Comparison of total and activity energy expenditure estimates from physical activity questionnaires and doubly labelled water: a systematic review and meta-analysis

Mohammad Sharifzadeh ${ }^{1}$, Minoo Bagheri ${ }^{2}$, John R. Speakman ${ }^{3,4}$ and Kurosh Djafarian ${ }^{1 *}$
${ }^{1}$ Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 1416-643931, Iran
${ }^{2}$ Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 , USA
${ }^{3}$ Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
${ }^{4}$ Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK

(Submitted 12 February 2020 - Final revision received 6 July 2020 - Accepted 17 July 2020 - First published online 28 July 2020)

Abstract

Physical activity questionnaires (PAQ) could be suitable tools in free-living people for measures of physical activity, total and activity energy expenditure (TEE and AEE). This meta-analysis was performed to determine valid PAQ for estimating TEE and AEE using doubly labelled water (DLW). We identified data from relevant studies by searching Google Scholar, PubMed and Scopus databases. This revealed thirty-eight studies that had validated PAQ with DLW and reported the mean differences between PAQ and DLW measures of TEE (TEE DLw $-\mathrm{TEE}_{\text {PAQ }}$) and AEE $\left(A E E_{\text {DLW }}-A E E_{P A Q}\right)$. We assessed seventy-eight PAQ consisting of fifty-nine PAQ that assessed TEE and thirty-five PAQ that examined AEE. There was no significant difference between $\mathrm{TEE}_{P A Q}$ and $\mathrm{TEE}_{\text {DLw }}$ with a weighted mean difference of $-243 \cdot 3$ and a range of $-841 \cdot 4 \mathrm{to} 354.6 \mathrm{~kJ} / \mathrm{d}$, and a significant weighted mean difference of AEE $_{\text {DLW }}-$ AEE $_{P A Q} 414 \cdot 6$ and a range of $78 \cdot 7-750 \cdot 5$. To determine whether any PAQ was a valid tool for estimating TEE and AEE, we carried out a subgroup analysis by type of PAQ. Only Active-Q, administered in two seasons, and 3-d PA diaries were correlated with TEE by DLW at the population level; however, these two PAQ did not demonstrate an acceptable limit of agreement at individual level. For AEE, no PAQ was correlated with DLW either at the population or at the individual levels. Active-Q and 3-d PA diaries were identified as the only valid PAQ for TEE estimation. Further well-designed studies are needed to verify this result and identify additional valid PAQ.

Key words: Physical activity: Total energy expenditure: Activity energy expenditure: Doubly labelled water method

Total energy expenditure (TEE) consists of three components: BMR (or basal energy expenditure; BEE) $\approx 60-75 \%$ of TEE, activity energy expenditure (AEE) $\approx 15-30 \%$ of TEE and dietary thermogenesis $\approx 10 \%$ of $\operatorname{TEE}^{(1,2)}$. TEE, BEE and AEE change during the life course and are different between the sexes, with males usually higher than females and older individuals lower than younger ones ${ }^{(3)}$. TEE and AEE may also be affected by different disease states ${ }^{(4)}$. BEE as a part of TEE decreases with age and this age-related reduction is affected by sex and body composition ${ }^{(5,6)}$. TEE is balanced by energy intake. When this balance is disrupted individuals become obese ${ }^{(7)}$.

One of the most important means of decreasing risk of diabetes and CVD is to increase physical activity ${ }^{(8,9)}$. Also, previous research demonstrated that TEE changes in some diseases,
including advance pancreatic cancer, sepsis ${ }^{(10,11)}$ and resistance training ${ }^{(12)}$. Therefore, measuring TEE and PA is essential to set up efficient strategies for prevention and treatment of these disorders. The 'gold standard' method for assessing TEE (and AEE by difference between TEE and BEE) is the doubly labelled water (DLW) method ${ }^{(13)}$. DLW can also be used to estimate food intake rates as individuals are generally in energy balance during measurements. However, this technique is relatively expensive (currently around 500-800US\$ per subject) and hence is unsuitable for large-scale survey work. As an alternative, self-report questionnaires are often used in epidemiological studies to assess physical activity levels and food intake, and these may be extended to estimate AEE. In addition, since AEE is the most variable part of the TEE, they are also often used to evaluate

[^0]$\mathrm{TEE}^{(14-16)}$. Questionnaires are advantageous because they are inexpensive, relatively easy to administer and generally well tolerated by participants ${ }^{(17-19)}$. However, self-report questionnaires for food intake have come under considerable criticism recently, because people are unreliable monitors of their own behaviour and have poor recall of detailed past events. Research demonstrated that self report questionnaires were not reliable measures of not only food intake ${ }^{(20)}$, but also physical activity ${ }^{(21)}$. Previous comparisons of physical activity questionnaires (PAQ) and DLW have shown that misreporting of energy expenditure by PAQ is also common ${ }^{(21)}$.

PAQ are being developed continuously and hence it is necessary to validate which PAQ provide valid estimates of TEE and $\mathrm{AEE}^{(22)}$ by comparison to the 'gold standard' DLW methodology. Systematic reviews conducted a decade ago by Neilson et al. ${ }^{(1)}$ and Prince et al. ${ }^{(23)}$ examined the correlation between self-report (PAQ) and direct measures of adult physical activity. The latter study focused on the ineffectiveness of self-report assessment tools of physical activity. At present, the validity and reliability of many recently developed PAQ have not been established. Furthermore, it is unknown if these questionnaires are valid to evaluate TEE and AEE in either clinical settings or epidemiological studies ${ }^{(1)}$. Some PAQ may be useful in epidemiological studies, and some in individual studies like clinical research. To find PAQ suitable for these two kinds of studies, we need to follow two criteria: first, at the population level, suitable PAQ must have a mean difference of $<10 \%$ in differences with a gold standard method like DLW and a Spearman correlation of $>0 \cdot 6^{(1)}$. At the individual level, PAQ must have an acceptable limit of agreement which can be defined by the Bland-Altman method ${ }^{(21)}$. Therefore, the purpose of the present work was to perform a meta-analysis of studies exploring the validity of existing PAQ to estimate TEE and/or AEE, across all age groups.

Methods

Search strategy

The following databases were searched to identify studies published up to 2 October 2019: Google Scholar, PubMed and Scopus database using the following lists and terms:
List A: ‘Doubly labeled water' OR 'doubly-labeled water' OR 'isotope labeled water' OR 'doubly labelled water'
List B: 'Activity monitor*' OR 'physical Activity*' OR 'Motor Activity*' OR 'physical activity level' OR 'Activity energy expenditure'
List C: 'Energy expenditure' OR 'TEE'
List D: 'Resting metabolic rate'
List E:"Questionnaire*" OR 'Survey' OR 'Record' OR 'Recall' List F: valid*

Key search terms in Lists A, B, C, D, E and F were combined together.

Three independent reviewers screened the studies and extracted relevant research. When duplicate reports were removed, the full texts of studies were further assessed to extract the required data for the present study.

We included studies that (A) validated PAQ with DLW based on measurements of TEE and/or AEE and (B) included PAQ that calculated TEE or AEE. Our search was limited to studies written in English, with no constraint on publication year and with no restriction on subject age, disease status, sex and gestation and lactation status.

Data extraction

We extracted the following information from each study: publication year, country, sample size, sex, mean values and standard deviations, age, weight, BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, body fat percentage (BF \%) (Table 1), TEE (kJ/d) (Table 2) and AEE (kJ/d) measured by both DLW and PAQ (Table 3).

Quality assessment

The quality of each eligible study was assessed using the Newcastle-Ottawa scale adapted for cross-sectional studies ${ }^{(24)}$. This quality assessment was performed based on seven questions in three main domains including selection, comparability and outcome (online Supplementary Table S1).

Statistical analysis

In our meta-analysis, the means and standard deviations of the differences in TEE or AEE measured by PAQ and DLW (the study outcome) were pooled using the weighted averages of the mean differences. Between-study heterogeneity was assessed using Cochran's Q test and I^{2}. According to previous research, we considered I^{2} values of 25,50 and 75% as low, moderate and high heterogeneity, respectively ${ }^{(25)}$. Random-effects models (DerSimonian-Laird approach) were administered if heterogeneity was significant ${ }^{(26)}$. To explore potential sources of heterogeneity, we performed subgroup analysis with the following covariates: sex, age, BMI, disease and body fat. Age was categorised as $<13, \geq 13$ and $<24, \geq 24$ and $<44, \geq 44$ and <64 and ≥ 65 years. Subgroup analysis according to type of diseases was also conducted by classifying studies based on the health status of the study population: healthy or having either chronic kidney disease or spinal cord injury. BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ was classified as $\mathrm{BMI}<18 \cdot 5,18 \cdot 5 \leq \mathrm{BMI}<25,25 \leq \mathrm{BMI}<30$ and $30 \leq \mathrm{BMI}<35$ and $\mathrm{BF} \%$ divided into the following groups $15 \leq$ body fat <25, $25 \leq$ body fat <35 and body fat ≥ 35. All statistical tests for this meta-analysis were performed using STATA software (version 14.0; Stata Corporation).

Results

We identified 1780 studies of which sixty-nine were identified in PubMed and 1711 in Scopus and Google Scholar. A total of 113 studies remained after a preliminary title and abstract review, seventy-five records were excluded from our analysis since they did not report TEE or AEE ($n 15$) or did not validate self-report measures with DLW ($n 31$) or did not use PAQ ($n 13$) or reported AEE in an inappropriate way like PA score or metabolic equivalent category (n 16). In the end, thirty-eight articles met the inclusion criteria of our study and were considered for further assessment (Fig. 1).

