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Abstract

We prove that there is a correspondence between Ramanujan-type formulas for 1/π and formulas for
Dirichlet L-values. Our method also allows us to reduce certain values of the Epstein zeta function to
rapidly converging hypergeometric functions. The Epstein zeta functions were previously studied by
Glasser and Zucker.
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1. Introduction
Quantities such as π2 and the Dirichlet L-values are fundamental constants which
appear in many areas of mathematics and physics. It is interesting to relate them to
hypergeometric functions, which are important because of their applications in number
theory. For instance, Ramanujan discovered many famous hypergeometric formulas
for 1/π [17]. The following example is originally due to Bauer [3], but is easily derived
with Ramanujan’s methods:

1
π

=

∞∑
n=0

(−1)n

26n

(
2n
n

)3(1
2

+ 2n
)
. (1)

Such results are connected to class number problems, and to the theory of complex
multiplication [6], [8]. In this paper we describe identities which are closely related to
Ramanujan’s formulas. Our first example can be constructed by manipulating (1). Let
(1/2 + 2n) 7→ (1/2 − 2n), flip the rest of the summand ‘upside-down’, insert a factor
of 1/n3, and perform the summation for n ≥ 1. Then we obtain a companion series
identity:

8L−4(2) =

∞∑
n=1

(−1)n26n

n3
(

2n
n

)3

(1
2
− 2n

)
. (2)
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As usual L−4(2) = 1 − 1
32 + 1

52 . . . is Catalan’s constant, Lk(s) :=
∑∞

n=1 χk(n)/ns denotes
the general Dirichlet L-series, and

χk(n) =

( k
n

)
is the Jacobi symbol. Based on this example, we might venture a guess that the same
procedure should transform each of Ramanujan’s formulas into identities involving
Dirichlet L-values. We prove that this guess is correct when certain technical
conditions are added. It is important to note that at least nine related formulas
already exist in the literature. The individual formulas were discovered piecemeal
with computational techniques, and mostly proved by variations of the Wilf–Zeilberger
method. We mention proofs due to Zeilberger [21], Guillera [11, 12, 14], and the
Hessami Pilehroods [15]. Sun also conjectured several identities from numerical
experiments [18]. We give unified proofs of all of these results and conjectures in
Theorem 3. We also show how to construct vast numbers of irrational formulas (such
as (65) and the examples in Table 5), which were previously unknown. We describe
our results in greater detail below.

Ramanujan identified seventeen formulas for 1/π [17]. His identities all have the
following form:

1
π

=

∞∑
n=0

(s)n( 1
2 )n(1 − s)n

(1)3
n

(a + bn)zn, (3)

where (x)n = Γ(x + n)/Γ(x). Each example has s ∈ { 12 ,
1
3 ,

1
4 ,

1
6 }, with (a, b, z) being

parameterized by modular functions [6], [8]. When s = 1
6 , z = 1/ j(τ), where j(τ) is the

j-invariant, and the expressions for a and b involve Eisenstein series. If we preserve the
modular parameterizations for (a, b, z), then the general companion series is given by

∞∑
n=1

(1)3
n

(s)n( 1
2 )n(1 − s)n

(a − bn)
n3 z−n. (4)

When n is large, standard asymptotics show that

(s)n( 1
2 )n(1 − s)n

(1)3
n

∼
sin(πs)
(πn)3/2 .

It follows that (3) and (4) can only converge simultaneously if |z| = 1 (notice that (1)
and (2) occur when s = 1

2 and (a, b, z) = ( 1
2 , 2, −1)). Divergent cases make sense,

as long as each divergent infinite series is replaced by an analytically-continued
hypergeometric function. Once of the main goals of this work, is to transform
divergent formulas for 1/π, into interesting convergent formulas for Dirichlet L-values.

Suppose that s ∈ { 12 ,
1
3 ,

1
4 }. Then Propositions 2 and 3 reduce many values of

the companion series (4), to linear combinations of two Epstein zeta functions and
elementary constants. In general, once we fix the modular parameterizations for
(a, b, z) in (4), then Propositions 2 and 3 impose restrictions on the domain of the
modular functions (see the constraints on Equations (50) and (51)). This means there
are fewer potential companion series evaluations, compared to the number of possible
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Ramanujan-type formulas from (3). Finally, if the linear combination of Epstein zeta
functions reduces to Dirichlet L-values, which is not automatic, then the companion
series also reduces to Dirichlet L-values. Proofs are based upon a new idea called
completing the hypergeometric function, which we outline in Section 3. The approach
fails completely when s = 1

6 , and we describe the rationale for this failure at the end of
Section 3. The Epstein zeta functions which appear have been studied by Glasser and
Zucker [10]. Following their notation, define

S (A, B,C; t) :=
∑

(n,m),(0,0)

1
(An2 + Bnm + Cm2)t . (5)

We demonstrate a calculation by proving (2). Set q = −e−π
√

2 in (46). Then (a, b, z) =

( 1
2 , 2,−1). By Equation (50), we have

∞∑
n=1

(−1)n

n3

(1)3
n

( 1
2 )3

n

(1
2
− 2n

)
=

32
√

2
π2 (S (1, 0, 8; 2) − S (3, 4, 4; 2)).

The key to completing the proof, is to reduce S (A, B,C; t) to Dirichlet L-values. It is
fortunate that this is a well-known problem. Let us briefly recall that quadratic forms
with fixed discriminant D = B2 − 4AC, are partitioned into equivalence classes under
the action of S L2(Z). We say that quadratic forms of discriminant D < 0 have one class
per genus, when disjoint classes of forms always represent disjoint sets of integers.
Glasser and Zucker conjectured that S (A, B,C; t) reduces to Dirichlet L-values, if and
only if An2 + Bnm + Cm2 lives in a class of quadratic forms with one class per genus.
Despite the fact that Zucker and Robertson discovered a few strange counterexamples
to this conjecture [23], most evidence suggests that the original conjecture is ‘more-
or-less’ correct. Every interesting companion series boils down to two values of
S (A, B,C; 2), and elementary constants. The proof of (2) follows from showing

S (1, 0, 8; 2) =
7π2

48
L−8(2) +

π2

8
√

2
L−4(2),

S (3, 4, 4; 2) =
7π2

48
L−8(2) −

π2

8
√

2
L−4(2).

Notice that S (3, 4, 4; t) does not correspond to a reduced quadratic form (C ≥ A ≥ |B|),
but it is possible to show that S (3,4,4; t) = S (3,2,3; t). This type of reasoning explains
all of the previously known companion series formulas, and all of the results in
Theorems 3 and 4.

There are many instances where it is probably impossible to express S (A, B,C; t)
in terms of Dirichlet L-values. Then our method produces nontrivial hypergeometric
formulas for S (A, B,C; 2). For example, set q = −e−π/3 in (46). After some work we
obtain

48
π2 S (1, 0, 36; 2) =

140
27

L−4(2) +
13
√

3
L−3(2) −

∞∑
n=1

(1)3
n

( 1
2 )3

n

(a − bn)
n3 z−n, (6)
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where

z = −8(74977 + 40284r + 21644r2 + 11629r3),
a = 1

18 (1038 + 558r + 300r2 + 161r3),

b = 1
3 (387 + 208r + 112r2 + 60r3),

and r =
4√12. Formula (6) converges very rapidly because z ≈ −2.4 × 106. The infinite

series can either be expressed as a 5F4 function, or as a linear combination of two 4F3’s.
In either case, this partially resolves a question of Zucker1 and McPhedran [22], who
asked whether or not S (1, 0, 36; t) reduces to known quantities. See Section 5 for the
proof of (6), and for additional examples.

2. Review of Ramanujan’s formulas

We begin with a brief review of Ramanujan’s formulas. Suppose that (3) holds for
certain values of (a, b, z) and s. Since we are allowing the possibility that |z| > 1, the
identity is best interpreted as:

1
π

= bz
d
dz 3F2

(
s, 1

2 , 1 − s
1, 1

∣∣∣∣∣∣ z
)

+ a 3F2

(
s, 1

2 , 1 − s
1, 1

∣∣∣∣∣∣ z
)
. (7)

If we generically assume that s is a fixed constant, then only two out of the three
parameters (a, b, z) can be chosen independently. For brevity we use the notation

y0(z) := 3F2

(
s, 1

2 , 1 − s
1, 1

∣∣∣∣∣∣ z
)
.

