body-applicable, and

(4.1.2) ∀ck ∈ C(r), k < i, +∂Y∼ck ∈ P (1..n) for some

Y such that Conflict(Y ,X) and −∂Xck ∈ P (1..n), or

(4.2) r is Conv-applicable.

For G there are no conflicts; for I we have Conflict(B, I), and for SI we have

Conflict(B,SI) and Conflict(O,SI).

Definition 10 (Discarded rule)

Given a proof P , r ∈ R[q, i] is discarded (at index i and P (n + 1)) for

(1) B iff r ∈ RB or is body-discarded.

(2) O iff (2.1) (2.1.1) r /∈ RO or is body-discarded, or

(2.1.2) ∃ck ∈ C(r), k < i, s.t. −∂Ock ∈ P (1..n) or +∂ck ∈ P (1..n), and

(2.2) r is Conv-discarded.

(3) D iff (3.1) r /∈ RU or is body-discarded, and

(3.2) r is Conv-discarded.

(4) X ∈ {G, I,SI} iff (4.1) (4.1.1) r /∈ RU or is body-discarded, or

(4.1.2) ∃ck ∈ C(r), k < i, s.t. −∂Y∼ck ∈ P (1..n) for all Y

such that Conflict(Y ,X) or +∂Xck ∈ P (1..n) and

(4.2) r is Conv-discarded.

For G there are no conflicts; for I we have Conflict(B, I), and for SI we have

Conflict(B,SI) and Conflict(O,SI).

Notice that the conditions of Definition 10 are the strong negation3 of those given

in Definition 9. The conditions to establish a rule being discarded correspond to the

constructive failure to prove that the same rule is applicable.

We are now ready to introduce the definitions of the proof conditions for the

modal operators given in this paper. We start with that for desire.

Definition 11 (Defeasible provability for desire)

The proof conditions of defeasible provability for desire are
+∂D: If P (n + 1) = +∂Dq, then

(1) Dq ∈ F or

(2) (2.1) ¬Dq �∈ F and

(2.2) ∃r ∈ R[q, i] s.t. r is applicable for D and

(2.3) ∀s ∈ R[∼q, j] either (2.3.1) s is discarded for D, or (2.3.2) s �> r.

The above conditions determine when we are able to assert that q is a desire.

Specifically, a desire is each element in a chain of an outcome rule for which there

is no stronger argument for the opposite desire.

The negative counterpart −∂Dq is obtained by the principle of strong negation.

3 The strong negation principle is closely related to the function that simplifies a formula by moving
all negations to an innermost position in the resulting formula, and replaces the positive tags with
the respective negative tags, and the other way around. (See Antoniou et al. (2000); Governatori et al.
(2009).)
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Definition 12 (Defeasible refutability for desire)

The proof conditions of defeasible refutability for desire are
−∂D: If P (n + 1) = −∂Dq, then

(1) Dq �∈ F and

(2) (2.1) ¬Dq ∈ F, or

(2.2) ∀r ∈ R[q, i] either r is discarded for D, or

(2.3) ∃s ∈ R[∼q, j] s.t. (2.3.1) s is applicable for D and (2.3.2) s > r.

The proof conditions for +∂X , with X ∈MOD \ {D} are as follows, provided that

Y and T represent two arbitrary modalities in MOD:

Definition 13 (Defeasible provability for obligation, goal, intention, and social inten-

tion)

The proof conditions of defeasible provability for X ∈MOD \ {D} are

+∂X: If P (n + 1) = +∂Xq, then

(1) Xq ∈ F or

(2) (2.1) ¬Xq �∈ F and (Y∼q �∈ F for Y = X or Conflict(Y ,X)) and

(2.2) ∃r ∈ R[q, i] s.t. r is applicable for X and

(2.3) ∀s ∈ R[∼q, j] either

(2.3.1) ∀Y s.t. Y = X or Conflict(Y ,X), s is discarded for Y ; or

(2.3.2) ∃T , ∃t ∈ R[q, k] s.t. t is applicable for T , and either

(2.3.2.1) t > s if Y = T , Convert(Y ,T ), or Convert(T , Y ); or

(2.3.2.2) Conflict(T , Y ).

To show that a literal q is defeasibly provable with the modality X we have two

choices: (1) the modal literal Xq is a fact; or (2) we need to argue using the defeasible

part of D. For (2), we require that (2.1) a complementary literal (of the same modality,

or of a conflictual modality) does not appear in the set of facts, and (2.2) there must

be an applicable rule for X and q. Moreover, each possible attack brought by a rule

s for ∼q has to be either discarded for the same modality of r and for all modalities

in conflict with X (2.3.1), or successfully counterattacked by another stronger rule

t for q (2.3.2). We recall that the superiority relation combines rules of the same

mode, rules with different modes that produce complementary conclusion of the

same mode through conversion (both considered in clause (2.3.2.1)), and rules with

conflictual modalities (clause 2.3.2.2). Trivially, if X = B, then the proof conditions

reduce to those of classical defeasible logic (Antoniou et al. 2001).

Again, conditions for −∂X are derived by the principle of strong negation from

that for +∂X and are as follows.