Table 1. Characteristics of the studies included into the meta-analysis
(Numbers and percentages; mean values and standard deviations)

Study	Sample size	Sex	Heath status of the participants	Age (years)	BMI (kg/m ${ }^{\text {2 }}$)		Weight (kg)		Body fat (\%)	
					Mean	SD	Mean	SD	Mean	SD
Arvidsson et al. $\mathrm{A}^{(78)}$	17	Boy	Healthy	8	2.6	21	9	1	4.7	4
Arvidsson et al. $\mathrm{B}^{(78)}$	16	Girl	Healthy	7	2.7	21	9.4	4	5.2	5
Barnard et al. $\mathrm{A}^{(76)}$	8	Men	Healthy	4	3.9	9		Not reported	6.8	9
Barnard et al. $\mathrm{B}^{(76)}$	7	Women	Healthy	1	$5 \cdot 3$	8		Not reported	9	4
Besson et al. $\mathrm{A}^{(66)}$	50	Men (50%) Women (50 \%)	Healthy	3	3.1	1		Not reported	7.9	22
Bonn et al. $\mathrm{A}^{(65)}$	37	Men (19\%) Women (81 \%)	Healthy	20-65		Not reported		Not reported		Not reported
Bonn et al. $\mathrm{B}^{(65)}$	37	Men (19\%) Women (81 \%)	Healthy	21-65		Not reported		Not reported		Not reported
Bonnefoy et al. A, B, C, D, E ${ }^{(35)}$	19	Men	Healthy	4		Not reported	9.7	3		Not reported
Conway et al. $\mathrm{A}^{(36)}$	24	Men	Healthy	42	0.6	6	2.1	5	6.8	1
Conway et al. B, C ${ }^{(63)}$	24	Men	Healthy	2	0.5	1	1.8	5		Not reported
Csizmadi et al. A, B, C, D ${ }^{(79)}$	102	Men (86\%)	Healthy	48	0.3	24		Not reported		Not reported
Foley et al. ${ }^{(67)}$	32	Women (14 \%) Men (56 \%) Women (44 \%)	Healthy	3	3.3	20.3	16	57	7	3
Fuller et al. $\mathrm{A}^{(80)}$	59	Men (51 \%) Women (49 \%)	Healthy	7	2.25	3	9.6	1	$2 \cdot 9$	2
Fuller et al. $\mathrm{B}^{(80)}$	59	Men (51 \%) Women (49 \%)	Healthy	7	2.25	3	9.6	1	$2 \cdot 9$	2
Mahabir et al. A, B, C, D ${ }^{(37)}$	65	Women	Postmenopausal	9	5.6	7		Not reported	8.6	2
Mâsse et al. $\mathrm{A}, \mathrm{B}^{(81)}$	130	Women	Healthy	2	6.3	30	17.3	76.9		Not reported
Racette et al. $\mathrm{A}^{(39)}$	14	Women	Healthy	40	8.8	34	0.06	2	2.9	8
Racette et al. $\mathrm{B}^{(39)}$	14	Women	Healthy	40	4.48	$30 \cdot 2$	4.48	81		Not reported
Ramírez-Marrero et al. ${ }^{(68)}$	12	Men (43 \%) Women (57 \%)	Healthy	18	9.5	7	5.45	6		Not reported
Slinde et al. ${ }^{(69)}$	2400	Boys (48%) Girls (52 \%)	Health	15	2.6	20.8	9.6	60.4		Not reported
Staten et al. A, B ${ }^{(82)}$	35	Women	Healthy	8	8.1	28	20.4	73		Not reported
Sridharan et al. A, B ${ }^{(64)}$	40	Men (55%) Women (45\%)	Chronic kidney disease (stages 1-5)	54	4.2	8	12.2	1		Not reported
Tanhoffer et al. A, $\mathrm{B}^{(83)}$	14	Men (93%) Women (7%)	Spinal cord injury	40	3	25	15	79	9	33
Walsh et al. A ${ }^{(42)}$	21	Women	Healthy	5	1.7	1	20.4	73	3.6	6
Walsh et al. ${ }^{(42)}$	21	Women	Healthy	5	1.1	9	$5 \cdot 3$	7	4.7	5
Walsh et al. $\mathrm{C}^{(42)}$	20	Women	Healthy	36	1.8	6	4.5	2	3.7	1
Walsh et al. $\mathrm{D}^{(42)}$	20	Women	Healthy	36	0.9	24	9.2	78	4.5	1
Walsh et al. $\mathrm{E}^{(42)}$	20	Women	Healthy	8	1	1	7.9	5	4	4
Walsh et al. $\mathrm{F}^{(42)}$	14	Women	Healthy	8	1.6	23	4.7	3	$5 \cdot 3$	5
Washburn et al. $\mathrm{A}^{(84)}$	17	Men	Healthy	9	2.7	8	4.7	3	4.7	2
Washburn et al. $\mathrm{B}^{(84)}$	29	Women	Healthy	3	2.8	4	11.9	1	4.2	6
Starling et al. A, B ${ }^{(85)}$	35	Women	Healthy	67	3.9	8	$10 \cdot 2$	9	8	35
Starling et al. C, $\mathrm{D}^{(85)}$	32	Men	Healthy	66	4.5	7	14.5	5	7	21
Seale et al. $\mathrm{A}^{(86)}$	13	Women	Healthy	5	3.2	6	9.5	8		Not reported
Seale et al. $\mathrm{B}^{(86)}$	14	Men	Healthy	1	2.4	2	7.9	6		Not reported

Table 1. (Continued)

Study	Sample size	Sex	Heath status of the participants	Age (years)	BMI ($\mathrm{kg} / \mathrm{m}^{2}$)		Weight (kg)		Body fat (\%)	
					Mean	sD	Mean	SD	Mean	sD
Rothenberg et al. ${ }^{(30)}$	12	Men (40%) Women (60%)	Healthy	73		24.3		62		Not reported
Philippaerts et al. ${ }^{(87)}$	90	Men	Healthy	40	2.8	24.6	8	78		20.3
Paul et al. ${ }^{(47)}$	12	Men	Healthy	39	1.4	24.1	$8 \cdot 3$	79.9		18.1
Leenders et al. ${ }^{(88)}$	13	Women	Healthy	25.8	0.6	23.5	2	65.5		26.3
Itwin et al. A, $\mathrm{B}^{(89)}$	24	Men	Healthy	41.2	2.7	25.1	9	79.5		21.1
Hagfors et al. ${ }^{(90)}$	9	Men (60%) Women (40 \%)	Healthy	8	4.4	28.1	14.1	77.8		Not reported
Lof et al. ${ }^{(91)}$	34	Women	Healthy	30	4	24	10	67	8	34
Corder et al. $\mathrm{A}^{(92)}$	13	Men	Healthy	15.9	2.6	17.4	7.1	46.1	10	14.3
Corder et al. $\mathrm{B}^{(192)}$	15	Women	Healthy	15.7	4.2	20.8	12.5	49.4	8.7	29.8
Skaribas et al. A, ${ }^{(93)}$	20	Men	Healthy	72.9		Not reported	9.5	77.4	7.9	24.2
Johansson et al. ${ }^{(94)}$	9	Men (34\%) Women (66\%)	Healthy	60	4.5	4		Not reported		Not reported
Liu et al. $\mathrm{A}^{(95)}$	18	Women	Renal, cancer, healthy	64-84		Not reported		Not reported		Not reported
Liu et al. $\mathrm{B}^{(95)}$	13	Men	Renal, cancer, healthy	64-84		Not reported		Not reported		Not reported
Neuhouser et al. $\mathrm{A}^{(196)}$	450	Women	Healthy	50-80		Not reported		Not reported		Not reported
Neuhouser et al. ${ }^{(196)}$	444	Women	Healthy	50-81		Not reported		Not reported		Not reported
Neuhouser et al. ${ }^{\text {C }}{ }^{(96)}$	426	Women	Healthy	50-82		Not reported		Not reported		Not reported
Ishikawa et al. $\mathrm{A}^{(70)}$	118	Women	Healthy	50.4	2.5	3	7.3	7		Not reported
Ishikawa et al. $\mathrm{B}^{(770)}$	108	Men	Healthy	50.4	3	23	10.9	6		Not reported
Colbert et al. ${ }^{(197)}$	56	Women (79\%) Men (21%)	Healthy	74.7	4.2	8	14.5	2		Not reported
Colbert et al. $\mathrm{B}^{(97)}$	56	Women (79\%) Men (21 \%)	Healthy	74.7	4.2	8	14.5	2		Not reported
Colbert et al. $\mathrm{C}^{(97)}$	56	Women (79\%) Men (21%)	Healthy	74.7	4.2	8	14.5	2		Not reported
Lof et al. ${ }^{(98)}$	24	Women	Healthy	30	4	24	10	67		Not reported
Pietiläinen et al. $\mathrm{A}^{(999)}$	7	Men	Healthy	25.5	0.5	30	$2 \cdot 3$	88	1.8	3
Pietilainen et al. $\mathrm{B}^{(99)}$	7	Men	Healthy	25.5	0.5	25	2.3	73	2.3	4

Table 2. Summary of results for the difference in total energy expenditure (TEE) means between physical activity questionnaires (PAQ) and doubly labelled water (DLW)*
(Mean values and standard deviations)