Let us suppose that q and z are related by the differential equation:

dq
dz

=
q

z
√

1 − z y0(z)
, (8)

subject to the initial condition that z = 0 when q = 0. Then we choose a and b to be
given by:

a =
1 + q log |q| d

dq log y0(z)

π y0(z)
, b = −

log |q|
π

√
1 − z. (9)

Once the parametrization for b is fixed, the formula for a follows automatically from
solving (7), and then simplifying the differential using (8). Thus for many choices of
z, we can (in principle) calculate values of a and b which make (7) valid. Ramanujan’s
miraculous observation is that (a, b, z) can be algebraic simultaneously.

The parameters in (7) can be evaluated using the theory of modular forms. First
express z in terms of q by integrating and then inverting (8). The inverse expressions

1Zucker’s dream is to resolve S (1, 0, 36; t) in terms of Dirichlet L-values with complex characters.
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are related to theta functions if s ∈ { 12 ,
1
3 ,

1
4 ,

1
6 }. For instance when s = 1

2 , we have

z = 4
θ4

3(−q)

θ4
3(q)

(
1 −

θ4
3(−q)

θ4
3(q)

)
, (10)

where

θ3(q) :=
∞∑

n=−∞

qn2
.

If we let q = e2πiτ, then z is a weight-zero modular function in τ. It follows from the
theory of complex multiplication that z is algebraic if τ is a quadratic irrational in
the upper half plane. In those instances, Equation (9) implies that b is also algebraic,
because b = −Im(τ)

√
1 − z. In order to calculate a, we require formulas such as

y0(z) = θ4
3(q), (11)

which are only valid if q lies in a neighborhood of zero1. If we use eta product
expansions (in this case θ3(q) = η5(q2)/η2(q)η2(q4)), and then substitute (11) into (9),
we arrive at an expression involving theta functions and Eisenstein series, which can
also be explicitly evaluated. It is typically quite painful to calculate z and a, however
various examples of these calculations are given in [2, 6–8].

Proposition 1. Assume that (a, b, z) and q are related by (8) and (9). Suppose that f (z)
is a differentiable function, and let

φ f (q) =
f (z)

y0(z)
.

Then

a f (z) + bz
d f (z)

dz
=

1
π

(
φ f (q) − log |q| q

dφ f (q)
dq

)
. (12)

Proof. From the right-hand side we have

1
π

(
φ f (q) − log |q| q

dφ f (q)
dq

)
=

1
π

( f (z)
y0(z)

− log |q| q
d
dq

f (z)
y0(z)

)
=

1
π

f (z)
y0(z)

− log |q|
q

πy2
0(z)

(
y0(z)

d f (z)
dq
− f (z)

dy0(z)
dq

)
=

1
π

( 1
y0(z)

+
log |q|
y2

0(z)
q

dy0(z)
dq

)
f (z)

−

( log |q|
πy0(z)

q
z

dz
dq

)
z

d f (z)
dz

= a f (z) + bz
d f (z)

dz
.

The final step follows from (9). �

1Equation (11) holds when q lies in a neighborhood of zero. We can analytically continue the formula
along a ray from q = 0 until we reach a value of q for which z ∈ [1,∞).
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Proposition 1 allows us to insert a factor of (a + bn) into a power series. For
example, if f (z) = y0(z), then φ f (q) = 1. We have

1 =
1

y0(z)

∞∑
n=0

(s)n( 1
2 )n(1 − s)n

(1)3
n

zn.

By Proposition 1 this becomes

1
π

(
1 − log |q| q

d
dq

)
× 1 =

(
a + bz

d
dz

)
×

∞∑
n=0

(s)n( 1
2 )n(1 − s)n

(1)3
n

zn,

hence
1
π

=

∞∑
n=0

(s)n( 1
2 )n(1 − s)n

(1)3
n

(a + bn)zn.

We typically need to obtain a q-series expansion for f (z)/y0(z) before applying
Proposition 1.

3. Completing the hypergeometric function

In this section we introduce the idea of completing a hypergeometric function.
Hypergeometric functions are typically defined by an infinite series, and then
analytically continued to a slit plane. To complete a hypergeometric function, let
n 7→ n + x in the series definition, and extend the sum over n ∈ Z. To fix the notation,
let yx(z) denote the extended hypergeometric series:

yx(z) :=
∞∑

n=0

( 1
2 )n+x(s)n+x(1 − s)n+x

(1)3
n+x

zn+x

= zx ( 1
2 )x(1 − s)x(s)x

(1)3
x

4F3

(1, 1
2 + x, 1 − s + x, s + x
1 + x, 1 + x, 1 + x

∣∣∣∣∣∣ z).
(13)

Notice that yx(z) extends y0(z) to a function of two variables. Transformations for
extended hypergeometric functions often arise as byproducts when one discovers
Wilf–Zeilberger pairs [12]. The completed version of y0(z) is a formal sum∑

n∈Z

(s)n+x( 1
2 )n+x(1 − s)n+x

(1)3
n+x

zn+x, (14)

which involves powers of z and z−1. If we interpret the positive (n ≥ 0) and negative
(n < 0) halves of the sum as hypergeometric functions, then (14) becomes a well-
defined function:

Yx(z) := zx ( 1
2 )x(1 − s)x(s)x

(1)3
x

4F3

(1, 1
2 + x, 1 − s + x, s + x
1 + x, 1 + x, 1 + x

∣∣∣∣∣∣ z)
−

2x3zx−1

s(1 − s)
(− 1

2 )x(s − 1)x(−s)x

(1)3
x

4F3

( 1, 1 − x, 1 − x, 1 − x
3
2 − x, 2 − s − x, 1 + s − x

∣∣∣∣∣∣ 1
z

)
.

(15)
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The 4F3 functions have branch cuts on [1,∞) and [0, 1], respectively, and we take the
branch cut of zx on [0,∞). Thus Yx(z) is certainly analytic for z ∈ C \ [0,∞). From
(14) it is obvious that Yx(z) is periodic in x:

Yx(z) = Yx+1(z).

Periodicity in x extends to (15), because 4F3 functions always obey recurrence relations
in their parameters. Below we prove that Yx(z) equals a trigonometric polynomial in x,
and then we use this fact to develop a q-series expansion for the companion series in
Theorem 1. Before proceeding, we note that our method applies to various additional
hypergeometric functions. If we apply the same procedure to

2F1

( 1
2 ,

1
2

1

∣∣∣∣∣∣ z
)
,

then we can recover a q-series formula due to Duke [9, Equation (2.2)].

Lemma 1. Suppose that s ∈ (0, 1) and z < {0, 1}. There exist functions u := u(z) and
v := v(z) which are independent of x, such that

Yx(z) = y0(z)
eiπx sin2 πs

cos πx(cos2 πx − cos2 πs)
(−u + (u + 1) cos 2πx − iv sin 2πx). (16)

Proof. Consider the Picard–Fuchs operator which annihilates y0(z). Let

P :=
(
z

d
dz

)3
− z

(
z

d
dz

+
1
2

)(
z

d
dz

+ s
)(

z
d
dz

+ 1 − s
)
. (17)

If convergence issues are ignored, then it is easy to show that P also annihilates (14).
This allows us to extrapolate

PYx(z) = 0. (18)

It is possible to prove (18) using standard rules for differentiating hypergeometric
functions, but we leave this as an exercise. Since P annihilates Yx(z), the function
has the form

Yx(z) = m0(x)y(0)(z) + m1(x)y(1)(z) + m2(x)y(2)(z), (19)

where each y(i) is a linearly independent solution of Py = 0. The linear independence
property implies that mi(x) = mi(x + 1) for all i (if the mi’s are not periodic, then
Yx(z) − Yx+1(z) = 0 leads to a linear dependence between y(i)’s). We derive formulas
for mi(x) below. The strategy is to select a particular value of z so that we can place an
upper bound on Yx(z). Since the function decomposes into independent functions of x
and z, we can use Equation (19) to bound each mi(x) independently. Then we deduce
that each mi(x) has a terminating Fourier series after being multiplied by suitable
trigonometric functions. We then conclude that (16) holds for all z < {0, 1}.

