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SOME REFINEMENTS OF SHANNON'S INEQUALITIES
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Abstract

We refine Shannon's inequality, in its discrete and integral forms, by presenting upper
estimates of the difference between its two sides.

1. Introduction

A fundamental result related to the notion of the Shannon entropy is the inequality

y* io I < V I -

which is valid for all positive real numbers p, and q, with YH=i Pi = YH=i Q> — 1-
Here as subsequently 'log' refers to logarithms to base b for some fixed b > 1.
Equality holds in (1.1) if and only if qt = p, for all i. For details see [8, pp. 635-
650]. This result, sometimes called the fundamental lemma of information theory,
has extensive applications (see, for example, [7]).

The following two theorems (see [7, pp. 278-279]) extend (1.1) and we can call
them Shannon's discrete and integral inequalities respectively.

THEOREM 1. Let I be a finite or countable set of integers and {p,, i € /} a set of
positive real numbers with £ ( € / p, = 1. If{qt, i 6 /} is a set of nonnegative real
numbers with £,-e/ qt = a > 0, then

1 ^ 1
•>> log — < > Pi log — + loga, (1.2)

Pi ~^ (li
with equality if and only if q-, = ap-, for all i € I.
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THEOREM 2. Let I be a measurable subset of the real line and let p(x) be a positive
integrable function defined on I with fIp(x)dx — 1. If q(x) is a nonnegative
integrable function defined on I with J{ q{x) dx = a > 0, then

/ p (x) log —— dx < p (x) log — - dx + log a, (1.3)
Ji p(x) Ji q(x)

with equality if and only ifq(x) = otp(x) a.e. on I.

We can allow p, in (1.2) to be nonnegative with the usual convention OlogO = 0.
Also if pi > 0 and q, = 0 for some i e I, then (1.2) is uninteresting, since the
right-hand side is infinite in that case. Similarly, if the Lebesgue measure of the set
{x e I : q{x) = 0} is positive, then the right-hand side of (1.3) is infinite. We shall ex-
clude such cases from consideration. Also, since £ i e / p, = 1 implies that 0 < p, < 1
for all i e / , we have Sp := £,-6/Pilog(l/p,) > 0. So if 5, := 'Eielp,log(l/qi)
is finite, then (1.2) implies that Sp is finite too. On the other hand, the finite-
ness of fj p(x) log(l/q(x)) dx in (1.3) doesn't imply that of f, p(x) log(l/p(jc)) dx.
For example, take b — e, I = (0, l/e), p(x) = l/Cxin2*) and q(x) = e for
x e I. This gives a = 1, f{p(x)dx = 1 and f,p(x)\n(l/q(x))dx = - 1 , but
flP(x)ln(l/p(x))dx = -oo.

Our underlying motivation is to estimate the difference between the two sides of
the relevant Shannon inequality. This entails a discussion of whether the appropriate
generalization of the entropy (the left-hand side of (1.2) or (1.3)) converges. In the
discrete case a key role is played by the existence and value of v := ^ , iph

Suppose a discrete-valued random variable assumes value x{ with probability pi
(i € / ) . Its entropy is independent of the values xt (i e /) provided that they are all
distinct. Suppose we form equivalence classes of such random variables according
to the sets {p,; i e / } . We may select a canonical representative from each class for
which JC, = i (i € / ) . The parameter v can then be interpreted as the mean of that
representative.

In the integral case the identities of the values assumed by a random variable are
not lost, and v is the same as the mean n of the probability distribution with density
function p ( ) .

In Theorem 1 we must distinguish between the case when / is finite (when without
loss in generality we can take / = {1, 2 , . . . , n] for some integer n > 2) and the case
when / is countable (when we may take / = N).

To obtain counterparts of some inequalities in information theory in the case when
/ is finite, the following result was used in [3].

Let | t € (0, oo) and pk > 0 with J2l=i p* = 1. We then have

- 1 . (1.4)
L*=i ** ~ J
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To prove counterparts of (1.2) (in the case when / is countable) and of (1.3), we
need a better and more general result than (1.4). This we prove in Section 2. We
proceed to counterparts of (1.2) and (1.3) in Sections 3 and 4.