Study	PAQ type	TEE ${ }_{\text {dLw }}$		TEE ${ }_{\text {PAQ }}$	
		Mean	SD	Mean	SD
Arvidsson et al. $\mathrm{A}^{(78)}$	PAQA	11300	1500	7600	1600
Arvidsson et al. $\mathrm{B}^{(78)}$	PAQA	9100	1400	5200	1100
Barnard et al. $\mathrm{A}^{(76)}$	MAQ	29409	6857.9	6	$2562 \cdot 3$
Barnard et al. $\mathrm{B}^{(76)}$	MAQ	4	4531.7	8	836.4
Besson et al. $\mathrm{A}^{(66)}$	RPAQ	9	2574.1	8516	$2025 \cdot 1$
Bonn et al. $\mathrm{A}^{(65)}$	Active-Q	11229	2256	11667	3212
Bonn et al. $\mathrm{B}^{(65)}$	Active-Q	11229	2256	11529	2758
Bonnefoy et al. $\mathrm{B}^{(35)}$	7 d -PAQR	11181	1647	12335.78	1658.4
Bonnefoy et al. $\mathrm{D}^{(35)}$	QAPSE	11181	1647	9684	856.017
Conway et al. $\mathrm{A}^{(36)}$	(TEC + MNLTPA + EESLEEP + EEGEN)	13550	380	14870	900
Conway et al. $\mathrm{B}^{(63)}$	7-dPAR	13270	350	17400	1450
Conway et al. $\mathrm{C}^{(63)}$	7-dPArecord	13270	350	14170	370
Csizmadi et al. $\mathrm{A}^{(79)}$	Star-Q	67	3213.31	79	3941.33
Csizmadi et al. $\mathrm{B}^{(79)}$	Star-Q	67	3213.31	24	3338.83
Csizmadi et al. C ${ }^{(79)}$	Star-Q	67	3213.31	2	3414.14
Csizmadi et al. $\mathrm{D}^{(79)}$	7 d -PAQR	67	3213.31	50	4619.14
Foley et al. ${ }^{(67)}$	MARCA	96	3778.15	98	4481.064
Fuller et al. $\mathrm{A}^{(80)}$	24-h PAD	11030	2190	10050	1800
Fuller et al. $\mathrm{B}^{(80)}$	7-dPAR	11040	2200	9370	2250
Mahabir et al. $\mathrm{A}^{(37)}$	Five city project questionnaire	10711.04	2602.45	48	4744.656
Mahabir et al. $\mathrm{B}^{(37)}$	Harvard Alumni questionnaire	10711.04	2602.45	42	4853.44
Mahabir et al. $\mathrm{C}^{(37)}$	CAPS study 4 week activity recall	10711.04	2602.45	10798.9	9694.328
Mahabir et al. $\mathrm{D}^{(37)}$	CAPS study typical week activity recall	10711.04	2602.45	84	3907.86
Mâsse et al. $\mathrm{A}^{(81)}$	The checklist questionnaire	72	1824.22	10589.7	2359.78
Mâsse et al. $\mathrm{B}^{(81)}$	Global questionnaire	72	1824.22	92	2414.17
Racette et al. $\mathrm{A}^{(39)}$	7-dPAR	$10945 \cdot 34$	1765.65	$11150 \cdot 36$	1213.36
Racette et al. $\mathrm{B}^{(39)}$	7-dPAR	10259.17	1840.96	10208.96	1598.29
Ramírez-Marrero et al. ${ }^{(68)}$	SAPAC	7004.016	999.1392	7504.4224	1273.6096
Slinde et al. ${ }^{(69)}$	MNLTPA	11400	2100	8600	2000
Staten et al. $\mathrm{A}^{(82)}$	The Arizona activity	9847	2555	7912	2196
	Frequency questionnaire 28 d				
Staten et al. $\mathrm{B}^{(82)}$	The Arizona activity	9847	2555	8001	2639
	Frequency questionnaire 7 d				
Sridharan et al. ${ }^{(64)}$	RPAQ	$10380 \cdot 5$	1991.58	616	2250.99
Sridharan et al. $\mathrm{B}^{(64)}$	7-dPAR	$10380 \cdot 5$	1991.58	$10941 \cdot 16$	2874.41
Tanhoffer et al. $\mathrm{A}^{(83)}$	Para-Sci	9817	2491	9259	2094
Tanhoffer et al. ${ }^{(83)}$	PASIPD	9817	2491	9766	1462
Walsh et al. $\mathrm{A}^{(42)}$	TEC + MNLTPA	56	1656.86	1	1326.33
Walsh et al. $\mathrm{B}^{(42)}$	TEC + MNLTPA	88	$1071 \cdot 1$	10129.46	815.88
Walsh et al. $\mathrm{C}^{(42)}$	TEC + MNLTPA	712	$1435 \cdot 11$	12049.92	$1640 \cdot 13$
Walsh et al. $\mathrm{D}^{(42)}$	TEC + MNLTPA	896	1669.42	22	$1891 \cdot 17$
Walsh et al. $\mathrm{E}^{(42)}$	TEC + MNLTPA	128	991.608	10953.71	1753.1
Walsh et al. $\mathrm{F}^{(42)}$	TEC + MNLTPA	528	1422.56	10326.11	1397.46
Washburn et al. $\mathrm{A}^{(84)}$	7-dPAR	13885	2754	13198	1638
Washburn et al. $\mathrm{B}^{(84)}$	7-dPAR	10771	1457	11018	1323
Seale et al. $\mathrm{A}^{(86)}$	7-dPAR	9440	900	9510	2400
Seale et al. $\mathrm{B}^{(86)}$	7-dPAR	12430	1630	13690	3230
Rothenberg et al. ${ }^{(30)}$	Activity diary in 4 d	9900	1430	9240	2150
Philippaerts et al. ${ }^{(87)}$	FCQ 7 d index	13400	1800	$12030 \cdot 26$	$1782 \cdot 8$
Irwin et al. $\mathrm{A}^{(89)}$	7-dPAR	10	1719.62	89	7108.62
Irwin et al. $\mathrm{B}^{(89)}$	7-dPArecord	10	1719.62	84	778.22
Hagfors et al. ${ }^{(90)}$	3-d activity registration	10760	2590	9820	1650
Lof et al. ${ }^{(91)}$	2-week recall	10670	1370	11210	2000
Johansson et al. ${ }^{(94)}$	Two-question questionnaire on physical activity	10900	2700	10800	1800
Liu et al. $\mathrm{A}^{(95)}$	Modified YPAS	80		36	1118.38
Liu et al. $\mathrm{B}^{(95)}$	Modified YPAS	1017.20		10967.52	585.7
Ishikawa et al. $\mathrm{A}^{(70)}$	JALSPAQ	8420	1400	7620	1430
Ishikawa et al. B ${ }^{(70)}$	JALSPAQ	11210	3000	9830	1180
Lof et al. ${ }^{(98)}$	LOF questionnaire	11420		10570	
Pietiläinen et al. $\mathrm{A}^{(99)}$	3-d PA diaries	12400	400	14200	
Pietiläinen et al. $\mathrm{B}^{(99)}$	3-d PA diaries	11500	700	12600	

\qquad
PAQA, Physical Activity Questionnaire for Adolescents; MAQ, Modifiable Activity Questionnaire; RPAQ, Recent Physical Activity Questionnaire; 7 d-PAR, 7-d Physical Activity Recall Questionnaire; QAPSE, Questionnaire d'Activité Physique Saint-Etienne; TEC + MNLTPA + EESLEEP, (TEC, Tecumseh Occupational Activity Questionnaire) + (MNLTPA, Minnesota Leisure Time Physical Activity Questionnaire) + (EE SLEEP, EE from sleep); 7-dPArecord, 7-d physical activity record questionnaire; STAR-Q, Sedentary Time and Activity Reporting Questionnaire; MARCA, Multimedia Activity Recall for Children and Adolescents; PAD, 24-h physical activity diaries; SAPAC, Self-Administered Physical Activity Checklist; PARA-SCI, physical activity recall assessment for people with spinal cord injury; PASIPD, physical activity scale for individuals with physical disabilities; FCQ, Five City Project Questionnaire; Modified YAPS, modified Yale Physical Activity Survey; JALSPAQ, the Japan Arteriosclerosis Longitudinal Study Physical Activity Questionnaire; CAPS, Cross-Cultural Activity Participation Study.

* All data in kJ / d.

Table 3. Summary of results from difference in activity energy expenditure (AEE) means between physical activity questionnaires (PAQ) and doubly labelled water (DLW)*
(Mean values and standard deviations)