Suppose that s ∈ (0, 1), and that z is not a singular point of Yx(z) (we exclude
z = 0 and z = 1). Since Yx(z) = Yx+1(z), we assume without loss of generality
that Re(x) ∈ [0, 1). We claim that Yx(z) is meromorphic in x, with simple poles
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at x ∈ {s, 1
2 , 1 − s}. To prove this, first recall that 4F3(a1, a2, a3, a4; b1, b2, b3; z) is

meromorphic with respect to each bi, provided z is not a singular point [16, page 405].
Poles occur if bi ∈ {0,−1,−2, . . . }. Since (Re(x), s) ∈ [0, 1) × (0, 1), it is easy to check
that the quantities {1 + x, 3

2 − x, 2 − s − x, 1 + s − x} are never equal to zero or negative
integers. Thus the 4F3 functions in (15) do not contribute poles. Next observe

(− 1
2 )x(s − 1)x(−s)x

(1)3
x

=
Γ(− 1

2 + x)Γ(s − 1 + x)Γ(−s + x)

Γ( 1
2 )Γ(−s)Γ(s − 1)Γ3(1 + x)

,

( 1
2 )x(1 − s)x(s)x

(1)3
x

=
Γ( 1

2 + x)Γ(1 − s + x)Γ(s + x)

Γ( 1
2 )Γ(1 − s)Γ(s)Γ3(1 + x)

.

The first ratio of Pochhammer symbols contributes simple poles when x ∈ {s, 1
2 , 1 − s},

and the second ratio of Pochhammer symbols is analytic for (Re(x), s) ∈ [0, 1) × (0, 1).
By the linear independence argument above, we conclude that mi(x) is at worst
meromorphic with simple poles when x ∈ {s, 1

2 , 1 − s}.
Now we show that mi(x) = O(|Im(x)|−3/2e−π Im(x)) when |Im(x)| is sufficiently large.

Let z be a negative real number in a compact subinterval of (−1, 0). Then z = ρeπi for
some ρ ∈ (0, 1). Thus |zx| = |ρxeπix| = ρRe(x)e−π Im(x) < e−π Im(x). Formula (15) becomes

|Yx(z)| < e−π Im(x)

∣∣∣∣∣∣ ( 1
2 )x(1 − s)x(s)x

(1)3
x

4F3

(1, 1
2 + x, 1 − s + x, s + x
1 + x, 1 + x, 1 + x

∣∣∣∣∣∣ z)
−

2x3z−1

s(1 − s)
(− 1

2 )x(s − 1)x(−s)x

(1)3
x

4F3

( 1, 1 − x, 1 − x, 1 − x
3
2 − x, 2 − s − x, 1 + s − x

∣∣∣∣∣∣ 1
z

)∣∣∣∣∣∣.
The terms inside the absolute value vanish when |Im(x)| 7→ ∞. To see this, use the
estimates

4F3

(1, 1
2 + x, 1 − s + x, s + x
1 + x, 1 + x, 1 + x

∣∣∣∣∣∣ z) ≈ 1F0

(
1

∣∣∣∣∣∣ z
)

=
1

1 − z

4F3

( 1, 1 − x, 1 − x, 1 − x
3
2 − x, 2 − s − x, 1 + s − x

∣∣∣∣∣∣ 1
z

)
≈ 1F0

(
1

∣∣∣∣∣∣ 1
z

)
=

z
z − 1

,

(1 − s)x( 1
2 )x(s)x

(1)3
x

≈
sin πs

(πi Im(x))3/2 ,

2x3

s(1 − s)
(− 1

2 )x(s − 1)x(−s)x

(1)3
x

≈ −
sin πs

(πi Im(x))3/2 ,

which are valid when |Im(x)| is large, and when z < [0,∞). Thus if |Im(x)| is sufficiently
large (which rules out the possibility of x lying in a neighborhood of the poles
{s, 1

2 , 1 − s}), then Yx(z) = O(|Im(x)|−3/2e−π Im(x)). The estimate holds uniformly if z
lies in a compact subinterval of (−1, 0), so a linear independence argument suffices to
show that mi(x) = O(|Im(x)|−3/2e−π Im(x)) for each i.
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We have proved that mi(x) is periodic and meromorphic, with possible simple poles
if x ∈ {s, 1

2 , 1 − s}. We conclude that

e−iπx cos πx(cos2 πx − cos2 πs)mi(x) (20)

is analytic for Re(x) ∈ [0, 1). This new function has period one, so it is also analytic
on C. If |Im(x)| is sufficiently large, then mi(x) = O(|Im(x)|−3/2e−π Im(x)). Thus by
elementary properties of the trigonometric functions, (20) becomes

e−iπx cos πx(cos2 πx − cos2 πs)mi(x) = O(eπ Im(x)e3π|Im(x)||mi(x)|)
= O(|Im(x)|−3/2e3π|Im(x)|).

Therefore the function has a Fourier series which terminates:

e−iπx cos πx(cos2 πx − cos2 πs)mi(x) = a(0)
i + a(1)

i cos(2πx) + a(2)
i sin(2πx).

After collecting constants in (19), and noting that Y0(z) = y0(z), we conclude that Yx(z)
has the form given in (16). �

Since yx(z) is analytic in a neighborhood of x = 0, we have a Maclaurin series of
the form

yx(z)
y0(z)

= 1 + φ1(q)x + φ2(q)x2 + φ3(q)x3 + O(x4), (21)

where z and q are related by (8). Since yx(z)/y0(z) is nonholomorphic in z, we expect
each φi(q) to be nonholomorphic in q.

Theorem 1. Assume that s ∈ (0, 1), z < {0, 1} and let φi(q) be as in (21). Then

1
πy0(z)

∞∑
n=1

(1)3
n

(s)n( 1
2 )n(1 − s)n

z−n

n3

= π2i csc2(πs) −
π

3
(1 + 3 csc2(πs))φ1(q) − iφ2(q) +

1
π
φ3(q).

(22)

By Proposition 1, we also have
∞∑

n=1

(1)3
n

(s)n( 1
2 )n(1 − s)n

(a − bn)
n3 z−n

= π2i csc2(πs) −
π

3
(1 + 3 csc2(πs))

(
φ1(q) − q log |q|

dφ1(q)
dq

)
− i

(
φ2(q) − q log |q|

dφ2(q)
dq

)
+

1
π

(
φ3(q) − q log |q|

dφ3(q)
dq

)
.

(23)

The sums in (22) and (23) diverge if |z| < 1, however the identities remain valid when
4F3 and 5F4 functions are substituted.

Proof. From (15) and (13) we see that

Yx(z) = yx(z) + O(x3).
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This is sufficient to determine u and v in (16). From (13) we find
yx(z)
y0(z)

= 1 + φ1(q)x + φ2(q)x2 + φ3(q)x3 + O(x4).

By (16) we also have
Yx(z)
y0(z)

= 1 + iπ(1 − 2v)x + π2(−2 − 2u + 2v + csc2(πs))x2

−
iπ3

3
(5 + 6u − 4v + (−3 + 6v) csc2(πs))x3 + O(x4),

(24)

where s and z satisfy the appropriate restrictions. The Taylor coefficients of Yx(z) and
yx(z) agree up to order x2. This leads to a pair of equations

φ1(q) = iπ(1 − 2v)

φ2(q) = π2(−2 − 2u + 2v + csc2(πs)),

from which it is easy to solve for u and v.
The companion series arises from the x3 coefficient of Yx(z). By (15) and (13) we

have

1
y0(z)

∞∑
n=1

(1)3
n

(s)n( 1
2 )n(1 − s)n

z−n

n3 =
1

y0(z)
2z−1

s(1 − s) 4F3

(
1, 1, 1, 1

3
2 , 2 − s, 1 + s

∣∣∣∣∣∣ 1
z

)
= lim

x→0

(yx(z) − Yx(z)
y0(z) x3

)
= φ3(q) +

iπ3

3
(5 + 6u − 4v + (−3 + 6v) csc2(πs)).

We recover (22) by eliminating u and v. �

Despite the fact that (22) and (23) hold for many values of s, it is probably only
possible to evaluate φi(q) if s ∈ { 12 ,

1
3 ,

1
4 }. We prove formulas for φi(q) below.