Definition 14 (Defeasible refutability for obligation, goal, intention, and social in-

tention)

The proof conditions of defeasible refutability for X ∈ {O,G, I,SI} are
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−∂X: If P (n + 1) = −∂Xq, then

(1) Xq /∈ F and either

(2) (2.1) ¬Xq ∈ F or (Y∼q ∈ F for Y = X or Conflict(Y ,X)) or

(2.2) ∀r ∈ R[q, i] either r is discarded for X or

(2.3) ∃s ∈ R[∼q, j] s.t.

(2.3.1) ∃Y s.t. (Y = X or Conflict(Y ,X)) and s is applicable for Y , and

(2.3.2) ∀T , ∀t ∈ R[q, k] either t is discarded for T , or

(2.3.2.1) t �> s if Y = T , Convert(Y ,T ), or Convert(T , Y ); and

(2.3.2.2) not Conflict(T , Y ).

To better understand how applicability and proof conditions interact to define the

(defeasible) conclusions of a given theory, we consider the example below.

Example 4

Let D be the following modal theory:

F = {a1, a2, ¬b1, O¬b2} R = {r : a1 ⇒U b1 � b2 � b3 � b4, s : a2 ⇒U b4}.

Here, r is trivially applicable for D and +∂Dbi holds, for 1 � i � 4. Moreover, we

have +∂Gb1 and r is discarded for G after b1. Due to +∂¬b1, it follows that −∂Ib1

holds (as well as −∂SIb1); the rule is applicable for I and b2, and we are able to

prove +∂Ib2; the rule is thus discarded for I and b3 as well as b4. Due to O¬b2

being a fact, r is discarded for SI and b2 resulting in −∂SIb2, which in turn makes

the rule applicable for SI and b3, proving +∂SIb3. As we have argued before, this

makes r discarded for b4. Even if r is discarded for SI and b4, we nonetheless have

D 
 +∂SIb4 due to s; specifically, D 
 +∂Xb4 with X ∈ {D,G, I,SI} given that s is

trivially applicable for X.

For further illustrations of how the machinery works, the reader is referred to

Appendix A.

The next definition extends the concept of complement for modal literals and is

used to establish the logical connection among proved and refuted literals in our

framework.

Definition 15 (Complement set)

The complement set of a given modal literal l, denoted by l̃, is defined as follows: (1) if

l = Dm, then l̃ = {¬Dm}; (2) if l = Xm, then l̃ = {¬Xm,X∼m}, with X ∈ {O,G, I,SI};
(3) if l = ¬Xm, then l̃ = {Xm}.

The logic resulting from the above proof conditions enjoys properties describing

the appropriate behaviour of the modal operators for consistent theories.

Definition 16 (Consistent defeasible theory)

A defeasible theory D = (F, R,>) is consistent iff > is acyclic and F does not contain

pairs of complementary literals, that is if F does not contain pairs like (i) l and ∼l,
(ii) Xl and ¬Xl with X ∈MOD, and (iii) Xl and X∼l with X ∈ {G, I,SI}.

Proposition 1

Let D be a consistent, finite defeasible theory. For any literal l, it is not possible to

have both
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(1) D 
 +∂Xl and D 
 −∂Xl with X ∈MOD;

(2) D 
 +∂Xl and D 
 +∂X∼l with X ∈MOD \ {D}.

All proofs of propositions, lemmas and theorems are reported in Appendix B and

Appendix C. The meaning of the above proposition is that, for instance, it is not

possible for an agent to obey something that is obligatory and forbidden (obligatory

not) at the same time. On the other hand, an agent may have opposite desires given

different situations, but then she will be able to plan for only one between the two

alternatives.

Proposition 2 below governs the interactions between different modalities and

the relationships between proved literals and refuted complementary literals of the

same modality. Proposition 3 proves that certain (likely-expected) implications do

no hold.

Proposition 2

Let D be a consistent defeasible theory. For any literal l, the following statements

hold:

(1) if D 
 +∂Xl, then D 
 −∂X∼l with X ∈MOD \ {D};
(2) if D 
 +∂l, then D 
 −∂I∼l;
(3) if D 
 +∂l or D 
 +∂Ol, then D 
 −∂SI∼l;
(4) if D 
 +∂Gl, then D 
 +∂Dl;

(5) if D 
 −∂Dl, then D 
 −∂Gl.

Proposition 3

Let D be a consistent defeasible theory. For any literal l, the following statements

do not hold:

(6) if D 
 +∂Dl, then D 
 +∂Xl with X ∈ {G, I,SI};
(7) if D 
 +∂Gl, then D 
 +∂Xl with X ∈ {I,SI};
(8) if D 
 +∂Xl, then D 
 +∂Y l with X = {I,SI} and Y = {D,G};
(9) if D 
 −∂Y l, then D 
 −∂Xl with Y ∈ {D,G} and X ∈ {I,SI}.