Study	PAQ type	$A E E_{\text {dLw }}$		$A E E_{\text {PAQ }}$	
		Mean	SD	Mean	SD
Bonnefoy et al. $\mathrm{A}^{(35)}$	MNLTPA	3367	1940	2053.900	854.790
Bonnefoy et al. $\mathrm{C}^{(35)}$	YPAS	3367	1940	241	1655.609
Bonnefoy et al. $\mathrm{E}^{(35)}$	College Alumni questionnaire	3367	1940	885	1031.356
Csizmadi et al. $\mathrm{A}^{(79)}$	Star-Q	4250.944	2765.620	5029.168	2627.550
Csizmadi et al. $\mathrm{B}^{(79)}$	Star-Q	4250.944	2765.620	528	2916.250
Csizmadi et al. $\mathrm{C}^{(79)}$	Star-Q	4250.944	2765.620	704	$2690 \cdot 310$
Csizmadi et al. $\mathrm{D}^{(79)}$	7-dPAR	4250.944	2765.620	424	2405.800
Foley et al. ${ }^{(67)}$	MARCA	232	3234.230	912	3368.120
Mâsse et al. $\mathrm{A}^{(81)}$	Checklist questionnaire	780	1292.860	780	2359.78
Mâsse et al. $\mathrm{B}^{(81)}$	Global questionnaire	780	1292.860	60	1757.280
Ramírez-Marrero et al. ${ }^{(68)}$	SAPAC	778.224	1271.936	1301.220	2263.540
Staten et al. $\mathrm{A}^{(82)}$	The Arizona activity	5578	2084	3645	1916
	Frequency questionnaire 28 d				
Staten et al. $\mathrm{B}^{(82)}$	The Arizona activity	5578	2084	3734	2428
	Frequency questionnaire 7 d				
Sridharan et al. $\mathrm{A}^{(64)}$	RPAQ	550		616	2250.99
Sridharan et al. $\mathrm{B}^{(64)}$	7-dPAR	550		$10941 \cdot 16$	2874.41
Tanhoffer et al. $\mathrm{A}^{(83)}$	Para-Sci	2841	1626	2339	1171
Tanhoffer et al. $\mathrm{B}^{(83)}$	PASIPD	2841	1626	2749	1026
Washburn et al. $\mathrm{A}^{(84)}$	7-dPAR	3989	2461	3650	490
Washburn et al. $\mathrm{B}^{(84)}$	7-dPAR	3223	1360	3073	377
Starling et al. $\mathrm{A}^{(85)}$	YPAS	630	$1020 \cdot 9$	3610.790	1870.25
Starling et al. $\mathrm{B}^{(85)}$	YPAS	5066.824	1794.94	688	2560.61
Starling et al. $\mathrm{C}^{(85)}$	MNLTPA	630	$1020 \cdot 9$	20	953.952
Starling et al. $\mathrm{D}^{(85)}$	MNLTPA	5066.824	1794.94	$1920 \cdot 460$	1204.99
Paul et al. ${ }^{(47)}$	7-dPArecord	10500	1600	11800	2000
Leenders et al. ${ }^{(88)}$	7-dPAR	830	1251.02	13	527.184
Corder et al. $\mathrm{A}^{(92)}$	Youth physical activity questionnaire recall in past week	2	1187.7	3	1837.3
Corder et al. $\mathrm{B}^{(92)}$	Youth physical activity questionnaire recall in past week	1990.5	1185	7	526
Skaribas et al. $\mathrm{A}^{(93)}$	YPAS	446	1297.04	368	292.88
Skaribas et al. $\mathrm{B}^{(93)}$	PASE	446	1297.04	39	907.928
Neuhouser et al. $\mathrm{A}^{(96)}$	Arizona activity FFQ 28 d	3075.240		670	
Neuhouser et al. $\mathrm{B}^{(96)}$	7-dPAR	3075.240		3016.660	
Neuhouser et al. $\mathrm{C}^{(96)}$	PHQ	3075.240		10	
Colbert et al. $\mathrm{A}^{(97)}$	YPAS	2845	1138	2699	
Colbert et al. $\mathrm{B}^{(97)}$	modPASE	2845	1138	1904	
Colbert et al. $\mathrm{C}^{(97)}$	Champs	2845	1138	1092	

MNLTPA, Minnesota Leisure Time Physical Activity Questionnaire; Modified YAPS, modified Yale Physical Activity Survey; STAR-Q, Sedentary Time and Activity Reporting Questionnaire; 7-dPAR, 7-d Physical Activity Recall Questionnaire; MARCA, Multimedia Activity Recall for Children and Adolescents; SAPAC, Self-Administered Physical Activity Checklist; PARA-SCI, physical activity recall assessment for people with spinal cord injury; PASIPD, physical activity scale for individuals with physical disabilities; 7-dPArecord, 7-d physical activity record questionnaire; PASE, Physical Activity Scale for the Elderly; PHQ, Personal Habits Questionnaire; modPASE, modified Physical Activity Scale for the Elderly; CHAMPS, Community Health Activities Model Program for Seniors.

* All data in kJ / d.

Study characteristics

The thirty-eight studies included 5997 individuals. There were seven studies performed in Sweden ${ }^{(27-33)}$, one in Australia ${ }^{(34)}$, one in France ${ }^{(35)}$, seventeen in the USA ${ }^{(36-50)}$, one in Canada ${ }^{(51)}$, one in New Zealand ${ }^{(52)}$, one in Brazil ${ }^{(53)}$, three in the $\mathrm{UK}^{(54-56)}$, one in China ${ }^{(57)}$, one in India ${ }^{(58)}$, two in the Netherlands ${ }^{(59,60)}$, one in Japan ${ }^{(61)}$ and one in Finland ${ }^{(62)}$. For studies that included more than one PAQ, each of these PAQ was entered separately into our meta-analysis. Therefore, the total number of PAQ extracted for the analysis was seventyeight. Of these, fifty-nine of the PAQ reported TEE and thirty-five of them reported AEE. Forty different PAQ were identified. Thirty-one PAQ included women only, twenty-five included men only and the remaining twenty-two included both sexes. The mean age of the study population that was
reported in sixty-four studies using PAQ ranged from 8.2 to 73.4 years. The mean BMI that was recorded in fifty-seven studies using PAQ ranged from 16 to $34 \mathrm{~kg} / \mathrm{m}^{2}$. The mean body fat that was recorded in forty-two studies ranged from 14 to 44%.

Main analysis

Forest plots of the mean differences between the estimates of DLW and PAQ measures of TEE are shown in Fig. 2. The weighted mean difference (WMD) was not significant between $\mathrm{TEE}_{\text {DLW }}-\mathrm{TEE}_{\text {PAQ }}$ (WMD -243, 95% CI -841.4, 354.6), $I^{2}=97.9 \%, P<0.0001$). The mean differences between the estimates of AEE $_{\text {DLw }}$ and AEE PAQ are shown in Fig. 3. A significant difference was found between AEE examined by various indirect measures and the direct measures derived from

Fig. 1. Study selection process. TEE, total energy expenditure; AEE, activity energy expenditure; PAQ, physical activity questionnaire.

DLW (WMD 414.6, 95% CI $78 \cdot 7,750 \cdot 5$), $I^{2}=92 \%, P<0 \cdot 001$) in which AEE assessed by DLW was higher than that of measured by PAQ.

Subgroup analysis

Since we observed significant between-study heterogeneity for both TEE and AEE, we examined possible sources of heterogeneity within the included studies using subgroup analyses. We conducted subgroup analysis to explore the effect of PAQ types on the mean difference between the estimates of TEE and AEE measured by DLW and PAQ (Tables 4 and 5). In thirteen studies that reported information at the individual level, agreement, only two of them showed good agreement. In the study that was conducted by Conway et al. ${ }^{(63)}$ on twenty-four subjects, as well as in the study conducted by Sridharan et al. ${ }^{(64)}$, for ten subjects, the difference between TEE $_{\text {DLw }}$ and TEE 7-d physical activity record was <10 \%. A Recent Physical Activity Questionnaire had a narrow limit of agreement with a mean bias of $451 \mathrm{~kJ} / \mathrm{d}(6 \%)$. At the group level, our findings indicated that heterogeneity disappeared in five subgroups of TEE PAQ types including Physical Activity Questionnaire for Adolescents, Active-Q, 7 d physical activity record, the Sedentary Time and Activity Reporting Questionnaire and 3-d PA diaries. Weighted mean differences of TEE were significant for Physical Activity Questionnaire for Adolescents, 7 d physical activity record, Sedentary Time and Activity Reporting Questionnaire and non-significant for Active-Q (0.403) and 3-d PA diaries (0.341). Active Q and 3-d PA diaries were the only PAQ where their
estimated report of TEE was within the prespecified minimum difference with TEE $_{\text {DLw }}$.

Also, heterogeneity disappeared in one of the $\mathrm{AEE}_{\mathrm{PAQ}}$ types (Sedentary Time and Activity Reporting Questionnaire) but the WMD of AEE were significant for this questionnaire. Also, for AEE only eight studies reported information at the individual level and none of them showed acceptable agreement.

Additional subgroup analyses were also performed by comparing results grouped by sex, age, BMI, disease and body fat (Tables 6 and 7). Results showed that mean differences between PAQ and DLW to estimate TEE may be different based on age groups. Differences were significant only in those who were in the range of $13<$ age <24 years. Although BMI was not source of heterogeneity, there was significant difference between PAQ and DLW for estimating TEE in those who were overweight.

Subgroup analysis was performed to find potential sources of heterogeneity for the mean differences between PAQ and DLW estimates of AEE. Results showed that all the predefined criteria were potential sources of heterogeneity except for sex. According to the subgroup analysis, the greatest differences were observed in women, aged more than 44 years old, all categories of BMI except those who were overweight, healthy people and $\mathrm{BF} \%$ between $25<$ body fat <35.

Discussion

In this meta-analysis, we identified Active-Q and 3-d PA diaries as indirect tools that had acceptable mean differences and

Fig. 2. Forest plot of mean differences of total energy expenditure (TEE) measured by the doubly labelled water method and TEE measured using physical activity questionnaires. WMD, weighted mean difference.
heterogeneity for measuring TEE at the population level. Subgroup analyses showed that the WMD in TEE measured by PAQ and DLW was influenced by age and disease status, but not by sex and the BF \%. Moreover, except for sex, all of other predefined criteria including age, disease status, BMI and $\mathrm{BF} \%$ were potential sources of heterogeneity.

According to previous studies, a PAQ was considered useful for estimating TEE at population level for epidemiological study if the percentage difference in means between $\mathrm{TEE}_{\text {DLw }}$ and $\mathrm{TEE}_{\text {PAQ }}$ ($\left(\mathrm{TEE}_{\text {DLW_TEE }} \mathrm{TAQ}\right) /$ TEE_DLW) $\times 100 \%$ was $<10 \%$ and correlations between these two estimations were $>0 \cdot 60^{(1)}$. More precisely, there are some criteria that explain how good

Fig. 3. Forest plot of mean differences of activity energy expenditure (AEE) measured by the doubly labelled water method and AEE measured using physical activity questionnaires. WMD, weighted mean difference.
a PAQ is at the individual level and illustrate whether the questionnaire is good for clinical purposes. To compare two measurements methods, a Bland-Altman plot or 'difference plot' might be used. A wide limit of agreement in this method represents PAQ are not suitable for the clinical and individual purpose. Acceptable limit of agreement is defined as a 10% of mean difference, for example, in the study by Bonn et al. ${ }^{(65)}$, the Questionnaire d'Activité Physique Saint-Etienne questionnaire underestimated TEE by $1498 \mathrm{~kJ} / \mathrm{d}$ ($358 \mathrm{kcal} / \mathrm{d}$) with limit of agreement -1075 to 1625 which means that the Questionnaire d'Activité Physique Saint-Etienne has wide limit of agreement for this purpose ${ }^{(1)}$. In the small number of questionnaires validated against DLW, few studies have demonstrated Spearman correlation coefficients above $0 \cdot 60$ (Recent Physical Activity Questionnaire ($r 0.67)^{(66)}$, Multimedia Activity

Recall for Children and Adolescents ($\left.\begin{array}{rl}r & 0.7\end{array}\right)^{(67)}$, SelfAdministered Physical Activity Checklist ($r 0.6)^{(68)}$, Minnesota Leisure Time Physical Activity Questionnaire ($r 0.73$) ${ }^{(69)}$, 3-d activity registration (r 0.98) and Japan Arteriosclerosis Longitudinal Study Physical Activity Questionnaire ($r 0.742)^{(70)}$).

