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ABSTRACT. The theoretical framework adopted in astrophysics 
and cosmology, in both modelling and the analysis of the ob­
servational data, is often implicitly assumed to be that of 
structural stability. Here, in view of some of the recent 
results in dynamical systems theory, it is argued that such a 
framework cannot be assumed a priori and that the fragility 
framework may instead turn out to be the appropriate frame­
work for the study of certain phenomena in the astrophysical 
and the cosmological settings. This is motivated by a number 
of examples from cosmology and a brief discussion of some of 
the potential domains of its relevance in astrophysics. 

1. INTRODUCTION 

A fundamental assumption usually made in astrophysics 
and cosmology regarding the nature of the cosmos and hence 
the theoretical framework within which related mathematical 
models are constructed and observational data are analysed 
is that of 'structural stability' (st.st). Briefly, the idea 
(which was first put forward by Andronov and Pontryagin [1]) 
amounts to the argument that since 'real systems are stable1 

and since all mathematical models and the observational data 
on which they are based are approximations, then 'viable' 
mathematical models of real phenomena should also be st.st., 
in the sense of not changing their qualitative behaviours 
under small ever present errors and perturbations. To make 
this more precise, recall that by a dynamical system is usu­
ally meant a set of coupled nonlinear ordinary differential 
equations (or their discrete analogue) in the form 

g - = v(Xa, yb) (1) 

399 

https://doi.org/10.1017/S025292110006629X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110006629X


where X e U, U c R , N is the dimension of the system and 
p^ E R^ are its 'control parameters'. Now let V(M) be the 
set of all such vectors fields on a manifold M. Then veV(M) 
is said to be structurally stable if there exists a neighbour­
hood of v in which all vector fields are topological equiva­
lent to v.i.e. there exist orientation preserving homeomor-
phisms that transform the phase space trajectories of one 
vector field to another. Otherwise we shall call v structu­
rally fragile. 

Up to the 1960's, it was generally thought that most 
dynamical systems (in the sense of genericity, say) would turn 
out to be structurally stable. This was certainly true for 
two dimensional systems on compact orientable manifolds [2]. 
Subsequent developments in dynamical systems theory, however, 
led to two profound new results, namely that as we go from 
two to three dimensional deterministic dynamical systems (i) 
chaotic behaviour becomes possible and (ii) structurally sta­
ble systems become rare. The great 'chaos revolution' of the 
recent years can be said to amount to the ever expanding real­
isation that the first of these rather abstract outcomes of 
dynamical systems theory has relevance for a vast range of 
real phenomena, including extra-terrestrial ones. The aim 
here is to introduce the idea in [3] that the second of the 
above results could also turn out to be of significance in 
the cosmological and the astrophysical domains. 

2. STRUCTURAL FRAGILITY AS A THEORETICAL FRAMEWORK 

A great deal of work in dynamical systems theory eventu­
ally led, in the early 1960's, to the realisation that struc­
tural stability is a rare property among generic dynamical 
systems of dimension greater than two. Here are two results 
that highlight this point: 

(i) Structurally stable systems are not everywhere dense for 
systems of type (1) with dimensionl N >_ 3 (and for the 
analogous discrete systems of dimensionigneatQr than 2) 
C43. 

(ii) Generic Hamiltonian systems with more than two degrees of 
freedom are neither integrable nor ergodic, but contain 
both regions of stochasticity and islands of stability 
[5]. 

These results could be interpreted as saying that in 
dimensions higher than two, 'typical' everyday dissipative 
systems may turn out to be structurally fragile, in the sense 
that small changes to such systems could produce enormous 
effects. For completeness, however, it should be added here 
that these results do not give any idea as to the measure of 
fragile systems to be expected. Nevertheless, the fact that 
almost all mathematical models so far studied are fragile to 
different degrees supports the idea that fragility framework 
may be of relevance in variety of settings, including extra-
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terrestrial ones. Furthermore this emphasises the fact that 
each concrete case must be studied individually. In the fol­
lowing sections we briefly discuss some examples which supp­
ort the potential relevance of structural fragility in the 
cosmological and astrophysical settings. 