Parts (6) and (7) directly follow by Definitions from 9 to 14 and rely on the

intuitions presented in Section 2. Parts from (7) to (9) reveal the true nature of

expressing outcomes in a preference order: it may be the case that the agent desires

something (may it be even her preferred outcome) but if the factuality of the

environment makes this outcome impossible to reach, then she should not pursue

such an outcome, and instead commit herself on the next option available. The

statements of Proposition 3 exhibit a common feature which can be illustrated by

the idiom: “What’s your plan B?”, meaning: even if you are willing for an option,

if such an option is not feasible you need to strive for the plan B.

Proof

Example 2 in the extended version offers counterexamples showing the reason why

the above statements do not hold.

F = {saturday , John away , John sick}
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R = {r2 : saturday ⇒U visit John � visit parents � watch movie

r3 : John away ⇒B ¬visit John

r4 : John sick ⇒U ¬visit John � short visit}
r7 : John away ⇒B ¬short visit}

> = {(r2, r4)}.

Given that r2 > r4, Alice has the desire to visit John , and this is also her preferred

outcome. Nonetheless, being John away a fact, this is not her intention, while so are

¬visit John and visit parents . �

4 Algorithmic results

We now present procedures and algorithms to compute the extension of a finite

defeasible theory (Subsection 4.2), in order to ascertain the complexity of the logic

introduced in the previous sections. The algorithms are inspired to ideas proposed

in Maher (2001); Lam and Governatori (2011).

4.1 Notation for the algorithms

From now on, � denotes a generic modality in MOD, � a generic modality in

MOD \ {B}, and � a fixed modality chosen in �. Moreover, whenever � = B we

shall treat literals �l and l as synonyms. To accommodate the Convert relation to

the algorithms, we recall that RB,� denotes the set of belief rules that can be used

for a conversion to modality �. The antecedent of all such rules is not empty, and

does not contain any modal literal.

Furthermore, for each literal l, l� is the set (initially empty) such that ±� ∈ l� iff

D 
 ±∂�l. Given a modal defeasible theory D, a set of rules R, and a rule r ∈ R�[l],

we expand the superiority relation > by incorporating the Conflict relation into it:

>=> ∪ {(r, s)|r ∈ R�[l], s ∈ R�[∼l],Conflict(�,�)}.

We also define:

(1) rsup = {s ∈ R : (s, r) ∈>} and rinf = {s ∈ R : (r, s) ∈>} for any r ∈ R;

(2) HBD as the set of literals such that the literal or its complement appears in D,

i.e., such that it is a sub-formula of a modal literal occurring in D;

(3) the modal Herbrand Base of D as HB = {�l| � ∈MOD, l ∈ HBD}.

Accordingly, the extension of a defeasible theory is defined as follows.

Definition 17 (Defeasible extension)

Given a defeasible theory D, the defeasible extension of D is defined as:

E(D) = (+∂�,−∂�),

where ±∂� = {l ∈ HBD : D 
 ±∂�l} with � ∈ MOD. Two defeasible theories D

and D′ are equivalent whenever they have the same extensions, i.e., E(D) = E(D′).
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We introduce two operations that modify the consequent of rules used by the

algorithms.

Definition 18 (Truncation and removal )

Let c1 = a1�· · ·�ai−1 and c2 = ai+1�· · ·�an be two (possibly empty) �-expressions

such that ai does not occur in neither of them, and c = c1�ai�c2 is an �-expression.

Let r be a rule with form A(r) ⇒� c. We define the truncation of the consequent c

at ai as:

A(r)⇒� c!ai = A(r)⇒� c1 � ai,

and the removal of ai from the consequent c as:

A(r)⇒� c� ai = A(r)⇒� c1 � c2.

Notice that removal may lead to rules with empty consequent which strictly would

not be rules according to the definition of the language. Nevertheless, we accept

such expressions within the description of the algorithms but then such rules will

not be in any R[q, i] for any q and i. In such cases, the operation de facto removes

the rules.

Given � ∈ MOD, the sets +∂� and −∂� denote, respectively, the global sets

of positive and negative defeasible conclusions (i.e., the set of literals for which

condition +∂� or −∂� holds), while ∂+
� and ∂−� are the corresponding temporary

sets, that is the set computed at each iteration of the main algorithm. Moreover,

to simplify the computation, we do not operate on outcome rules: for each rule

r ∈ RU we create instead a new rule for desire, goal, intention, and social intention

(respectively, rD, rG, rI, and rSI). Accordingly, for the sake of simplicity, in the present

section we shall use expressions like “the intention rule” as a shortcut for “the clone

of the outcome rule used to derive intentions”.

4.2 Algorithms

The idea of all the algorithms is to use the operations of truncation and elimination

to obtain, step after step, a simpler but equivalent theory. In fact, proving a literal

does not give local information regarding the element itself only, but rather reveals

which rules should be discarded, or reduced, in their head or body. Let us assume

that, at a given step, the algorithm proves literal l. At the next step,

(1) the applicability of any rule r with l ∈ A(r) does not depend on l any longer.

Hence, we can safely remove l from A(r).

(2) Any rule s with l̃ ∩ A(s) �= ∅ is discarded. Consequently, any superiority tuple

involving s is now useless and can be removed from the superiority relation.