Theorem 2. Suppose that q lies in a neighborhood of zero. When s = 1
2 ,

φ1(q) = log q, (25)

φ2(q) =
1
2

log2 q +
π2

2
, (26)

φ3(q) =
1
6

log3 q +
π2

2
log q − 6ζ(3) − 16

∞∑
n=1

σ3(n)
n3 qn + 4

∞∑
n=1

σ3(n)
n3 q4n. (27)

When s = 1
3 ,

φ1(q) = log q, (28)

φ2(q) =
1
2

log2 q +
2π2

3
, (29)

φ3(q) =
1
6

log3 q +
2π2

3
log q − 10ζ(3) − 30

∞∑
n=1

σ3(n)
n3 qn + 10

∞∑
n=1

σ3(n)
n3 q3n. (30)
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When s = 1
4 ,

φ1(q) = log q, (31)

φ2(q) =
1
2

log2 q + π2, (32)

φ3(q) =
1
6

log3 q + π2 log q − 20ζ(3) − 80
∞∑

n=1

σ3(n)
n3 qn + 40

∞∑
n=1

σ3(n)
n3 q2n. (33)

Proof. The essential idea is to apply the Picard–Fuchs operator which annihilates
y0(z). Recall that P is defined in (17). It was proved in [13, Proposition 2.2], that

Pyx(z) =
(1 − s)x( 1

2 )x(s)x

(1)3
x

zxx3 = x3 + O(x4). (34)

When x = 0, we immediately obtain the homogeneous differential equation Py0(z) = 0.
If yx(z) is expanded in a Maclaurin series with respect to x, then by (21) we have
P(y0(z)φ1(q)) = 0 and P(y0(z)φ2(q)) = 0. Appealing to [19, Lemma 1], we see that(

q
d
dq

)3
φ1(q) = 0,

(
q

d
dq

)3
φ2(q) = 0, (35)

and integrating gives

φ1(q) = α0 + α1 log q + α2 log2 q, (36)
φ2(q) = β0 + β1 log q + β2 log2 q, (37)

where the αi’s and βi’s are undetermined constants. Examining the x3 coefficient
of yx(z) leads to the inhomogeneous differential equation P[y0(z)φ3(q)] = 1. By [19,
Lemma 1] and [13, Equation (2.33)], we find that(

q
d
dq

)3
φ3(q) =

√
1 − z y2

0(z). (38)

In order to solve (38), and to determine the constants in (36) and (37), it is necessary
to specify the value of s.

Suppose that q lies in a neighborhood of zero. When s = 1
2 we have

√
1 − z =

1 − 2λ(q), where λ(q) = θ4
2(q)/θ4

3(q) is the elliptic lambda function [13, Section 2.5].
By standard theta function inversion formulas, we also have

y0(z) = θ4
3(q). (39)

Identity (39) does not hold for |q| < 1. For instance, if q is close to one we have to
replace (39) with y0(z) = (log2(q)/π2)θ4

3(q). For |q| sufficiently small

y2
0(z)
√

1 − z = θ8
3(q) − 2θ4

3(q)θ4
2(q)

= 1 − 16
∞∑

n=1

σ3(n)qn + 162
∞∑

n=1

σ3(n)q4n,
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where the second equality follows from [4, page 126, Entry 13]. Integrating (38) gives

φ3(q) = γ0 + γ1 log q + γ2 log2 q +
1
6

log3 q

− 16
∞∑

n=1

σ3(n)
qn

n3 + 4
∞∑

n=1

σ3(n)
q4n

n3 ,
(40)

where the γis are constants.
There are nine constants left to calculate. Let q tend to zero in (21). Since z has a

q-series of the form z = 64q + O(q2), it follows that z ≈ 64q when q approaches zero.
In a similar manner we find that y0(z) ≈ 1. By (21) we have

q−xyx(z) = q−xy0(z)(1 + φ1(q)x + φ2(q)x2 + φ3(q)x3 + O(x4))

≈ q−x(1 + φ1(q)x + φ2(q)x2 + φ3(q)x3 + O(x4)).
(41)

From the definition of q−xyx(z), we calculate

q−xyx(z) = q−xzx ( 1
2 )3

x

(1)3
x

(
1 +

∞∑
n=1

zn ( 1
2 + x)3

n

(1 + x)3
n

)
≈ 64x ( 1

2 )3
x

(1)3
x

(1 + 0).

(42)

Compare the Maclaurin series coefficients of (41) and (42) in x, x2 and x3. Since (42)
is holomorphic at x = 0, it follows that (41) is holomorphic at x = 0 as well. Since
q tends to zero, this implies that the powers of log(q) must drop out of the series
obtained from (41). Comparing coefficients then provides sufficiently many relations
to determine the values of αi, βi and γi explicitly. The cases when s = 1

3 and s = 1
4

require analogous arguments, using appropriate theta functions from [5]. �

The method fails when s = 1
6 , because of our inability to solve (38). The

calculation is difficult because Ramanujan’s theory of signature-6 modular equations
is incomplete, and as a result it seems to be impossible to find a nice q-series expansion
for

√
1 − z y2

0(z) =
√

1 − z 3F2

( 1
6 ,

1
2 ,

5
6

1, 1

∣∣∣∣∣∣ z
)2

.

Notice that (38) is equivalent to

(
q

d
dq

)3
φ3(q) =

1 − 504
∑∞

n=1
n5qn

1−qn√
1 + 240

∑∞
n=1

n3qn

1−qn

. (43)

If we could obtain a reasonable expression for φ3(q), then it might be possible to
evaluate a companion series with s = 1

6 . Experimental searches failed to turn up any
interesting identities, and this suggests that the task is impossible.
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4. Explicit formulas

Now we prove companion series evaluations. Proposition 2 reduces every
companion series to elementary constants and values of the following special function:

F(q) := −
log3 |q|

3π
+

120
π
ζ(3) +

240
π

∞∑
j=1

Li3(q j) − log |q j|Li2(q j). (44)

Notice that F(q) is closely related to the elliptic trilogarithm [20]. Set q = e2πiτ, with
τ = x + iy, and y > 0. In Proposition 3 we prove

Re(F(q)) =
120y3

π2 S (1, 2x, x2 + y2; 2). (45)

It is easy to see that F(q) is real-valued if q ∈ (−1, 1), so (45) becomes a formula
for F(q) whenever x ∈ Z/2. Glasser and Zucker proved that S (A, B,C; t) reduces to
Dirichlet L-values quite often. Their formulas lead to precisely 65 evaluations of F(q),
when x = 0 and y2 ∈ N. For instance, when (x, y) = (0,

√
7), we have

F(e−2π
√

7) = 175
√

7L−7(2).

Various additional values of F(q) are provided in Table 1. The formulas in Theorems
3 and 4 are proved by evaluating linear combinations of F(q)s.

Proposition 2. Suppose that q lies in a neighborhood of zero, and that (a, b, z) and q
are related by (8) and (9). When s = 1

2 ,

∞∑
n=1

(1)3
n

( 1
2 )3

n

(a − bn)
n3 z−n = −

1
15

F(q) +
1
60

F(q4)

+
log3(q)

6π
−

log2(q) log |q|
2π

+
log3 |q|

3π

−
i
2

log2(q) + i log(q) log |q|

−
5
6
π log(q) +

5
6
π log |q| +

iπ2

2
.

(46)

When s = 1
3 ,

∞∑
n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(a − bn)
n3 z−n = −

1
8

F(q) +
1
24

F(q3)

+
log3(q)

6π
−

log2(q) log |q|
2π

+
log3 |q|

3π

−
i
2

log2(q) + i log(q) log |q|

− π log(q) + π log |q| +
2iπ2

3
.

(47)
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Table 1. Selected values of F(q).

q F(q)

e−2π 80L−4(2)
e−2π

√
2 80

√
2L−8(2)

e−2π
√

3 135
√

3L−3(2)

e−2π
√

4 280L−4(2)

e−2π
√

5 100
√

5L−20(2) + 96L−4(2)

e−2π
√

6 120
√

6L−24(2) + 90
√

3L−3(2)

e−2π
√

7 175
√

7L−7(2)

e−2π
√

8 280
√

2L−8(2) + 240L−4(2)

e−2π
√

9 560L−4(2) + 180
√

3L−3(2)

e−2π
√

10 200
√

10L−40(2) + 192
√

2L−8(2)

e−2π
√

12 480L−4(2) +
1035

2

√
3L−3(2)

e−2π
√

13 260
√

13L−52(2) + 480L−4(2)

e−2π
√

15 375
2

√
15L−15(2) + 468

√
3L−3(2)

e−2π
√

16 480
√

2L−8(2) + 1100L−4(2)

e−2π
√

18 880
√

2L−8(2) + 540
√

3L−3(2)

e−2π
√

21 210
√

21L−84(2) + 210
√

7L−7(2) + 480L−4(2) + 360
√

3L−3(2)

e−2π
√

22 440
√

22L−88(2) + 330
√

11L−11(2)

e−2π
√

24 420
√

6L−24(2) + 480
√

2L−8(2) + 720L−4(2) + 495
√

3L−3(2)

e−2π
√

25 480
√

5L−20(2) + 2320L−4(2)

e−2π
√

28 1435
2

√
7L−7(2) + 1920L−4(2)

e−2π
√

30 300
√

30L−120(2) + 288
√

6L−24(2) + 225
√

15L−15(2) + 630
√

3L−3(2)

e−2π
√

33 330
√

33L−132(2) + 330
√

11L−11(2) + 1440L−4(2) + 630
√

3L−3(2)

When s = 1
4 ,

∞∑
n=1

(1)3
n

( 1
4 )n( 1

2 )n( 3
4 )n

(a − bn)
n3 z−n = −

1
3

F(q) +
1
6

F(q2)

+
log3(q)

6π
−

log2(q) log |q|
2π

+
log3 |q|

3π

−
1
2

i log2(q) + i log(q) log |q|

−
4
3
π log(q) +

4
3
π log |q| + iπ2.