3. FRAGILITY IN ASTROPHYSICS 

The starting point for the study of a great deal of phe­
nomena in astrophysics is the fluid (or the magneto-hydrody-
namic) equations. The important characteristing feature of 
these partial differential equations is their nonlinearity 
which in turn is mainly responsible for the fact that almost 
nothing is known about their general solutions. In practice, 
the common procedure is to formally view such equations as 
infinite dimensional versions of (1) and then to employ var­
iety of simplifying assumptions to severely reduce them to 
low dimensional dynamical systems of the type (1). It is 
worth noting that the numerical routines for solving such 
equations similarly involve drastic reductions of such equa­
tions to finite sets of difference equations. The important 
point, as far as our discussion here is concerned, is that 
different sets of simplifying assumptions result in different 
sets of reductions of the type (1), or its discrete analogue. 

Here as an example we briefly discuss the study of stel­
lar dynamos in terms of low dimensional deterministic systems. 
The idea that simple deterministic dynamical systems may be 
capable of modelling certain features of solar and stellar 
convective zones has been around for a long time (see for e.g. 
ref.[6]). Detailed models are diverse, ranging from the three 
dimensional Lorenz model [7]. 

A = -A + DB - CB, 

B = - oB + oA, (2) 

C = - vC + AB, 

where A and B are the azimuthal components of the vector pot­
ential and the mean field, C is the helicity excess due to 
magnetic helicity, o determines the ratio of characteristic 
diffusion times of B and A, and v is a measure of decay rate 
of the magnetic helicity due to magnetic diffusion (which is 
<< 1 in the convective zone) - to higher dimensional reduct­
ions such as the (complex) seven dimensional system 

A = 2D(1 + KlBl2)"1 B-A, 

B = i(l +-wo)A - I iA*u - (1 + X|B|2)B, 
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(I) = i i(A*B - AB*) - v a) , o 2 o o ' 

d) = -iAB - ujv. (3) 

See [8] for the derivation of this system and the relevant 
notation. 

Leaving aside the dynamical details of these systems,the 
main point for us is that different reductions have widely 
different modes of behaviour both in their pre and post chaos 
phases [7,8]. As an instructive example we may point out that 
even a 'trivial looking' asymmetric perturbation pf the system 
(2) which modifies the first of the equations to A = -A+DB-CB+e, 
can have drastic consequences for the system such as destroy­
ing chaos, even for the constant e taking values as small as 
0.00075 C9]. Furthermore, the fact that a large proportion 
of such reductions allow chaotic behaviour does not mean that 
the attractors involved, and hence their statistical behaviour, 
are the same. After all different chaotic systems can have 
widely different attractors. Even for a fixed simple system 
such as (2) there is a vast range of possible modes of behav­
iour as the system's control parameters are varied [10]. In 
this sense then the 'reduction procedure' and the low dimen­
sional modelling of dynamos may be said to be fragile. 

4. FRAGILITY IN COSMOLOGY 

Recall that the starting assumption in all standard cos­
mological modelling (*) is Einstien's field equations 

Rab - I R*ab + A*ab = *Tab <*) 

These equations, despite their seeming simplicity, are a 
higly nonlinear set of ten partial differential equations 
about whose general properties very little is known. Again to 
make the problem more manageable, the common practice is to 
employ observations together with a number of simplifying 
assumptions (which are not always directly linked to the obse­
rvations, such as precise symmetry conditions) to reduce the 
equations (4) to a (low dimensional) dynamical system of the 
form (1), with parameters such as those characterising inho-
mogeneity and the cosmological constant acting as the system 
control parameters u^. Again in view of the fact that obser­
vations can never be made precise and simplifying assumptions 
are generally present, the question arises as to the nature 
of the cosmological models that correspond to such approximate 
models and data. Here, we briefly discuss some examples which 
support the relevance of fragility framework in this context. 