(3) We can shorten chains by exploiting conditions of Definitions 9 and 10. For

instance, if l = Om, we can truncate chains for obligation rules at ∼m and

eliminate it as well.

Algorithm 1 DefeasibleExtension is the core algorithm to compute the extension

of a defeasible theory. The first part of the algorithm (lines 1–5) sets up the data
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Algorithm 1 DefeasibleExtension

1: +∂�, ∂
+
� ← ∅; −∂�, ∂

−
� ← ∅

2: R ← R ∪ {r� : A(r)⇒� C(r)|r ∈ RU}, with � ∈ {D,G, I,SI}
3: R ← R \ RU

4: RB,� ← {r� : A(r) ↪→ C(r)|r ∈ RB, A(r) �= ∅, A(r) ⊆ Lit}
5: >←> ∪{(r�, s�)|r�, s� ∈ RB,�, r > s} ∪ {(r, s)|r ∈ R� ∪ RB,�, s ∈ R� ∪ RB,�,Conflict(�,�)}
6: for l ∈ F do
7: if l = �m then Proved(m, �)
8: if l = ¬�m ∧� �= D then Refuted(m, �)
9: end for

10: +∂� ← +∂� ∪ ∂+
�; −∂� ← −∂� ∪ ∂−�

11: Rinfd ← ∅
12: repeat
13: ∂+

� ← ∅; ∂−� ← ∅
14: for �l ∈ HB do
15: if R�[l] ∪ RB,�[l] = ∅ then Refuted(l, �)
16: end for
17: for r ∈ R� ∪ RB,� do
18: if A(r) = ∅ then
19: rinf ← {r ∈ R : (r, s) ∈>, s ∈ R}; rsup ← {s ∈ R : (s, r) ∈>}
20: Rinfd ← Rinfd ∪ rinf
21: Let l be the first literal of C(r) in HB

22: if rsup = ∅ then
23: if � = D then
24: Proved(m, D)
25: else
26: Refuted(∼l, �)
27: Refuted(∼l, �) for � s.t. Conflict(�,�)
28: if R�[∼l] ∪ RB,�[∼l] ∪ R�[∼l] \ Rinfd ⊆ rinf , for � s.t. Conflict(�,�) then
29: Proved(m, �)
30: end if
31: end if
32: end if
33: end if
34: end for
35: ∂+

� ← ∂+
� \+∂�; ∂−� ← ∂−� \ −∂�

36: +∂� ← +∂� ∪ ∂+
�; −∂� ← −∂� ∪ ∂−�

37: until ∂+
� = ∅ and ∂−� = ∅

38: return (+∂�,−∂�)

structure needed for the computation. Lines 6–9 are to handle facts as immediately

provable literals.

The main idea of the algorithm is to check whether there are rules with empty

body: such rules are clearly applicable and they can produce conclusions with the

right mode. However, before asserting that the first element for the appropriate

modality of the conclusion is provable, we need to check whether there are rules

for the complement with the appropriate mode; if so, such rules must be weaker

than the applicable rules. The information about which rules are weaker than the

applicable ones is stored in the support set Rinfd . When a literal is evaluated to be

provable, the algorithm calls procedure Proved; when a literal is rejected, procedure

Refuted is invoked. These two procedures apply transformations to reduce the

complexity of the theory.
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A step-by-step description of the algorithm would be redundant once the concepts

expressed before are understood. Accordingly, in the rest of the section we provide

in depth descriptions of the key passage.

For every outcome rule, the algorithm makes a copy of the same rule for each

mode corresponding to a goal-like attitude (line 2). At line 4, the algorithm creates

a support set to handle conversions from a belief rule through a different mode.

Consequently, the new � rules have to inherit the superiority relation (if any) from

the belief rules they derive from (line 5). Notice that we also augment the superiority

relation by incorporating the rules involved in the Conflict relation. Given that

facts are immediately proved literals, Proved is invoked for positively proved modal

literals (those proved with +∂�), and Refuted for rejected literals (i.e., those proved

with−∂�). The aim of the for loop at lines 14–16 is to discard any modal literal in HB

for which there are no rules that can prove it (either directly or through conversion).

We now iterate on every rule that can fire (i.e., on rules with empty body, loop

for at lines 17–34 and if condition at line 18) and we collect the weaker rules

in the set Rinfd (line 20). Since a consequent can be an �-expression, the literal

we are interested in is the first element of the �-expression (line 21). If no rule

stronger than the current one exists, then the complementary conclusion is refuted

by condition (2.3) of Definition 14 (line 26). An additional consequence is that literal

l is also refutable in D for any modality conflicting with � (line 27). Notice that

this reasoning does not hold for desires: since the logic allows to have Dl and D∼l
at the same time, when � = D and the guard at line 22 is satisfied, the algorithm

invokes procedure 2 Proved (line 24) due to condition (2.3) of Definition 11.

The next step is to check whether there are rules for the complement literal of the

same modality, or of a conflicting modality. The rules for the complement should

not be defeated by applicable rules: such rules thus cannot be in Rinfd . If all these

rules are defeated by r (line 28), then conditions for deriving +∂� are satisfied, and

Algorithm 2 Proved is invoked.