To estimate AEE, we did not find any PAQ as a suitable measure. Moreover, none of the questionnaires estimating AEE showed acceptable correlation with DLW. Subgroup analyses showed that, in the AEE $_{\text {PAQ }}$ group, the WMD was influenced by age, disease status, BMI and BF \%.

All the studies included in the review by Neilson et al. ${ }^{(1)}$ were evaluated based on the two methods of finding a good PAQ for TEE and AEE estimation: correlation coefficient and mean difference. Also, these studies were divided into two groups: the first group included AEE and DLW, and the second group was

Table 4. Agreement between physical activity questionnaire (PAQ) and doubly labelled water (DLW) estimates of total energy expenditure (TEE) stratified by PAQ type
(Mean values and 95% confidence intervals)

Type of physical activity questionnaire	No. of studies	Mean difference (kJ/d)	95 \% CI	P^{*}	Test of heterogeneity \dagger	
					P	$I^{2}(\%)$
PAQA ${ }^{(78)}$	2	3817.631	3148.5, 4486.6	<0.001	0.773	0.0
MAQ ${ }^{(76)}$	2	4531.851	451.834, 8611.868	0.029	0.173	464.2
RPAQ ${ }^{(27,66)}$	2	2056.412	-682.65, 4795.4	0.141	<0.001	94.4
Active-Q ${ }^{(65)}$	2	-362.345	$-1.2 \times 10^{3}, 487.737$	0.403	0.874	0.0
MNLTPAQ ${ }^{(71)}$	1	2800.000	2683.978, 2916.022	<0.001	-	-
7-dPAQ ${ }^{(37,39,63-65,79,80,84,86,89)}$	12	-857.43.766	$-2.1 \times 10^{3}, 394.454$	0.179	<0.001	93.5
QAPSE ${ }^{(65)}$	1	1497	-410.57, 3404.56	0.124	-	-
$\left(\right.$ TEC + MNLTPA + EESLEEP) ${ }^{(36)}$	1	-1.3×10^{3}	$-1.7 \times 10^{3},-929.152$	<0.001	-	-
7-dPArecord ${ }^{(63,89)}$	2	-900.254	$-1.1 \times 10^{3},-703.526$	<0.001	0.993	0.0
STAR-Q ${ }^{(79)}$	3	-1.8×10^{3}	$-2.4 \times 10^{3},-1.3 \times 10^{3}$	<0.001	0.985	0.0
MARCA ${ }^{(67)}$	1	-205.020	$-2.2 \times 10^{3}, 1825.765$	0.843	-	-
24-PAD ${ }^{(80)}$	1	980	256.656, 1703.344	0.008	-	-
Five City Project questionnaire ${ }^{(37)}$	1	-1.7×10^{3}	$-3.0 \times 10^{3},-399.881$	0.011	-	-
Harvard Alumni questionnaire ${ }^{(37)}$	1	-6.6×10^{3}	$-8.0 \times 10^{3},-5.3 \times 10^{3}$	<0.001	-	-
CAPS Four Week Activity Recall ${ }^{(37)}$	1	-87.860	$-2.5 \times 10^{3}, 2352.309$	0.944	-	-
CAPS Typical Week Activity Recall ${ }^{(37)}$	1	3347.2	2205.8, 4488.6	<0.001	-	-
The Checklist questionnaire ${ }^{(81)}$	1	-1.0×10^{3}	$-1.6 \times 10^{3},-524.906$	<0.001	-	-
Global Questionnaire ${ }^{(81)}$	1	-405.848	-925.999, 114.303	0.126	-	-
SAPAC ${ }^{(68)}$	1	-500.406	$-1.4 \times 10^{3}, 415.472$	0.284	-	-
Arizona Activity FFQ $28 \mathrm{~d}^{(82)}$	1	1935	818.855, 3051.145	0.001	-	-
Arizona Activity FFQ 7 d ${ }^{(82)}$	1	1846	629.092, 3062.908	0.003	-	-
PARA-SCI ${ }^{(83)}$	1	558.000	$-1.1 \times 10^{3}, 2262.631$	0.521	-	-
PASIPD ${ }^{(83)}$	1	51.000	$-1.5 \times 10^{3}, 1563.979$	0.947	-	-
TEC + MNLTPA ${ }^{(42)}$	6	-2.5×10^{3}	$-3.2 \times 10^{3},-1.8 \times 10^{3}$	<0.001	0.003	72.7
Activity diary in $4 \mathrm{~d}^{(30)}$	1	660.000	-800.951, 2120.951	0.376	-	-
FCQ 7 d index ${ }^{(87)}$	1	1369.745	846.338, 1893.152	<0.001	-	-
3-d activity registration ${ }^{(90)}$	1	940.000	$-1.1 \times 10^{3}, 2946.303$	0.358	-	-
2-week recall ${ }^{(91)}$	1	-540.000	$-1.4 \times 10^{3}, 274.860$	0.194	-	-
Two-question questionnaire on physical activity ${ }^{(94)}$	1	100.000	$-2.0 \times 10^{3}, 2220.025$	0.926	-	-
Modified YPAS ${ }^{(95)}$	2	-436.627	$-1.2 \times 10^{3}, 310.461$	0.252	0.098	63.5
$J A L S P A Q{ }^{(70)}$	2	1036.305	477.743, 1594.867	<0.001	0.108	61.3
Lof questionnaire ${ }^{(98)}$	1	850.000	$-1.0 \times 10^{3}, 2713.807$	0.371	-	-
3-d PA diaries	2	-1.5×10^{3}	$-2.2 \times 10^{3},-792.095$	<0.001	0.341	0.0

PAQA, Physical activity questionnaire for adolescents; MAQ, Modifiable Activity Questionnaire ; RPAQ, Recent Physical Activity Questionnaire ; 7-dPAQ, 7-d Physical Activity Recall Questionnaire; QAPSE, Questionnaire d'Activité Physique Saint-Etienne; TEC + MNLTPA + EESLEEP, (TEC, Tecumseh Occupational Activity Questionnaire) + (MNLTPA, Minnesota Leisure Time Physical Activity Questionnaire) + (EE SLEEP, EE from sleep); STAR-Q, Sedentary Time and Activity Reporting Questionnaire; MARCA, Multimedia Activity Recall for Children and Adolescents; 24-PAD, 24-h physical activity diaries; SAPAC, Self-Administered Physical Activity Checklist; PARA-SCI, physical activity recall assessment for people with spinal cord injury; PASIPD, physical activity scale for individuals with physical disabilities; CAPS, Cross-Cultural Activity Participation Study; JALSPAQ, the Japan Arteriosclerosis Longitudinal Study Physical Activity Questionnaire.

* P for the meta-analysis. $P<0.05$ indicates a lack of agreement between PAQ and DLW estimates of TEE by using a random-effects model.
$\dagger P_{\text {heterogeneity: }}$ heterogeneity was evaluated using Cochran's test, and $P<0.5$ indicates significant heterogeneity across studies.
composed of TEE and DLW. The emphasis in the review by Neilson et al. ${ }^{(1)}$ was on the first group. Furthermore, in another study by Prince et al. ${ }^{(23)}$, only AEE was compared with DLW. In our study, the difference between $\mathrm{TEE}_{\text {DLW }}-\mathrm{TEE}_{\text {PAQ }}$ and $\mathrm{AEE}_{\text {DLW }}$ - AEE $_{\text {PAQ }}$ was both evaluated and the included PAQ were further assessed using a classification based on their types. Previous reviews were limited by small sample sizes ${ }^{(1)}$, sex (they included studies conducted exclusively on women) and age ${ }^{(1,23)}$. In our study, however, we did not have any limitation regarding these parameters.

Studies used both predicted and measured (assessed by indirect calorimetry) RMR for estimating TEE and AEE, but as PAQ are considered as feasible approaches to be used in epidemiological studies, it is more sensible to use predicted RMR (RMRp) rather than measured $\mathrm{RMR}^{(71)}$. To reduce the level of over and underestimation of TEE and AEE that are blinded to the use of PAQ in different population with diverse
specifications, the best PAQ with the lowest mean differences with DLW should be identified and utilised in epidemiological studies.