(*) Throughout this article GR is assumed to be the correct 
theory of gravity within which cosmological models are s-ought 
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4.1 Fragility with respect to the changes in symmetry 

Recall that the assumptions of homogeneity and isotropy 
reduce Einstein's equations to a dynamical system with N = 2, 
which is only capable of possessing fixed points and periodic 
solutions. On the other hand relaxing the assumption of iso­
tropy (i.e. allowing unisotropic perturbations) in vacuum 
will result in dynamical systems with N > 2 (Bianchi type IX, 
say) which are capable of chaotic solutions [11,12] (see 
also [13] for a recent clarification of the nature of such 
chaos). More generally Fischer et.al [14] have shown that 
the space of all empty solutions of the Einstien's field 
equation E , does not possess the structure of a smooth mani­
fold near space-times with Killing vectors, rather it has a 
conical structure in the sense that locally in the neighbour­
hood of such solutions,Eg has the product structure of a mani­
fold times a cone. 

4.2 Fragility with respect to increase in the number of 
spatial dimensions. 

Here are some examples: 

(i) persistence of chaos with respect to changes in the 
number of dimensions 
The spatial dimension turns out to be important in dete­

rmining whether unisotropic Bianchi type IX models mentioned 
in the previous section are chaotic or not. For example, 
chaos goes away for spatial dimension D > 3 if the space time 
manifold has the product structure of the Kaluza-Klein type 
with the internal and the external manifolds uncoupled [15]. 
On the other hand chaos becomes possible for 3 £ D <, 9 where 
the manifold is not a product type if off-diagonal terms are 
included in the metric tensor [163. 

(ii) The robustness of exponential solutions in higher 
dimensions 117, 18] 
Consider a (D+l) dimensional Riemannian metric 

8, cxB C» 4°''i,) <S) 

where a,6 = 0,...,D and i,j = 1,...,D and *g.. is the metric 
of a D-dimensional space of constant curvature1-1 and R„=RD(t) 
is the D-dimensional scale factor. Employing the (D+l) dimen­
sional Einstein's field equations together with the energy-
momentum tensor with bulk viscosity in the form 

D?(R)Rn 
Too " £- Tij ' (P - - T ^ )«ij <«> 
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where e and p are respectively the gnergy density and the 
isotropic pressure and eliminating Rj, between the components 
of the Einstein's equations results in the higher-dimensional 
Friedmann equation in the form 

(KD + ftj) 
D(D-l ) U * U ? + A (7) 

2RD 

where K̂  i s t he c u r v a t u r e p a r a m e t e r of t h e maximal ly symmet­

r i c subspace and A i s t h e cosmolog ica l c o n s t a n t . Now when 

A = KD = 0 and x, (R) = CjR 2 , i t can e a s i l y be checked [17] tha t 

e q u a t i o n (7) and the o t t e r Einste in 's equations possess an exponential 
solution of the type 

R D = R o e x P ( q - ^ ^ 
where C, and C, are constants. It is also easy to see that 

such solutions also survive under non-zero perturbations of 
A. This then shows that exponential solutions are stable to 
changes in D. This, however, does not ensure the persitence 
of such solutions in presence of other physically motivated 
perturbations. As an example we may consider the robustness 
of such solutions in presence of shear [18]. In that case 
the generalised Friedmann equation becomes 

(KD + R
2) c 2 

DCD-1) u 3 " •• z * A + i i ^ - (9) 
2RD RD 

where C is a constant depending upon D and I is the shear co­
efficient. It is easy to see that the presence of the shear 
term prevents equations (9) from having an exponential solu­
tion. This is an example of how stability with respect to 
certain perturbations breaks down as soon as other perturba­
tions are taken into account. For more details and also 
other examples see [3,18]. 

5. CONCLUSION 

Starting from certain recent developments in dynamical 
systems theory and by considering a number of concrete exam­
ples, we have attempted to demonstrate that the relevant the­
oretical framework for certain astrophysical and cosmological 
settings may turn out to be that of structural fragility.This 
could have important consequences for 

(i) the construction of unique models to fit the observa­
tional data (including error margins) and to satisfy 
simplifying assumptions (not wholly justified). 

(ii) the interpretation of observational data, specially in 
cosmology where there is no possibility of repetition. 
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(iii) the study of real systems for which transience is a 
permanent feature. 

(iv) the understanding of seemingly unrelated modes of beha­
viour in the astrophysical domain (say dynamos) which 
may be understood within the single framework of struc­
tural fragility. 
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