(48)

Proof. Proofs follow from combining Theorems 1 and 2. In particular, we obtain
formulas (46) through (48) by substituting the results of Theorem 2 into (23). �
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Proposition 3. Let q = e2πiτ, with τ = x + iy, and y > 0. Then

F(q) =
120y3

π2 S (1, 2x, x2 + y2; 2) +
60i
π2

∑
n,k
n,0

(k + nx)((k + nx)2 + 3n2y2)
n3((k + nx)2 + n2y2)2 . (49)

If x ∈ Z/2 and y > 0, then

F(q) =
120y3

π2 S (1, 2x, x2 + y2; 2). (50)

If 2x/(x2 + y2) ∈ Z and y > 0, then

F(q) =
120y3

π2 S (1, 2x, x2 + y2; 2) +
4iπ2

3
x
( x2 + 3y2

(x2 + y2)2 + x2 + 3y2 − 5
)
. (51)

Proof. The proof below is slightly technical, but we have included it for the sake of
completeness. It is important to note that the statement of this proposition, and more,
is contained in [20, Part II, Section 7]. By (44) we obtain

F(q) =
8π2

3
(Im τ)3 +

120
π

∞∑
n=1

( 1
n3 +

2
n3

∞∑
j=1

q jn +
4π Im(τ)

n2

∞∑
j=1

jq jn
)

=
8π2

3
(Im τ)3 +

120
π

∞∑
n=1

( 1
n3

1 + qn

1 − qn +
4π Im(τ)

n2

qn

(1 − qn)2

)
=

8π2

3
(Im τ)3 +

60
π

∞∑
n=−∞
n,0

( i cot(πnτ)
n3 −

π Im(τ) csc2(πnτ)
n2

)
.

Substitute the partial fractions decompositions:

cot(πnτ) =
1
π

∞∑
k=−∞

1
k + τn

, π csc2(πnτ) =
1
π

∞∑
k=−∞

1
(k + τn)2 ,

to obtain

F(q) =
8π2

3
(Im τ)3 +

60
π2

∞∑
n,k=−∞

n,0

i
n3(k + nτ)

−
Im(τ)

n2(k + nτ)2 . (52)

Formula (49) follows from setting τ = x + iy, and then isolating the real and imaginary
parts of the function. We complete the proof of (50) by noting that F(q) is real valued
whenever x ∈ Z/2.

To complete the proof of (51) we need to evaluate the following sum:

T (x, y) :=
∑
n,k
n,0

(k + nx)((k + nx)2 + 3n2y2)
n3((k + nx)2 + n2y2)2 .

Extract the k = 0 term to obtain

T (x, y) =
π4

45
x(x2 + 3y2)
(x2 + y2)2 +

∑
k

k,0

∑
n

n,0

(k + nx)((k + nx)2 + 3n2y2)
n3((k + nx)2 + n2y2)2 .
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When k , 0 the inner sum can be evaluated by the residues method. Mathematica
produces the following formula:

∞∑
n=−∞
n,0

(k + nx)((k + nx)2 + 3n2y2)
n3((k + nx)2 + n2y2)2

= −
x(π2k2 − 9y2 − 3x2)

3k4

−π sin
( 2πkx

x2 + y2

) (x2 + y2)(cosh2 πky
x2+y2 − cos2 πkx

x2+y2 ) + kπy sinh 2kπy
x2+y2

2k3(cosh2 πky
x2+y2 − cos2 πkx

x2+y2 )2
.

If 2x/(x2 + y2) ∈ Z, then the second term vanishes. Thus we are left with

T (x, y) =
π4

45
x(x2 + 3y2)
(x2 + y2)2 −

∑
k

k,0

x(π2k2 − 9y2 − 3x2)
3k4

=
π4

45
x
( x2 + 3y2

(x2 + y2)2 + x2 + 3y2 − 5
)
,

and (51) follows. �

4.1. Convergent rational formulas. Now we prove rational, convergent, companion
series formulas. Virtually all of these results have appeared in the literature before,
although we believe this is their first unified treatment. Equation (55) was proved
by Zeilberger [21, Theorem 8]. Formulas (53), (54), (56) are due to Guillera
[11, 12]. Equations (57) through (61) were conjectured by Sun [18]. Formula (58)
was subsequently proved by Guillera [14], and the Hessami Pilehroods proved (59)
[15]. Our strategy is to express each companion series in terms of F(q)’s, and then to
evaluate F(q) using properties of Epstein zeta functions. The hypergeometric-side of
the formula also requires values of (a,b, z). We will refrain from rigorously calculating
(a, b, z) in this paper; however, all three quantities can be calculated in a reasonably
straightforward manner using techniques outlined in [2] or [7]. We summarize the
values of (a, b, z) and the corresponding q’s in Table 2.

Theorem 3. The following formulas are true:

∞∑
n=1

(−1)n+1 (1)3
n

( 1
2 )3

n

(4n − 1)
n3 = 16L−4(2), (53)

∞∑
n=1

(1)3
n

( 1
2 )3

n

(3n − 1)
n3

1
22n =

π2

2
, (54)

∞∑
n=1

(1)3
n

( 1
2 )3

n

(21n − 8)
n3

1
26n =

π2

6
, (55)
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∞∑
n=1

(−1)n+1 (1)3
n

( 1
2 )3

n

(3n − 1)
n3

1
23n = 2L−4(2), (56)

∞∑
n=1

(1)3
n

( 1
2 )n( 1

3 )n( 2
3 )n

(10n − 3)
n3

( 2
27

)2n
=
π2

2
, (57)

∞∑
n=1

(1)3
n

( 1
2 )n( 1

3 )n( 2
3 )n

(11n − 3)
n3

(16
27

)n
= 8π2, (58)

∞∑
n=1

(−1)n+1 (1)3
n

( 1
2 )n( 1

3 )n( 2
3 )n

(15n − 4)
n3

1
4n = 27L−3(2), (59)

∞∑
n=1

(−1)n+1 (1)3
n

( 1
2 )n( 1

4 )n( 3
4 )n

(5n − 1)
n3

(3
4

)2n
=

45
2

L−3(2), (60)

∞∑
n=1

(1)3
n

( 1
2 )n( 1

4 )n( 3
4 )n

(35n − 8)
n3

(3
4

)4n
= 12π2. (61)

Proof. We begin by proving (53). Set q = −e−π
√

2 in (46). We have (a,b, z) = ( 1
2 ,2,−1).

Table 2. Values of (a, b, z) in Theorem 3.

s q a b z
1
2

−e−π
√

2 1
2

2 −1

1
2

ie−π
√

3/2 −
i
2

−
3i
2

4

1
2

e3πi/4e−π
√

7/4 −2i −
21i
4

64

1
2

−e−π 1 3 −8

1
3

e2πi/3e−2π
√

2/3 −i −
10i
3

27
2

1
3

eπi/3e−π
√

11/3 −
i
4

−
11i
12

27
16

1
3

−e−π
√

15/3 4

3
√

3

5
√

3
−4

1
4

−e−π
√

3 1
√

3

5
√

3
−

16
9

1
4

ie−π
√

7/2 −
4i
9

−
35i
18

256
81
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The formula reduces to

1
2

∞∑
n=1

(−1)n+1 (1)3
n

( 1
2 )3

n

(4n − 1)
n3 = −

1
15

F(−e−π
√

2) +
1
60

F(e−4π
√

2).