Algorithm 2 Proved is invoked when literal l is proved with modality �, the key

to which simplifications on rules can be done. The computation starts by updating

the relative positive extension set for modality � and, symmetrically, the local

information on literal l (line 2); l is then removed from HB at line 3. Parts 1.–3. of

Proposition 2 identifies the modalities literal ∼l is refuted with, when �l is proved (if

conditions at lines 4–6). Lines 7 to 9 modify the superiority relation and the sets of

rules R and RB,� accordingly to the intuitions given at the beginning of Section 4.2.

Depending on the modality � of l, we perform specific operations on the chains

(condition switch at lines 10–27). A detailed description of each case would be

redundant without giving more information than the one expressed by conditions of

Definitions 9 and 10. Therefore, we propose one significative example by considering

the scenario where l has been proved as a belief (case at lines 11–14). First, conditions

of Definitions 10 and 14 ensure that ∼l may be neither an intention, nor a social

intention. Algorithm 3 Refuted is thus invoked at lines 5 and 6 which, in turn,

eliminates ∼l from every chain of intention and social intention rules (line 18 of

Algorithm 3 Refuted). Second, chains of obligation (resp. intention) rules can be

truncated at l since condition (2.1.2) (resp. condition (4.1.2)) of Definition 10 makes
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Algorithm 2 Proved

1: procedure Proved(l ∈ Lit, � ∈MOD)
2: ∂+

� ← ∂+
� ∪ {l}; l� ← l� ∪ {+�}

3: HB ← HB \ {�l}
4: if � �= D then Refuted(∼l, �)
5: if � = B then Refuted(∼l, I)
6: if � ∈ {B,O} then Refuted(∼l, SI)

7: R ← {r : A(r) \ {�l,¬�∼l} ↪→ C(r)| r ∈ R, A(r) ∩ �̃l = ∅}
8: RB,� ← {r : A(r) \ {l} ↪→ C(r)|r ∈ RB,�, ∼l /∈ A(r)}
9: >←> \{(r, s), (s, r) ∈> | A(r) ∩ �̃l �= ∅}

10: switch (�)
11: case B:
12: RX ← {A(r)⇒X C(r)!l| r ∈ RX [l, n]} with X ∈ {O, I}
13: if +O ∈ ∼l� then RO ← {A(r)⇒O C(r)�∼l| r ∈ RO[∼l, n]}
14: if −O ∈ ∼l� then RSI ← {A(r)⇒SI C(r)!l| r ∈ RSI[l, n]}
15: case O:
16: RO ← {A(r)⇒O C(r)!∼l �∼l| r ∈ RO[∼l, n]}
17: if −B ∈ l� then RO ← {A(r)⇒O C(r)� l| r ∈ RO[l, n]}
18: if −B ∈ ∼l� then RSI ← {A(r)⇒SI C(r)!l| r ∈ RSI[l, n]}
19: case D:
20: if +D ∈ ∼l� then
21: RG ← {A(r)⇒G C(r)!l � l| r ∈ RG[l, n]}
22: RG ← {A(r)⇒G C(r)!∼l �∼l| r ∈ RG[∼l, n]}
23: end if
24: otherwise:
25: R� ← {A(r)⇒� C(r)!l| r ∈ R�[l, n]}
26: R� ← {A(r)⇒� C(r)�∼l| r ∈ R�[∼l, n]}
27: end switch
28: end procedure

such rules discarded for all elements following l in the chain (line 12). Third, if

+∂O∼l has been already proved, then we eliminate ∼l in chains of obligation rules

since it represents a violated obligation (if condition at lines 13). Fourth, if −∂O∼l
is the case, then each element after l cannot be proved as a social intention (if

condition at line 14). Consequently, we truncate chains of social intention rules at l.

Algorithm 3 Refuted performs all necessary operations to refute literal l with

modality �. The initialisation steps at lines 2–6 follow the same schema exploited at

lines 2–9 of Algorithm 2 Proved. Again, the operations on chains vary according

to the current mode � (switch at lines 7–19). For instance, if � = B (case at lines

8–11), then condition (4.1.2) for I of Definition 10 is satisfied for any literal after ∼l
in chains for intentions, and such chains can be truncated at ∼l. Furthermore, if the

algorithm has already proven +∂Ol, then the obligation of l has been violated. Thus,

l can be removed from all chains for obligations (line 10). If instead −∂Ol holds,

then the elements after ∼l in chains for social intentions satisfy condition (4.1.2) of

Definition 10, and the algorithm removes them (line 11).

4.3 Computational results

We now present the computational properties of the algorithms previously described.