There are several causes for over and underestimation of TEE and AEE that are measured with PAQ. First, most equations used to measure predicted RMR, overestimated the BMR compared with the indirect calorimetry, including Schofield ${ }^{(72)}$, Henry et al. ${ }^{(73)}$, $\mathrm{WHO}^{(74)}$, Schofield BW (body weight) and ht (height) ${ }^{(72)}$ and WHO BW and ht ${ }^{(74)}$ (in these equations, age is an essential parameter and some of them need height or weight for calculating RMR). On the other hand, Molnar's equation ${ }^{(75)}$ yielded a lower RMR compared with the indirect calorimetry. In fact, use of this equation is one of the important factors leading to an underestimation in $\mathrm{TEE}^{(23)}$. Of the forty-six PAQ types which were assessed in our study, twenty-five underestimated and twenty-one overestimated TEE. Therefore, both underreporting and overreporting of activities were observed with

Table 5. Agreement between physical activity questionnaire (PAQ) and doubly labelled water (DLW) estimates of activity energy expenditure (AEE) stratified by PAQ type
(Mean values and 95% confidence intervals)

Type of physical activity questionnaire	No. of studies	Mean difference (kJ/d)	95 \% CI	P	Test of heterogeneity	
					P	I^{2} (\%)
YPAS ${ }^{(65,85,93,97)}$	5	433.077	-376.955, 1243.109	0.330	0.001	78.4
College Alumni questionnaire ${ }^{(65)}$	1	$1011 \cdot 115$	23.192, 1999.038	0.045	-	-
STAR-Q ${ }^{(79)}$	3	-939.945	$-1.4 \times 10^{3},-495.738$	<0.001	0.831	0.0
7-dPAR ${ }^{(55,64,79,88,96)}$	6	33.070	-369.996, 436.137	0.872	0.038	$60 \cdot 6$
MARCA ${ }^{(67)}$	1	439.320	$-1.2 \times 10^{3}, 2057.198$	0.595	-	-
Checklist questionnaire ${ }^{(81)}$	1	-1.0×10^{3}	$-1.4 \times 10^{3},-690.940$	<0.001	-	-
Global Questionnaire ${ }^{(81)}$	1	-552.280	-927.303, -177.257	0.004	-	-
SAPAC ${ }^{(68)}$	1	-991.604	$-1.8 \times 10^{3},-133.759$	0.023	-	-
MNLTPA ${ }^{(69)}$	3	2198.583	1282.793, 3114.374	<0.001	0.005	81
The Arizona Activity Frequency Questionnaire $28 \mathrm{~d}^{(82,96)}$	2	1011.841	-664.644, 2688.326	0.237	<0.001	91.8
The Arizona Activity Frequency Questionnaire $7 \mathrm{~d}^{(82)}$	1	1844.000	783.949, 2904.051	0.001	-	-
PARA-SCI ${ }^{(83)}$	1	502.000	-547.623, 1551.623	0.349	-	-
PASIPD ${ }^{(83)}$	1	92.000	-915.123, 1099.123	0.858	-	-
7-dPArecord ${ }^{(47)}$	1	-1.3×10^{3}	$-2.7 \times 10^{3}, 149.137$	0.079	-	-
Youth Physical Activity Questionnaire recall in past week ${ }^{(92)}$	2	454.150	$-1.4 \times 10^{3}, 2259.958$	0.622	0.008	85.9
PASE ${ }^{(93)}$	1	556.056	-137.817, 1249.928	0.116	-	-
PHQ ${ }^{(96)}$	1	1142.230	1009.320, 1275.141	<0.001	-	-
CHAMPS ${ }^{(97)}$	1	1753.000	1078.787, $2427 \cdot 213$	<0.001	-	-
modPASE ${ }^{(97)}$	1	1753.000	1078.787, 2427.213	0.020	-	-

MNLTPA, Minnesota Leisure Time Physical Activity Questionnaire; Modified YAPS, modified Yale Physical Activity Survey; STAR-Q, Sedentary Time and Activity Reporting Questionnaire; 7-dPAR, 7-d Physical Activity Recall Questionnaire; MARCA, Multimedia Activity Recall for Children and Adolescents; SAPAC, Self-Administered Physical Activity Checklist; PARA-SCI, physical activity recall assessment for people with spinal cord injury; PASIPD, physical activity scale for individuals with physical disabilities; 7dPArecord, 7-d physical activity record questionnaire; PASE, Physical Activity Scale for the Elderly; PHQ, Personal Habits Questionnaire; CHAMPS, Community Health Activities Model Program for Seniors; modPASE, modified Physical Activity Scale for the Elderly.

Table 6. Subgroup analysis of mean differences between physical activity questionnaire (PAQ) and doubly labelled water (DLW) estimates of total energy expenditure (TEE) stratified by identified study characteristics
(Mean values and 95% confidence intervals)

* P for the meta-analysis. $\mathrm{P}<0.05$ indicates a lack of agreement between PAQ and DLW estimates of TEE by using a random-effects model.
$\dagger P_{\text {heterogeneity: }}$ heterogeneity was evaluated using Cochran's test, and $P<0.5$ indicates significant heterogeneity across studies.
respect to mean difference of $\left(\mathrm{TEE}_{\text {DLW }}-\mathrm{TEE}_{\text {PAQ }}\right)$ and $\left(\mathrm{AEE}_{\text {DLW }}\right.$ $-\mathrm{AEE}_{\text {PAQ }}$). This pattern is inconsistent with self-reported food intake questionnaires in which underreporting is far more
common. Second, consistent with our findings, Neilson et al. ${ }^{(1)}$ revealed that lower body weight was associated with smaller mean differences between $\mathrm{AEE}_{\text {PAQ }}$ and $\mathrm{TEE}_{\text {DLW }}$.

Table 7. Subgroup analysis of mean differences between physical activity questionnaire (PAQ) and doubly labelled water (DLW) estimates of Activity energy expenditure (AEE) stratified by identified study characteristics
(Mean values and 95% confidence intervals)

Variables	No. of studies	Mean difference (kJ/d)	95 \% CI	P^{*}	Test of heterogeneity \dagger	
					P	$I^{2}(\%)$
Sex						
Men	10	702.976	-79.624, 1485.576	0.078	<0.001	86
Women	12	591.859	105.076, 1078.641	0.017	<0.001	94.9
Men and women	13	-97.471	-732.735, 537.793	0.764	<0.001	83.6
Age (years)						
Age < 13	1	-991.604	$-1.8 \times 10^{3},-133.759$	0.023	-	-
$13 \leq$ age <24	5	404.631	-260.130, 1069.393	0.223	0.032	62.2
$24 \leq$ age < 44	6	694.203	-123.296, 1511.703	0.096	0.001	74.7
$44 \leq$ age < 64	8	-851.553	$-1.1 \times 10^{3},-638.864$	<0.001	0.527	0.0
Age ≥ 64	15	958.987	529.831, 1388.144	<0.001	<0.001	92.6
$\mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right) \quad \mathrm{l}$						
$\mathrm{BMI}<18.5$	2	-836.739	-1.5 $\times 10^{3},-141.006$	0.018	0.545	0.0
$18.5 \leq \mathrm{BMI}<25$	10	-30.264	-871.242, 810.714	0.944	<0.001	91.9
$25 \leq \mathrm{BMI}<30$	13	1044.680	389.432, 1699.928	0.002	<0.001	84.7
$30 \leq \mathrm{BMI}<35$	2	-802.982	$-1.3 \times 10^{3},-319.204$	0.001	0.061	71.5
Disease						
Healthy individuals	31	421.428	72.707, $770 \cdot 14$	0.018	<0.001	92.1
Spinal cord injury	2	288.532	-438.172, 1015.235	0.436	0.581	$0 \cdot 0$
Body fat (\%)						
$15 \leq$ body fat <25	7	712.941	-351.025, 1776.907	0.189	<0.001	$89 \cdot 3$
$25 \leq$ body fat <35	5	701.396	253.319, 1149.474	0.002	0.271	22.5
Body fat ≥ 5	5	121.714	-972.305, 1215.733	0.827	<0.001	96.5

* P for the meta-analysis. $P<0.05$ indicates a lack of agreement between PAQ and DLW estimates of TEE by using a random-effects model.
$\dagger P_{\text {heterogeneity }}$: heterogeneity was evaluated using Cochran's test, and $P<0.5$ indicates significant heterogeneity across studies.

Likewise, the study by Walsh et al. ${ }^{(42)}$ demonstrated that the order of TEE overestimation (large mean differences between $\mathrm{TEE}_{\text {PAQ }}$ and $\mathrm{TEE}_{\text {DLW }}$) in premenopausal women from highest to lowest was observed in overweight black, overweight white, lean white and lean black women. In fact, for overweight women, the TEE was overestimated 49% more than normal weight control subjects ${ }^{(42)}$. After weight loss, the TEE overestimation in white women was reduced by 48%, whereas it did not significantly change in black women ${ }^{(42)}$. Therefore, PAQ may not be a suitable tool for estimating TEE in black women. Another study conducted in obese women reported a TEE overestimation but following a 12 -week weight-reducing diet, the participants underestimated TEE (the mean difference decreased from $205 \mathrm{~kJ} / \mathrm{d}$ to $50 \mathrm{~kJ} / \mathrm{d}$). Third, all of the included articles used metabolic equivalent values for calculating TEE except for the studies by Barnard et al. ${ }^{(76)}$ and Bonnefoy et al. ${ }^{(35)}$ (that used the physical activity level) and Walsh et al. ${ }^{(42)}$ (that used the instructions described in the study by Montoye et al. $)^{(77)}$. In most PAQ, the use of metabolic equivalent values for estimating the energy expenditure of a particular activity is considered a limitation ${ }^{(42)}$. When the metabolic equivalent value is administered for a specific activity, the same energy cost per kg of body weight is calculated for all participants, regardless of differences in metabolic rate and this might be the reason attributed to the decrease in TEE overestimation in obese women after weight loss ${ }^{(42)}$.