Apply (50) to reduce the equation to
∞∑

n=1

(−1)n+1 (1)3
n

( 1
2 )3

n

(4n − 1)
n3 =

64
√

2
π2 S (1, 0, 8; 2) −

4
√

2
π2 S

(
1, 1,

3
4

; 2
)

=
64
√

2
π2 (S (1, 0, 8; 2) − S (3, 4, 4; 2)).

Glasser and Zucker have evaluated S (1, 0, 8; t) for all t [10]. Their method also applies
to S (3, 4, 4; t) = S (3, 2, 3; t). When t = 2, the formulas become

S (1, 0, 8; 2) =
7π2

48
L−8(2) +

π2

8
√

2
L−4(2),

S (3, 4, 4; 2) =
7π2

48
L−8(2) −

π2

8
√

2
L−4(2),

and the result follows.
Next consider (54). Set q = ie−π

√
3/2 in (46). We have (a, b, z) = (−i/2,−3i/2, 4).

The formula reduces to

i
2

∞∑
n=1

(1)3
n

( 1
2 )3

n

(3n − 1)
n3

1
22n =

3iπ2

8
−

1
15

F(ie−π
√

3/2) +
1
60

F(e−2π
√

3).

Equate the imaginary parts, and apply (51). The equation reduces to
∞∑

n=1

(1)3
n

( 1
2 )3

n

(3n − 1)
n3

1
22n =

3π2

4
−

2
15

Im F(ie−π
√

3/2)

=
π2

2
.

Next we prove (55). Set q = e3πi/4e−π
√

7/4 in (46). We have (a, b, z) = (−2i,
−21i/4, 64). The formula reduces to

i
4

∞∑
n=1

(1)3
n

( 1
2 )3

n

(21n − 8)
n3

1
26n =

9π2i
64
−

1
15

F(e3πi/4e−π
√

7/4) +
1
60

F(−e−π
√

7).

Equate the imaginary parts, then apply (51). We obtain
∞∑

n=1

(1)3
n

( 1
2 )3

n

(21n − 8)
n3

1
26n =

9π2

16
−

4
15

Im F(e3πi/4e−π
√

7/4)

=
π2

6
.
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Next consider (56). Set q = −e−π in (46). We have (a, b, z) = (1, 3,−8). The formula
reduces to

∞∑
n=1

(1)3
n

( 1
2 )3

n

(3n − 1)
n3

(−1)n+1

23n = −
1
15

F(−e−π) +
1
60

F(e−4π).

Apply (50) to obtain
∞∑

n=1

(1)3
n

( 1
2 )3

n

(3n − 1)
n3

(−1)n+1

23n = −
1
π2 S (1, 1, 1

2 ; 2) +
16
π2 S (1, 0, 4; 2)

= 2L−4(2).

In the final step we use S (1, 0, 4; 2) = (7π2/24)L−4(2), and S (1, 1, 1
2 ; 2) =

4S (2, 2, 1; 2) = 4S (1, 0, 1; 2) = (8π2/3)L−4(2). Both of these evaluations follow from
the results of Glasser and Zucker [10].

Now consider (57). Set q = e2πi/3e−2π
√

2/3 in (47). We have (a, b, z) = (−i,−10i/3,
27/2). The formula reduces to

i
3

∞∑
n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(10n − 3)
n3

( 2
27

)n
=

26π2i
81

−
1
8

F(e2πi/3e−2π
√

2/3) +
1
24

F(e−2π
√

2).

Take the imaginary parts, then apply (51). We obtain
∞∑

n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(10n − 3)
n3

( 2
27

)n
=

26π2

27
−

3
8

Im F(e2πi/3e−2π
√

2/3)

=
π2

2
.

Next we prove (58). Set q = eπi/3e−π
√

11/3 in (47). We have (a, b, z) = (−i/4,
−11i/12, 27/16). The formula reduces to

i
12

∞∑
n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(11n − 3)
n3

(16
27

)n
=

64π2i
81

−
1
8

F(eπi/3e−π
√

11/3) +
1
24

F(−e−π
√

11).

Take the imaginary parts, then apply (51). We have
∞∑

n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(11n − 3)
n3

(16
27

)n
=

256π2

27
−

3
2

Im F(eπi/3e−π
√

11/3)

= 8π2.

Now prove (59). Set q = −e−π
√

15/3 in (47). We have (a, b, z) = (4/3
√

3, 5/
√

3,−4).
The formula reduces to

1

3
√

3

∞∑
n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(15n − 4)
n3

(−1)n+1

4n = −
1
8

F(−e−π
√

15/3) +
1
24

F(−e−π
√

15).
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Apply (50) to obtain
∞∑

n=1

(1)3
n

( 1
3 )n( 1

2 )n( 2
3 )n

(15n − 4)
n3

(−1)n+1

4n = −
75
√

5
8π2 S

(
1, 1,

2
3

; 2
)

+
675
√

5
8π2 S (1, 1, 4; 2)

=
675
√

5
8π2 (S (1, 1, 4; 2) − S (2, 3, 3; 2)).

Glasser and Zucker have calculated S (1,1,4; t) for all t [10]. Their method also applies
to S (2, 3, 3; t) = S (2, 1, 2; t). When t = 2 the formulas reduce to

S (1, 1, 4; 2) =
π2

6
L−15(2) +

4π2

25
√

5
L−3(2),

S (2, 3, 3; 2) =
π2

6
L−15(2) −

4π2

25
√

5
L−3(2),

and (59) follows.
Next we prove (60). Set q = −e−π

√
3 in (48). We have (a, b, z) = (1/

√
3, 5/

√
3,

−16/9). The formula reduces to

1
√

3

∞∑
n=1

(1)3
n

( 1
4 )n( 1

2 )n( 3
4 )n

(5n − 1)
n3 (−1)n+1

(3
4

)2n
= −

1
3

F(−e−π
√

3) +
1
6

F(e−2π
√

3).

By (50), we have
∞∑

n=1

(1)3
n

( 1
4 )n( 1

2 )n( 3
4 )n

(5n − 1)
n3 (−1)n+1

(3
4

)2n
= −

45
π2 S (1, 1, 1; 2) +

180
π2 S (1, 0, 3; 2)

=
45
2

L−3(2).

Glasser and Zucker proved that S (1, 0, 3; 2) = (3π2/8)L−3(2), and S (1, 1, 1; 2) =

π2L−3(2) [10].
Finally, we prove (61). Set q = ie−π

√
7/2 in (48). We have (a,b, z) = (−4i/9,−35i/18,

256/81). The formula reduces to

i
18

∞∑
n=1

(1)3
n

( 1
4 )n( 1

2 )n( 3
4 )n

(35n − 8)
n3

(3
4

)4n
=

7π2i
8
−

1
3

F(ie−π
√

7/2) +
1
6

F(−e−π
√

7).

Take the imaginary part, then apply (51). We obtain
∞∑

n=1

(1)3
n

( 1
4 )n( 1

2 )n( 3
4 )n

(35n − 8)
n3

(3
4

)4n
=

63π2

4
− 6 Im F(ie−π

√
7/2)

= 12π2. �

Table 2 summarizes the values of (a, b, z) and q in Theorem 3. These values
also lead to divergent formulas for 1/π. For instance, when s = 1

3 and (a, b, z) =
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(4/3
√

3, 5/
√

3,−4), we obtain (59), and

1
π

=
4

3
√

3
4F3

( 1
3 ,

1
2 ,

2
3 ,

19
15

1, 1, 4
15

∣∣∣∣∣∣ − 4
)
.

The above formula is rigorously proved, but it is worth noting that Mathematica
returns a numerical value for the the right-hand side, which agrees perfectly with
1/π = 0.318 309 8. . . .

4.2. Divergent rational formulas. Next we examine divergent hypergeometric
formulas for Dirichlet L-values. These are companions to the convergent formulas
for 1/π. Since the identities have |z| < 1, we have substituted a 5F4 function for the
divergent companion series:

∞∑
n=1

(1)3
n

(s)n( 1
2 )n(1 − s)n

(a − bn)
n3 z−n =

2(a − b)
s(1 − s)z 5F4

( 1, 1, 1, 1, 2 − a
b

3
2 , 1 + s, 2 − s, 1 − a

b

∣∣∣∣∣∣ z−1
)
. (62)

The 5F4 function has a branch cut on the interval [1,∞) [16, page 405]. When z−1

lies on the branch cut, the function takes a complex value. The real part of the
function is uniquely defined, but the sign of the imaginary part depends on the direction
from which we approach the branch cut. We use the same computational method
as Mathematica 8, if z−1 ∈ [1,∞) then we define 5F4(· · · |z−1) = limδ 7→0+ 5F4(· · · |z−1

− iδ). We note that the values of (a, b, z) and q in Tables 3 and 4 were extracted directly
from the tables of Chan and Cooper [7].