Since Algorithms 2 Proved and 3 Refuted are sub-routines of the main one, we

shall exhibit the correctness and completeness results of these algorithms inside
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Algorithm 3 Refuted

1: procedure Refuted(l ∈ Lit, � ∈MOD)
2: ∂−� ← ∂−� ∪ {l}; l� ← l� ∪ {−�}
3: HB ← HB \ {�l}
4: R ← {r : A(r) \ {¬�l} ↪→ C(r)| r ∈ R, �l �∈ A(r)}
5: RB,� ← RB,� \ {r ∈ RB,� : l ∈ A(r)}
6: >←> \{(r, s), (s, r) ∈> |�l ∈ A(r)}
7: switch (�)
8: case B:
9: RI ← {A(r)⇒I C(r)!∼l|r ∈ RI[∼l, n]}

10: if +O ∈ l� then RO ← {A(r)⇒O C(r)� l|r ∈ RO[l, n]}
11: if −O ∈ l� then RSI ← {A(r)⇒SI C(r)!∼l|r ∈ RSI[∼l, n]}
12: case O:
13: RO ← {A(r)⇒O C(r)!l � l|r ∈ RO[l, n]}
14: if −B ∈ l� then RSI ← {A(r)⇒SI C(r)!∼l|r ∈ RSI[∼l, n]}
15: case D:
16: RX ← {A(r)⇒X C(r)� l|r ∈ RX [l, n]} with X ∈ {D,G}
17: otherwise:
18: R� ← {A(r)⇒� C(r)� l|r ∈ R�[l, n]}
19: end switch
20: end procedure

theorems for Algorithm 1 DefeasibleExtension. In order to properly demonstrate

results on the complexity of the algorithms, we need the following definition.

Definition 19 (Size of a theory)

Given a finite defeasible theory D, the size S of D is the number of occurrences of

literals plus the number of the rules in D.

For instance, the size of the theory

F = {a, Ob} R = {r1 : a⇒O c, r2 : a,Ob⇒ d}

is equal to nine, since literal a occurs three times.

We also report some key ideas and intuitions behind our implementation.

(1) Each operation on global sets ±∂� and ∂±� requires linear time, as we manipulate

finite sets of literals;

(2) For each literal �l ∈ HB, we implement a hash table with pointers to the rules

where the literal occurs in; thus, retrieving the set of rules containing a given

literal requires constant time;

(3) The superiority relation can also be implemented by means of hash tables;

once again, the information required to modify a given tuple can be accessed in

constant time.

In Section 4, we discussed the main intuitions behind the operations performed by

the algorithms, and we explained that each operation corresponds to a reduction

that transforms a theory in an equivalent smaller theory. Appendix C exhibits a

series of lemmas stating the conditions under which an operation that removes

either rules or literals form either the head or rules or from the body results in

an equivalent smaller theory. The Lemmas proved by induction on the length of

derivations.
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Theorem 4

Given a finite defeasible theory D with size S , Algorithms 2 Proved and 3 Refuted

terminate and their computational complexity is O(S).

Theorem 5

Given a finite defeasible theory D with size S , Algorithm 1 DefeasibleExtension

terminates and its computational complexity is O(S).

Theorem 6

Algorithm 1 DefeasibleExtension is sound and complete.

5 Summary and related work

This article provided a new proposal for extending DL to model cognitive agents

interacting with obligations. We distinguished concepts of desire, goal, intention, and

social intention, but we started from the shared notion of outcome. Therefore, such

concepts spring from a single notion that becomes distinct based on the particular

relationship with beliefs and norms. This reflects a more natural notion of mental

attitude and can express the well-known notion of Plan B. When we consider the

single chain itself, this justifies that from a single concept of outcome we can derive

all the other mental attitudes. Otherwise we would need as many additional rules as

the elements in the chain; this, in turn, would require the introduction of additional

notions to establish the relationships with beliefs and norms. This adds to our

framework an economy of concepts.

Moreover, since the preferences allow us to determine what preferred outcomes

are adopted by an agent (in a specific scenario) when previous elements in sequences

are no longer feasible, our logic provides an abstract semantics for several types of

goal and intention reconsideration.

A drawback of our approach perhaps lies in the difficulty of translating a natural

language description into a logic formalisation. This is a notoriously hard task. Even

if the obstacle seems very difficult, the payoff is worthwhile. The first reason is due to

the efficiency of the computation of the positive extension once the formalisation has

been done (polynomial time against the majority of the current frameworks in the

literature which typically work in exponential time). The second reason is that the use

of rules (such as business rules) to describe complex systems is extremely common

(Knolmayer et al. 2000). Future lines of research will then focus on developing such

methods, by giving tools which may help the (business) analyst in writing such

(business) rules from the declarative description.

The logic presented in this paper, as the vast majority of approaches to model

autonomous agents, is propositional. The algorithms to compute the extension of

theory relies on the theory being finite, thus the first assumption for possible first-

order extensions would be to work on finite domains of individuals. Given this

assumption, the algorithms can be still be used once a theory has been grounded.

This means that the size of theory is in function of the size of the grounding. We

expect that the size of the grounding depends on the cardinality of the domain
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of individuals and the length of the vector obtained by the join of the predicates

occurring in the theory.

Our contribution has strong connections with those by Dastani et al. (2005);

Governatori and Rotolo (2008); Governatori et al. (2009), but it completely rebuilds

the logical treatment of agents’ motivational attitudes by presenting significant

innovations in at least two respects.