For TEE, we observed that only two PAQ had the least mean difference with DLW and none of the PAQ showed good measure of AEE. This is because the magnitude of difference between PAQ and DLW estimates of TEE and AEE depends on some factors
including the type of PAQ, the sex of the population on which the questionnaire was used and the number of activities measured by the PAQ. For instance, when the 7D-PAR was used, mean daily EE was overestimated in women while it was underestimated in men ${ }^{(1)}$. Also, for the questionnaires Tecumseh Occupational (past year) and Minnesota Leisure Time (past month) which measured sleep and general activities, when watching television, reading and childcare activities were ignored from EE calculated by these questionnaires, an excellent agreement with DLW measure of TEE was obtained ${ }^{(36)}$. As some PAQ do not estimate all physical activity especially in low-intensity level, an underreporting of AEE is anticipated ${ }^{(23)}$. However, some PAQ like IPAQ and Physical Activity Questionnaire for Adolescents can capture low- to high-intensity level physical activities and the underreporting of TEE in these questionnaires is compensated by overreporting of vigorous physical activity ${ }^{(78)}$.

In conclusion, our meta-analysis identified PAQ (Active-Q) and 3-d PA diaries that had sufficient validity for measuring TEE based on the mean correspondence in group level. However, as each of these questionnaires was used only in one study, we may conclude that this finding might be due to a chance and requires further verification. The present study provides evidence highlighting that the majority of PAQ compared with DLW might not be qualified tools for estimating TEE or AEE. Therefore, it is recommended that until further research is performed to investigate the agreement between direct and indirect measures of TEE and AEE, the use of either Active-Q and 3-d PA diaries or direct measurement methods in epidemiological studies might yield more reliable findings.

Acknowledgements

The authors would like to thank all research staff involved in the study, and Tehran University of Medical Science for financial support.

This article was financially supported by Tehran University of Medical Science.

The authors contributed equally to this work.
The authors have no conflicts of interest to disclose.

Supplementary material

For supplementary material referred to in this article, please visit https://doi.org/10.1017/S0007114520003049