Theorem 4. The following identity holds:

2(a − b)
s(1 − s)z 5F4

( 1, 1, 1, 1, 2 − a
b

3
2 , 1 + s, 2 − s, 1 − a

b

∣∣∣∣∣∣ z−1
)

= L(2), (63)

for the values of s, (a, b, z) and L(2) in Tables 3 and 4.

Proof. The proofs are the same as for Theorem 3, so we only consider one example
in detail. Set q = e−π

√
7 in (46). By Table 4, we have s = 1

2 and (a, b, z) =

(5/16, 21/8, 1/64). Applying (50) and then (62), reduces the formula to

−1184 5F4

(1, 1, 1, 1, 79
42

3
2 ,

3
2 ,

3
2 ,

37
42

∣∣∣∣∣∣ 64
)

= 4iπ2 −
1
15

F
(
e−π

√
7) +

1
60

F
(
e−4π

√
7)

= 4iπ2 −
112
√

7
π2 (S (4, 0, 7; 2) − S (1, 0, 28; 2)).

By the results of Glasser and Zucker [10], we obtain

S (1, 0, 28; 2) =
41π2

384
L−7(2) +

2π2

7
√

7
L−4(2),

S (4, 0, 7; 2) =
41π2

384
L−7(2) −

2π2

7
√

7
L−4(2),
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Table 3. Values of (a, b, z) with z < 0 in Theorem 4.

s q a b z < 0 L(2)
1
2

−e−π
√

2 1
2

4
2

−1 8L−4(2)

1
2

−e−π
√

4 1

2
√

2

6

2
√

2
−

1
8

16
√

2L−8(2)

1
3

−e−π
√

9/3

√
3

4
5
√

3
4

−
9

16
10
√

3L−3(2)

1
3

−e−π
√

17/3 7

12
√

3

51

12
√

3
−

1
16

30
√

3L−3(2)

1
3

−e−π
√

25/3

√
15

12
9
√

15
12

−
1

80
15
√

15L−15(2)

1
3

−e−π
√

41/3 106

192
√

3

1230

192
√

3
−

1
210 120

√
3L−3(2)

1
3

−e−π
√

49/3 26
√

7
216

330
√

7
216

−
1

3024
70
√

7L−7(2)

1
3

−e−π
√

89/3 827

1500
√

3

14 151

1500
√

3
−

1
5002 390

√
3L−3(2)

1
4

−e−π
√

5 3
8

20
8

−
1
4

32L−4(2)

1
4

−e−π
√

7 8

9
√

7

65

9
√

7
−

162

632

35
2

√
7L−7(2)

1
4

−e−π
√

9 3
√

3
16

28
√

3
16

−
1

48
60
√

3L−3(2)

1
4

−e−π
√

13 23
72

260
72

−
1

182 160L−4(2)

1
4

−e−π
√

25 41
√

5
288

644
√

5
288

−
1

5 · 722 160
√

5L−20(2)

1
4

−e−π
√

37 1123
3528

21 460
3528

−
1

8822 800L−4(2)

and we recover the value of L(2) in Table 4. After simplifying, we find that

5F4

(1, 1, 1, 1, 79
42

3
2 ,

3
2 ,

3
2 ,

37
42

∣∣∣∣∣∣ 64
)

= −
2
37

L−4(2) −
1

296
π2i.

All of the formulas in Tables 3 and 4 follow from analogous arguments. �
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Table 4. Values of (a, b, z) with z > 0 in Theorem 4.

s q a b z > 0 L(2)
1
2

e−π
√

3 1
4

6
4

1
4

16L−4(2) + 2π2i

1
2

e−π
√

7 5
16

42
16

1
64

64L−4(2) + 4π2i

1
3

e−π
√

8/3 1

3
√

3

6

3
√

3

1
2

15
2

√
3L−3(2) + 2π2i

1
3

e−π
√

16/3 8
27

60
27

2
27

40L−4(2) +
10
3
π2i

1
3

e−π
√

20/3 8

15
√

3

66

15
√

3

4
125

39
√

3L−3(2) + 4π2i

1
4

e−2π 2
9

14
9

32
81

20L−4(2) + 3π2i

1
4

e−π
√

6 1

2
√

3

8

2
√

3

1
9

30
√

3L−3(2) + 4π2i

1
4

e−π
√

10 4

9
√

2

40

9
√

2

1
81

64
√

2L−8(2) + 6π2i

1
4

e−π
√

18 27

49
√

3

360

49
√

3

1
74 180

√
3L−3(2) + 10π2i

1
4

e−π
√

22 19

18
√

11

280

18
√

11

1
992 110

√
11L−11(2) + 12π2i

1
4

e−π
√

58 4412

9801
√

2

105 560

9801
√

2

1
994 960

√
2L−8(2) + 30π2i

4.3. Irrational formulas. We emphasize that the vast majority of companion series
formulas involve irrational values of (a, b, z). Consider the narrow class of formulas
which arises from setting q = e−2π

√
v in (48). The companion series with s = 1

4 reduces
to a linear combination of S (1, 0, v; 2), S (1, 0, 4v; 2) and elementary constants. There
are 24 values of v ∈ N, for which both sums reduce to Dirichlet L-values [10]. The
v = 1 case produces a rational, albeit divergent, companion series (Theorem 4 with
s = 1

4 and (a, b, z) = (2/9, 14/9, 32/81)). The other 23 choices lead to formulas
with complicated algebraic values of (a, b, z). While it is possible to determine
those numbers from modular equations, it is usually much easier to use a computer.
Formulas (8) and (9) are rather unwieldy for computational purposes, so we find it
convenient to use theta functions. Suppose that s = 1

2 , and that q lies in a neighborhood
of zero. Then substituting (11) directly into (9) gives
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Table 5. Selected convergent irrational companion series evaluations.

s q a b |z| > 1 Value of Equation (4)
1
2
−e−π

√
2

2
3 + 2

√
2

2
8 + 5

√
2

2
−8

(
√

2 − 1)3
2L−4(2) −

√
2L−8(2)

1
2

−e−
π
2

14 + 10
√

2
2

33 + 24
√

2
2

−16
√

2

(
√

2 − 1)6
−

13
4

L−4(2) + 2
√

2L−8(2)

1
2

−e−π
√

2
3

59 + 24
√

6
6

140 + 56
√

6
6

−1

(5 − 2
√

6)4

136
9

L−4(2) −
16
3

√
6L−24(2)

1
2
−e−π

2
√

3
3

3
√

6 + 7
√

2
24

6
√

6 + 30
√

2
24

−1

2(
√

3 − 1)6
16
√

2L−8(2) − 8
√

6L−24(2)

1
2

−e−π
√

6
3

5 + 4
√

2
6

12 + 12
√

2
6

−1

(
√

2 − 1)4
−8L−4(2) +

16
3

√
2L−8(2)

1
2
−e−π

√
10
5

23 + 10
√

5
10

60 + 24
√

5
10

−1

(
√

5 − 2)4

56
5

L−4(2) − 4
√

5L−20(2)

1
2

e
9πi
8 e−π

√
15
8

4(11 + 5
√

5)
8

i
3(35 + 16

√
5)

8
i

214

(
√

5 − 1)8
−

1
240

π2i

1
3
−e−π

√
21
3

10 + 7
√

7
54

21 + 39
√

7
54

−1

26
√

7 − 68
−20L−4(2) +

35
4

√
7L−7(2)

1
4
−e−π

√
21
3

27 + 20
√

3
72

84 + 112
√

3
72

−1

(42 − 24
√

3)2
−

160
3

L−4(2) + 40
√

3L−3(2)

1
4
−e−

3π
√

5
5

3987 + 2124
√

3
4840

19 380 + 7440
√

3
4840

−1

(680
√

3 − 1178)2

544
5

L−4(2) − 72
√

3L−3(2)

z = 4
θ4

3(−q)

θ4
3(q)

(
1 −

θ4
3(−q)

θ4
3(q)

)
,

a =
1

πθ4
3(q)

(
1 +

8 log |q|
θ3(q)

∞∑
n=1

n2qn2
)
,

b =
log |q|
π

(
1 − 2

θ4
3(−q)

θ4
3(q)

)
,

(64)

where

θ3(q) = 1 + 2
∞∑

n=1

qn2
.