First, while in Dastani et al. (2005); Governatori and Rotolo (2008); Governatori

et al. (2009) the agent deliberation is simply the result of the derivation of mental

states from precisely the corresponding rules of the logic—besides conversions,

intentions are derived using only intention rules, goals using goal rules, etc.—here,

the proof theory is much more aligned with the BDI intuition, according to which

intentions and goals are the results of the manipulation of desires. The conceptual

result of the current paper is that this idea can be entirely encoded within a

logical language and a proof theory, by exploiting the different interaction patterns

between the basic mental states, as well as the derived ones. In this perspective, our

framework is significantly richer than the one in BOID (Broersen et al. 2002), which

uses different rules to derive the corresponding mental states and proposes simple

criteria to solve conflicts between rule types.

Second, the framework proposes a rich language expressing two orthogonal

concepts of preference among motivational attitudes. One is encoded within �
sequences, which state (reparative) orders among homogeneous mental states or

motivations. The second type of preference is encoded via the superiority relation

between rules: the superiority can work locally between single rules of the same or

different types, or can work systematically by stating via Conflict(X,Y ) that two

different motivations X and Y collide, and X always overrides Y . The interplay

between these two preference mechanisms can help us in isolating different and

complex ways for deriving mental states, but the resulting logical machinery is still

computationally tractable, as the algorithmic analysis proved.

Lastly, since the preferences allow us to determine what preferred outcomes are

adopted by an agent when previous elements in �-sequences are not (or no longer)

feasible, our logic in fact provides an abstract semantics for several types of goal

and intention reconsideration. Intention reconsideration was expected to play a

crucial role in the BDI paradigm (Bratman 1987; Cohen and Levesque 1990) since

intentions obey the law of inertia and resist retraction or revision, but they can be

reconsidered when new relevant information comes in Bratman (1987). Despite that,

the problem of revising intentions in BDI frameworks has received little attention.

A very sophisticated exception is that of van der Hoek et al. (2007), where revisiting

intentions mainly depends on the dynamics of beliefs but the process is incorporated

in a very complex framework for reasoning about mental states. Recently, Shapiro

et al. (2012) discussed how to revise the commitments to planned activities because of

mutually conflicting intentions, a contribution that interestingly has connections with

our work. How to employ our logic to give a semantics for intention reconsideration

is not the main goal of the paper and is left to future work.

Our framework shares the motivation with that of Winikoff et al. (2002), where

the authors provide a logic to describe both the declarative and procedural nature
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of goals. The nature of the two approaches lead to conceptually different solutions.

For instance, they require goals, as in Hindriks et al. (2000), “not to be entailed

by beliefs, i.e., that they be unachieved”, while our beliefs can be seen as ways

to achieve goals. Other requirements such as persistence or dropping a goal when

reached cannot be taken into account.

Shapiro et al. (2007) and Shapiro and Brewka (2007) deal with goal change. The

authors consider the case where an agent readopts goals that were previously believed

to be impossible to achieve up to revision of her beliefs. They model goals through

an accessibility relation over possible worlds. This is similar to our framework

where different worlds are different assignments to the set of facts. Similarly to us,

they prioritise goals as a preorder �; an agent adopts a new goal unless another

incompatible goal prior in the ordering exists. This is in line with our framework

where if we change the set of facts, the algorithms compute a new extension of the

theory where two opposite literals can be proved as D but only one as I. Notice also

that the ordering used in their work is unique and fixed at design time, while in our

framework chains of outcome rules are built through a context-dependent partial

order which, in our opinion, models more realistic scenarios.

Dastani et al. (2006) present three types of declarative goals: perform, achievement,

and maintenance goals. In particular, they define planning rules which relate

configurations of the world as seen by the agent (i.e., her beliefs). A planning rule

is considered correct only if the plan associated to the rule itself allows the agent to

reach a configuration where her goal is satisfied. This is strongly connected to our

idea of belief rules, which define a path to follow in order to reach an agent outcome.

Notice that this kind of research based on temporal aspects is orthogonal to ours.

The unifying framework proposed by van Riemsdijk et al. (2008) and Dastani

et al. (2011) specifies different facets of the concept of goal. However, several aspects

make a comparative analysis between the two frameworks unfeasible. Their analysis

is indeed merely taxonomical, and it does not address how goals are used in agent

logics, as we precisely do here.

van Riemsdijk et al. (2009) share our aim to formalise goals in a logic-based

representation of conflicting goals and propose two different semantics to represent

conditional and unconditional goals. Their central thesis, supported by Prakken

(2006), is that only by adopting a credulous interpretation is it possible to have

conflicting goals. However, we believe that a credulous interpretation is not suitable

if an agent has to deliberate what her primary goals are in a given situation. We opted

to have a sceptical interpretation of the concepts we call goals, intentions, and social

intentions, while we adopt a credulous interpretation for desires. Moreover, they do

not take into account the distinction between goals and related motivational attitudes

(as in van Riemsdijk et al. (2008); Dastani et al. (2006, 2011)). The characteristic

property of intentions in these logics is that an agent may not drop intentions for

arbitrary reasons, which means that intentions have a certain persistence. As such,

their analysis results orthogonal to ours.