References

1. Neilson HK, Robson PJ, Friedenreich CM, et al. (2008) Estimating activity energy expenditure: how valid are physical activity questionnaires? Am J Clin Nutr 87, 279-291.
2. Donahoo WT, Levine JA \& Melanson EL (2004) Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care 7, 599-605.
3. Speakman JR \& Westerterp KR (2010) Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am J Clin Nutr 92, 826-834.
4. Li J \& Siegrist J (2012) Physical activity and risk of cardiovascular disease-a meta-analysis of prospective cohort studies. Int J Environ Res Public Health 9, 391-407.
5. Siervo M, Oggioni C, Lara J, et al. (2015) Age-related changes in resting energy expenditure in normal weight, overweight and obese men and women. Maturitas 80, 406-413.
6. Milanović Z, Pantelić S, Trajković N, et al. (2013) Age-related decrease in physical activity and functional fitness among elderly men and women. Clin Interv Aging 8, 549.
7. Hall KD, Heymsfield SB, Kemnitz JW, et al. (2012) Energy balance and its components: implications for body weight regulation. Am J Clin Nutr 95, 989-994.
8. Hu FB, Leitzmann MF, Stampfer MJ, et al. (2001) Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med 161, 1542-1548.
9. Bassuk SS \& Manson JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol (1985) 99, 1193-1204.
10. Moses A, Slater C, Preston T, et al. (2004) Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with $n-3$ fatty acids. $\mathrm{Br} J$ Cancer 90, 996.
11. Uehara M, Plank LD \& Hill GL (1999) Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 27, 1295-1302.
12. Hunter GR, Wetzstein CJ, Fields DA, et al. (2000) Resistance training increases total energy expenditure and free-living physical activity in older adults. J Appl Physiol (1985) 89, 977-984.
13. Speakman J (1997) Doubly Labelled Water: Theory and Practice. Berlin: Springer Science \& Business Media.
14. Westerterp KR (2008) Physical activity as determinant of daily energy expenditure. Physiol Behav 93, 1039-1043.
15. Craig CL, Marshall AL, Sjöström M, et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35, 1381-1395.
16. Fujii H, Yamamoto S, Takeda-Imai F, et al. (2011) Validity and applicability of a simple questionnaire for the estimation of total and domain-specific physical activity. Diabetol Int 2, 47-54.
17. Department of Health and Human Services (1996) Pbysical Activity and Health: A Report of the Surgeon General. Atlanta, GA: USDHSS, Centers for Disease Control and Prevention.
18. Montoye HJ, Kemper HCG, Saris WHM, et al. (1996) Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics.
19. Wendel-Vos GW, Schuit AJ, Saris WH, et al. (2003) Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol 56, 1163-1169.
20. Dhurandhar NV, Schoeller D, Brown AW, et al. (2015) Energy balance measurement: when something is not better than nothing. Int J Obes 39, 1109
21. Neilson HK, Robson PJ, Friedenreich CM, et al. (2008) Estimating activity energy expenditure: how valid are physical activity questionnaires? Am J Clin Nutr 87, 279-291.
22. Melanson Jr EL, Freedson PS \& Blair S (1996) Physical activity assessment: a review of methods. Crit Rev Food Sci Nutr 36, 385-396.
23. Prince SA, Adamo KB, Hamel ME, et al. (2008) A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act 5, 56.
24. Herzog R, Álvarez-Pasquin MJ, Díaz C, et al. (2013) Are healthcare workers' intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 13, 154.
25. Higgins JPT, Thompson SG, Deeks JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557-560.
26. Mantel N \& Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22, 719-748.
27. Arvidsson D, Slinde F \& Hulthen L (2005) Physical activity questionnaire for adolescents validated against doubly labelled water. Eur J Clin Nutr 59, 376-383.
28. Bonn SE, Trolle Lagerros Y, Christensen SE, et al. (2012) Active-Q: validation of the web-based physical activity questionnaire using doubly labeled water. J Med Internet Res 14, e29.
29. Slinde F, Arvidsson D, Sjoberg A, et al. (2003) Minnesota Leisure Time Activity Questionnaire and doubly labeled water in adolescents. Med Sci Sports Exerc 35, 1923-1928.
30. Rothenberg E, Bosaeus I, Lernfelt B, et al. (1998) Energy intake and expenditure: validation of a diet history by heart rate monitoring, activity diary and doubly labeled water. Eur J Clin Nutr 52, 832-838.
31. Löf M, Hannestad U \& Forsum E (2002) Assessing physical activity of women of childbearing age. Ongoing work to develop and evaluate simple methods. Food Nutr Bull 23, Suppl. 3, 30-33.
32. Lof M, Hannestad U \& Forsum E (2003) Comparison of commonly used procedures, including the doubly-labelled water technique, in the estimation of total energy expenditure of women with special reference to the significance of body fatness. Br J Nutr 90, 961-968.
33. Hagfors L, Westerterp K, Skoldstam L, et al. (2005) Validity of reported energy expenditure and reported intake of energy,
protein, sodium and potassium in rheumatoid arthritis patients in a dietary intervention study. Eur J Clin Nutr 59, 238-245.
34. Barnard J, Tapsell LC, Davies P, et al. (2002) Relationship of high energy expenditure and variation in dietary intake with reporting accuracy on 7 day food records and diet histories in a group of healthy adult volunteers. Eur J Clin Nutr 56, 358-367
35. Bonnefoy M, Normand S, Pachiaudi C, et al. (2001) Simultaneous validation of ten physical activity questionnaires in older men: a doubly labeled water study. J Am Geriatr Soc 49, 28-35.
36. Conway JM, Irwin ML \& Ainsworth BE (2002) Estimating energy expenditure from the Minnesota Leisure Time Physical Activity and Tecumseh Occupational Activity questionnaires - a doubly labeled water validation. J Clin Epidemiol 55, 392-399.
37. Mahabir S, Baer DJ, Giffen C, et al. (2006) Comparison of energy expenditure estimates from 4 physical activity questionnaires with doubly labeled water estimates in postmenopausal women. Am J Clin Nutr 84, 230-236.
38. Mâsse LC, Fulton JE, Watson KB, et al. (2012) Comparing the validity of 2 physical activity questionnaire formats in AfricanAmerican and Hispanic women. J Phys Act Health 9, 237-248.
39. Racette SB, Schoeller DA \& Kushner RF (1995) Comparison of heart rate and physical activity recall with doubly labeled water in obese women. Med Sci Sports Exerc 27, 126-133.
40. Ramírez-Marrero FA, Smith BA, Sherman WM, et al. (2005) Comparison of methods to estimate physical activity and energy expenditure in African American children. Int J Sports Med 26, 363-371.
41. Staten LK, Taren DL, Howell WH, et al. (2001) Validation of the Arizona Activity Frequency Questionnaire using doubly labeled water. Med Sci Sports Exerc 33, 1959-1967.
42. Walsh MC, Hunter GR, Sirikul B, et al. (2004) Comparison of self-reported with objectively assessed energy expenditure in black and white women before and after weight loss. $A m J$ Clin Nutr 79, 1013-1039.
43. Washburn RA, Jacobsen DJ, Sonko BJ, et al. (2003) The validity of the Stanford Seven-Day Physical Activity Recall in young adults. Med Sci Sports Exerc 35, 1374-1380.
44. Starling RD, Matthews DE, Ades PA, et al. (1999) Assessment of physical activity in older individuals: a doubly labeled water study. J Appl Physiol (1985) 86, 2090-2096.
45. Seale JL, Klein G, Friedmann J, et al. (2002) Energy expenditure measured by doubly labeled water, activity recall, and diet records in the rural elderly. Nutrition 18, 568-573.
46. Leenders NY, Sherman WM, Nagaraja H, et al. (2001) Evaluation of methods to assess physical activity in free-living conditions. Med Sci Sports Exerc 33, 1233-1240.
47. Paul DR, Rhodes DG, Kramer M, et al. (2005) Validation of a food frequency questionnaire by direct measurement of habitual ad libitum food intake. AmJ Epidemiol 162, 806-814.
48. Irwin ML, Ainsworth BE \& Conway JM (2001) Estimation of energy expenditure from physical activity measures: determinants of accuracy. Obes Res 9, 517-525.
49. Delikanaki-Skaribas E, Trail M, Wong WW, et al. (2009) Daily energy expenditure, physical activity, and weight loss in Parkinson's disease patients. Mov Disord 24, 667-671.
50. Neuhouser ML, Di C, Tinker LF, et al. (2013) Physical activity assessment: biomarkers and self-report of activity-related energy expenditure in the WHI. AmJEpidemiol 177, 576-585.
51. Csizmadi I, Neilson HK, Kopciuk KA, et al. (2014) The Sedentary Time and Activity Reporting Questionnaire (STAR-Q): reliability and validity against doubly labeled water and 7-day activity diaries. Am J Epidemiol 180, 424-435.
52. Foley LS, Maddison R, Rush E, et al. (2013) Doubly labeled water validation of a computerized use-of-time recall in active young people. Metabolism 62, 163-169.
53. Tanhoffer RA, Tanhoffer AI, Raymond J, et al. (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. I Spinal Cord Med 35, 35-45.
54. Besson H, Brage S, Jakes RW, et al. (2010) Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am J Clin Nutr 91, 106-114.
55. Fuller Z, Horgan G, O'Reilly LM, et al. (2008) Comparing different measures of energy expenditure in human subjects resident in a metabolic facility. Eur J Clin Nutr 62, 560-569.
56. Sridharan S, Wong J, Vilar E, et al. (2016) Comparison of energy estimates in chronic kidney disease using doublylabelled water. J Hum Nutr Diet 29, 59-66.
57. Liu B, Woo J, Tang N, et al. (2001) Assessment of total energy expenditure in a Chinese population by a physical activity questionnaire: examination of validity. Int J Food Sci Nutr 52, 269-282.
58. Corder K, Brage S, Wright A, et al. (2010) Physical activity energy expenditure of adolescents in India. Obesity 18, 2212-2219.
59. Philippaerts R, Westerterp K \& Lefevre J (1999) Doubly labeled water validation of three physical activity questionnaires. Int J Sports Med 20, 284-289.
60. Johansson G \& Westerterp KR (2008) Assessment of the physical activity level with two questions: validation with doubly labeled water. Int J Obes 32, 1031-1033.
61. Ishikawa-Takata K, Naito Y, Tanaka S, et al. (2011) Use of doubly labeled water to validate a physical activity questionnaire developed for the Japanese population. JEpidemiol 21, 114-121.
62. Pietilainen KH, Korkeila M, Bogl LH, et al. (2010) Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labeled water and co-twin assessments. Int J Obes 34, 437-445.
63. Conway JM, Seale JL, Jacobs DR, et al. (2002) Comparison of energy expenditure estimates from doubly labeled water, a physical activity questionnaire, and physical activity records. Am J Clin Nutr 75, 519-525.
64. Sridharan S, Wong J, Vilar E, et al. (2016) Comparison of energy estimates in chronic kidney disease using doublylabelled water. J Hum Nutr Diet 29, 59-66.
65. Bonn SE, Lagerros YT, Christensen SE, et al. (2012) Active-Q: validation of the web-based physical activity questionnaire using doubly labeled water. J Med Internet Res 14, e29.
66. Besson H, Brage S, Jakes RW, et al. (2010) Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am J Clin Nutr 91, 106-114.
67. Foley LS, Maddison R, Rush E, et al. (2013) Doubly labeled water validation of a computerized use-of-time recall in active young people. Metab Clin Exp 62, 163-169.
68. Ramírez-Marrero F, Smith B, Sherman W, et al. (2005) Comparison of methods to estimate physical activity and energy expenditure in African American children. Int J Sports Med 26, 363-371.
69. Slinde F, Arvidsson D, Sjoberg A, et al. (2003) Minnesota leisure time activity questionnaire and doubly labeled water in adolescents. Med Sci Sports Exerc 35, 1923-1928.
70. Ishikawa-Takata K, Naito Y, Tanaka S, et al. (2011) Use of doubly labeled water to validate a physical activity questionnaire developed for the Japanese population. J Epidemiol 21, 114-121.
71. Slinde F, Arvidsson D \& Sjöberg A, et al. (2003) Minnesota leisure time activity questionnaire and doubly labeled water in adolescents. Med Sci Sports Exerc 35, 1923-1928.
72. Schofield W (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, 5-41.
73. Henry C, Dyer S \& Ghusain-Choueiri A (1999) New equations to estimate basal metabolic rate in children aged 10-15 years. Eur J Clin Nutr 53, 134-142.
74. World Health Organization (1985) Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation (WHO Technical Report Series, no 724). Geneva: World Health Organization.
75. Molnár D, Jeges S, Erhardt E, et al. (1995) Measured and predicted resting metabolic rate in obese and nonobese adolescents. J Pediatr 127, 571-577.
76. Barnard J, Tapsell LC, Davies P, et al. (2002) Relationship of high energy expenditure and variation in dietary intake with reporting accuracy on 7 day food records and diet histories in a group of healthy adult volunteers. Eur J Clin Nutr 56, 358-368.
77. Montoye HJ, Kemper HC, Saris WH, et al. (1996) Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics.
78. Arvidsson D, Slinde F \& Hulthén L (2005) Physical activity questionnaire for adolescents validated against doubly labelled water. Eur J Clin Nutr 59, 376-383.
79. Csizmadi I, Neilson HK, Kopciuk KA, et al. (2014) The Sedentary Time and Activity Reporting Questionnaire (STAR-Q): reliability and validity against doubly labeled water and 7-day activity diaries. Am J Epidemiol 180, 424-435.
80. Fuller Z, Horgan G, O'Reilly L, et al. (2008) Comparing different measures of energy expenditure in human subjects resident in a metabolic facility. Eur J Clin Nutr 62, 560-569.
81. Mâsse LC, Fulton JE, Watson KB, et al. (2012) Comparing the validity of 2 physical activity questionnaire formats in African-American and Hispanic women. J Phys Act Health 9, 237-248.
82. Staten LK, Taren DL, Howell WH, et al. (2001) Validation of the Arizona Activity Frequency Questionnaire using doubly labeled water. Med Sci Sports Exerc 33, 1959-1967.
83. Tanhoffer RA, Tanhoffer AI, Raymond J, et al. (2012) Comparison of methods to assess energy expenditure and physical activity in people with spinal cord injury. J Spinal Cord Med 35, 35-45.
84. Washburn RA, Jacobsen DJ, Sonko BJ, et al. (2003) The validity of the Stanford Seven-Day Physical Activity Recall in young adults. Med Sci Sports Exerc 35, 1374-1380.
85. Starling RD, Matthews DE, Ades PA, et al. (1999) Assessment of physical activity in older individuals: a doubly labeled water study. J Appl Physiol (1985) 86, 2090-2096.
86. Seale JL, Klein G, Friedmann J, et al. (2002) Energy expenditure measured by doubly labeled water, activity recall, and diet records in the rural elderly. Nutrition 18, 568-573.
87. Philippaerts RM, Westerterp KR \& Lefevre J (1999) Doubly labelled water validation of three physical activity questionnaires. Int J Sports Med 20, 284-289.
88. Leenders N, Sherman WM, Nagaraja H, et al. (2001) Evaluation of methods to assess physical activity in free-living conditions. Med Sci Sports Exerc 33, 1233-1240.
89. Irwin ML, Ainsworth BE \& Conway JM (2001) Estimation of energy expenditure from physical activity measures: determinants of accuracy. Obesity $9,517-525$.
90. Hagfors L, Westerterp K, Sköldstam L, et al. (2005) Validity of reported energy expenditure and reported intake of energy, protein, sodium and potassium in rheumatoid arthritis patients in a dietary intervention study. Eur J Clin Nutr 59, 238-245.
91. Lof M, Hannestad U \& Forsum E (2003) Comparison of commonly used procedures, including the doubly-labelled water technique, in the estimation of total energy expenditure of women with special reference to the significance of body fatness. Br J Nutr 90, 961-968.
92. Corder K, Brage S, Wright A, et al. (2010) Physical activity energy expenditure of adolescents in India. Obesity 18, 2212-2219.
93. Delikanaki-Skaribas E, Trail M, Wong WWL, et al. (2009) Daily energy expenditure, physical activity, and weight loss in Parkinson's disease patients. Mov Disord 24, 667-671.
94. Johansson G \& Westerterp K (2008) Assessment of the physical activity level with two questions: validation with doubly labeled water. Int J Obes 32, 1031.
95. Liu B, Woo J, Tang N, et al. (2001) Assessment of total energy expenditure in a Chinese population by a physical activity questionnaire: examination of validity. Int J Food Sci Nutr 52, 269-282.
96. Neuhouser ML, Di C, Tinker LF, et al. (2013) Physical activity assessment: biomarkers and self-report of activity-related energy expenditure in the WHI. Am Epidemiol 177, 576-585.
97. Colbert LH, Matthews CE, Havighurst TC, et al. (2011) Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc 43, 867.
98. Lof M, Hannestad U \& Forsum E (2002) Assessing physical activity of women of childbearing age. Ongoing work to develop and evaluate simple methods. Food Nutr Bull 23, Suppl. 3, 30-33.
99. Pietiläinen K, Korkeila M, Bogl L, et al. (2010) Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labeled water and co-twin assessments. Int J Obes 34, 437.
100. Bonn SE, Lagerros YT, Christensen SE, et al. (2012) Active-Q: validation of the web-based physical activity questionnaire using doubly labeled water. J Med Int Res 14, e29.

[^0]: Abbreviations: AEE, activity energy expenditure; DLW, doubly labelled water; PAQ, physical activity questionnaire; TEE, total energy expenditure; WMD, weighted mean difference.

 * Corresponding author: Kurosh Djafarian, fax +98 21 88974462, email kdjafarian@tums.ac.ir