More complicated formulas are required if s ∈ { 13 ,
1
4 }.
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To give an example of an irrational formula, set q = e9πi/8e−π
√

15/8 in (46). We
calculate (a, b, z) ≈ (11.09i, 26.54i, 3006.63). The PSLQ algorithm returns the
following polynomials:

0 = 1 − 11ia + a2,

0 = 495 − 1680ib + 64b2,

0 = 4096 − 3008z + z2.

Therefore (a, b, z) = ( 1
2 i(11 + 5

√
5), 3

8 i(35 + 16
√

5), 1
4 (1 +

√
5)8). After simplifying

with (51), we arrive at the following identity:

π2

30
=

∞∑
n=1

3(35 + 16
√

5)n − 4(11 + 5
√

5)

n3
(

2n
n

)3

( √5 − 1
2

)8n
. (65)

This should be compared to Ramanujan’s irrational formula for 1/π, since both
formulas involve powers of the golden ratio [17]. Table 5 contains many additional
irrational formulas.

5. Irreducible values of S(A, B,C; 2)

Irreducible values of S (A,B,C; 2) occur when the quadratic form An2 + Bnm + Cm2

fails the one-class-per-genus test. Apart from a few oddball cases, it is probably
impossible to reduce these sums to Dirichlet L-functions [23]. In this section, we prove
that it is still possible to express some irreducible values of S (A, B,C; 2) in terms of
hypergeometric functions. Propositions 2 and 3 reduce every interesting companion
series to two values of S (A, B,C; 2). Sometimes it is possible to select q such that one
sum reduces to Dirichlet L-values and one sum does not. Sometimes both values of
S (A, B,C; 2) are irreducible, but one of them can be eliminated by finding a multi-term
linear dependence with Dirichlet L-functions.

To make a first attempt at finding a formula, set q = e−3π in (46). Then s =
1
2 and (a, b, z) = ( 1

4 (18r − 5r3), 12r − 3r3, (7 + 4
√

3)−2), where r =
4√12. By (50),

the companion series equals a linear combination of S (1, 0, 36; 2), S (4, 0, 9; 2) and
elementary constants. We eliminate S (4, 0, 9; 2) with a result from [22]:

S (1, 0, 36; t) + S (4, 0, 9; t) = (1 − 2−t + 21−2t)(1 + 31−2t)L1(t)L−4(t)

+ (1 + 2−t + 21−2t)L−3(t)L12(t).
(66)

After noting that L1(2) = π2/6 and L12(2) = π2/6
√

3, we obtain a divergent formula:

2
π2 S (1, 0, 36; 2) =

49
182 L−4(2) +

11

48
√

3
L−3(2)

−

(161 + 93
√

3

18 4√12

)
Re

[
5F4

(1, 1, 1, 1, 21+
√

3
12

3
2 ,

3
2 ,

3
2 ,

9+
√

3
12

∣∣∣∣∣∣ (7 + 4
√

3)2
)]
.
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Many additional divergent formulas exist, but these formulas are virtually useless
from a computational perspective. Rapidly converging formulas are somewhat more
exciting.

Consider the restriction on q imposed in Proposition 2. To obtain an s = 1
2

companion series from (46), we must select q to lie in a neighborhood of zero.
Unwinding the proof of Theorem 2 shows that we can only select values of q for
which

θ4
3(q) = 3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣∣∣ 4θ4
3(−q)

θ4
3(q)

(
1 −

θ4
3(−q)

θ4
3(q)

))
holds (similar restrictions exist when s = 1

3 and s = 1
4 ). This constraint implies that

the allowable values on the real axis are q ∈ (−1, e−π). If q ∈ (−e−π
√

2, e−π) then |z| < 1,
and the companion series diverges. On the other hand, if q ∈ (−1,−e−π

√
2) then |z| > 1,

and we obtain convergent formulas. Suppose that q = e2πi( 1
2 +iy), so that q lives on the

negative real axis. Then by (50) we find

F(q) =F(−e−2πy) =
120y3

π2 S (1, 1, 1
4 + y2; 2),

F(q4) =F(e−8πy) =
120(4y)3

π2 S (1, 0, 16y2; 2).
(67)

Elementary manipulations suffice to prove

S (1, 1, 1
4 + y2; t) = −S (1, 0, y2; t) + 18S (1, 0, 4y2; t) − 16S (1, 0, 16y2; t). (68)

Now we prove the formula for S (1, 0, 36; 2) quoted in the introduction
(Equation (6), Section 1). Set q = −e−π/3 in (46). Using the results above (with y = 1

6 ),
we conclude

F(−e−π/3) =
90
π2 (9S (1, 0, 9; 2) − 8S (1, 0, 36; 2) − 8S (4, 0, 9; 2))

F(e−4π/3) =
2880
π2 S (4, 0, 9; 2).

We can eliminate S (4, 0, 9; 2) with (66), and S (1, 0, 9; 2) simplifies via

S (1, 0, 9; t) = (1 + 31−2t)L1(t)L−4(t) + L−3(t)L12(t).

Putting everything together in (46), and simplifying (a, b, z) with (64), produces the
desired formula for S (1, 0, 36; 2).

Next consider (46) when q = −e−π/
√

5. Applying (67) and (68) with y = 1/
√

20
reduces the companion series to a linear combination of S (1, 0, 20; 2), S (4, 0, 5; 2) and
S (1, 0, 5; 2). We can eliminate the latter two sums with

S (4, 0, 5; t) + S (1, 0, 20; t) = (1 − 2−t + 21−2t)L1(t)L−20(t) + (1 + 2−t + 21−2t)L−4(t)L5(t)
S (1, 0, 5; t) = L1(t)L−20(t) + L−4(t)L5(t).
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Zucker proved the first identity, and the second appears in [10]. Thus we arrive at

16
√

5
π2 S (1, 0, 20; 2) =

5
√

5
3

L−20(2) +
104
25

L−4(2) −
∞∑

n=1

(1)3
n

( 1
2 )3

n

(a − bn)
n3 z−n, (69)

where

z = −8
(
617 + 276

√
5 + 2

√
5(38 078 + 17 029

√
5)

)
,

a =
34
5

+ 3
√

5 +
1
2

√
9032

25
+

808
√

5
,

b = 16 + 7
√

5 +
1
2

√
9728

5
+

4352
√

5
.

This formula also converges rapidly, because z ≈ −1.9 × 104.
We conclude the paper with one final example. To obtain a formula for

S (1, 0, 52; 2), set q = −e−π/
√

13 in (46). Applying (67) and (68) with y = 1/
√

52
reduces the companion series to an expression involving S (1, 0, 52; 2), S (4, 0, 13; 2)
and S (1, 0, 13; 2). The latter two sums can be eliminated with

S (1, 0, 52; t) + S (4, 0, 13; t) = (1 − 2−t + 21−2t)L1(t)L−52(t) + (1 + 2−t + 21−2t)L−4(t)L13(t)
S (1, 0, 13; t) = L1(t)L−52(t) + L−4(t)L13(t).

Zucker proved the first formula, and the second appears in [10]. Therefore, we obtain

16
√

13
π2 S (1, 0, 52; 2) =

5
√

13
3

L−52(2) + 8L−4(2) −
∞∑

n=1

(1)3
n

( 1
2 )3

n

(a − bn)
n3 z−n, (70)

where

z = −8
(
3 367 657 + 934 020

√
13 + 90

√
2 800 274 982 + 776 656 541

√
13

)
,

a =
4266

13
+ 91

√
13 +

1
13

√
2(18 194 697 + 5 046 301

√
13),

b = 720 +
2595
√

13
+

48
26

√
13(23 382 + 6485

√
13).

Notice that z ≈ −1.07 × 108, so the formula converges rapidly.

6. Conclusion

In conclusion, it might be interesting to try to classify all of the values of
S (A, B,C; 2) which can be treated using the ideas in Section 5. It would also be
extremely interesting if the methods from Section 3 could be used to say something
about 3-dimensional lattice sums such as the Madelung constant.
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