Vasconcelos et al. (2009) propose mechanisms for the detection and resolution of

normative conflicts. They resolve conflicts by manipulating the constraints associated

to the norms’ variables, as well as through curtailment, that is reducing the scope
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of the norm. In other works, we dealt with the same problems in defeasible deontic

logic (Governatori et al. 2013a). We found three problems in their solution: (i)

the curtailing relationship ω is rather less intuitive than our preference relation >,

(ii) their approach seems too convoluted in solving exceptions (and they do not

provide any mechanism to handle reparative chains of obligations), and (iii) the

space complexity of their adoptNorm algorithm is exponential.

The present framework is meant to be seen as the first step within a more general

perspective of providing the business analyst with tools that allow the creation

of a business process in a fully declarative manner (Olivieri et al. 2013). Another

issue comes from the fact that, typically, systems implemented by business rules

involve thousands of such rules. Again, our choice of Defeasible Logic allows to

drastically reduce the number of rules involved in the process of creating, for

example, a business process thanks to its exception handling mechanism. This is

peculiarly interesting when dealing with the problem of visualising such rules. When

dealing with a system with thousands of rules, understanding what they represent

or what a group of rules stand for, may be a serious challenge. On the contrary,

the model presented by Olivieri et al. (2013), once an input is given, allows for the

identification of whether the whole process is compliant against a normative system

and a set of goals (and if not, where it fails). To the best of our knowledge, no other

system is capable of checking whether a process can start with its input requisites

and reaches its final objectives in a way that is compliant with a given set of

norms.

Acknowledgements

NICTA is funded by the Australian Government through the Department of

Communications and the Australian Research Council through the ICT Centre

of Excellence Program.

This paper is an extended and revised version of Governatori et al. (2013b)

presented at the 7th International Symposium on Theory, Practice, and Applications

of Rules on the Web (RuleML 2013). We thank all the anonymous reviewers for

their valuable comments.

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1017/

S1471068416000053

References

Andrighetto, G., Governatori, G., Noriega, P. and van der Torre, L. W. N., Ed. 2013.

Normative Multi-Agent Systems, Vol. 4, Dagstuhl Follow-Ups, Schloss Dagstuhl – Leibniz-

Zentrum fuer Informatik. ISBN 978-3-939897-51-4.

Antoniou, G., Billington, D., Governatori, G. and Maher, M. J. 2001. Representation

results for defeasible logic. ACM Transactions on Computational Logic 2, (2), 255–287. ISSN

1529-3785.

https://doi.org/10.1017/S1471068416000053 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000053


322 G. Governatori et al.

Antoniou, G., Billington, D., Governatori, G., Maher, M. J. and Rock, A. 2000. A

family of defeasible reasoning logics and its implementation. In Proc. of ECAI 2000, Horn,

Werner, Ed. IOS Press, Amsterdam, 459–463.

Bassiliades, N., Antoniou, G. and Vlahavas, I. 2006. A defeasible logic reasoner for the

semantic web. International Journal on Semantic Web and Information Systems 2, (1), 1–41.

Bratman, M. E. 1987. Intentions, Plans and Practical Reason. Harvard University Press,

Cambridge, MA.

Brewka, G., Benferhat, S. and Le Berre, D. 2004. Qualitative choice logic. Artificial

Intelligence 157, (1-2), 203–237.

Broersen, J., Dastani, M., Hulstijn, J. and van der Torre, L. 2002. Goal

generation in the BOID architecture. Cognitive Science Quarterly 2, (3-4), 428–447. URL

http://icr.uni.lu/leonvandertorre/papers/csqj02.ps.Z.

Cohen, P. R. and Levesque, H. J. 1990. Intention is choice with commitment. Artificial

Intelligence 42, (2-3), 213–261.

Dastani, M., Governatori, G., Rotolo, A. and van der Torre, L. 2005. Programming

cognitive agents in defeasible logic. In Proc. LPAR, G. Sutcliffe and A. Voronkov, Ed.

LNAI, Vol. 3835. Springer, Berlin, Heidelberg, 621–636.

Dastani, M., van Riemsdijk, M. B. and Meyer, J.-J. C. 2006. Goal types in agent

programming. In AAMAS, H. Nakashima, M. P. Wellman, G. Weiss and P. Stone, Ed.

ACM, New York, 1285–1287.

Dastani, M., van Riemsdijk, M. B. and Winikoff, M. 2011. Rich goal types in agent

programming. In AAMAS, L. Sonenberg, P. Stone, K. Tumer and P. Yolum, Ed. IFAAMAS,

405–412.

Governatori, G. 2005. Representing business contracts in RuleML. International Journal of

Cooperative Information Systems 14, (2-3), 181–216.

Governatori, G., Olivieri, F., Rotolo, A. and Scannapieco, S. 2013a. Computing strong

and weak permissions in defeasible logic. Journal of Philosophical Logic 42, (6), 799–829,

URL http://dx.doi.org/10.1007/s10992-013-9295-1.

Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S. and Cristani, M. 2013b. Picking

up the best goal – an analytical study in defeasible logic. In RuleML, volume 8035,
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