2. Preliminary results

We begin by establishing an upper bound estimate for the difference between
the two sides of the well-known Jensen's inequality. In integral version, Jensen's
inequality states the following (see for example [11, Theorem 3.3]).

If (fi, si', fi) is a probability space and/ a real function in V (/A) with a < / (x) <
b for all x e £2 (—oo < a < b < oo), then for any function <p defined and convex on
{a, b) we have

(j^ J (2.1)
In the case when cp is strictly convex on (a,b), equality holds if and only if / is
constant a.e. on fi.

For our purposes we need the following result.

THEOREM 3. Let (fi, srf, /A) be a probability space. Iff : £2 ->• (0, oo) is such
that f and 1// are in Ll(fx), then we have

( ) nr
Moreover, equality holds throughout if and only iff is constant a.e. on fi.

PROOF. If/ is a positive function defined on £2 such that/ and 1// are both in
L\n), then this is true for <p(f) = — log/ as well, since

— - on{* 6 £2:0
mb j

and

0 < log/ < — / o n ( ^ e f i : l < / (*)}.
lno

The first inequality in (2.2) is, in fact, Jensen's inequality for the convex function
(p(t) = - log/. For/ replaced by 1//, this inequality becomes

log ( / - dfA > I log - dfi = - / log/ dfi.
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Thus we have

log Qf / df^j - jf log/ dn < log Qf / d^j + log Qf i

which is the second inequality in (2.2). The third inequality is a simple consequence
of the elementary result

log* < — - ( x - 1 ) (Vx>0).
Ino

Dragomir and Goh [3] have used their version of Jensen's inequality in the proof
of the second inequality in (1.4). In our proof we have used only Jensen's inequality
for the second inequality in (2.2), and the above elementary inequality in the proof of
the last part of (2.2).

We have applications for the following two special cases of Theorem 3.

COROLLARY 1. Let I be a finite or countable set of integers and {p,, i € /} a

set of positive real numbers with J2ieiP' = *• F°r £< e (0, °°) (' e ^) sucn tnat

Hiel P& < °° atld Hi€l P'/b < °°> We

ie/

with equality throughout if and only ifi-j = cfor all i e I.

PROOF. Set Q = I, fi({i}) = p, and / (i) = £, for / e / and then apply Theorem 3.

COROLLARY 2. Let I be a measurable subset of the real line and p(x) a positive
integrable function defined on I with ftp(x)dx = 1. Ifi-(x) is a positive integrable
function defined on I and such that ft p(x)£(x)dx < oo and fl(p(x)/^(x))dx < oo,
then we have

0 < log (fp(x)$0c)dx\ - /'p(x)logUx)dx

j
with equality throughout if and only iftj(x) = c a.e. on I.

PROOF. Set J2 = / , ^ = the CT-algebra of measurable subsets of / and fi(A) =
fAp(x) dx for A € &f. Now apply Theorem 3 with/ = £.

https://doi.org/10.1017/S1446181100012104 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012104


[5] Shannon's inequalities 497

The following two lemmas give discrete and integral versions of the well-known
Griiss inequality. For an account of the Griiss inequality see, for example, [8, pp. 295-
310].

LEMMA 1. Let I be a finite or countable set of integers and {/?,, i € 1} a set of
positive real numbers such that P := ^2i€, Pi < oo. If[aj, i e 1} and {bi, i e / j
are bounded sets of real numbers satisfying

a < a, <A, 0 <bi < B for all i e /,

then

<^(A-a)(B-P)P2.

LEMMA 2. Let I be a measurable subset of the real line and p(x) a positive
integrable function on I such that P =: ftp(x)dx < oo. If f (x) and g(x) are
bounded measurable functions on I with

a<f(x)<A, p<g(x)<B a.e.onl,

then
1yJp(x)f (x)g(x)dx-Jp(x)f (*)dx I, <-(A-a)(B-P)P2.

Lemmas 1 and 2 can easily be proved directly, following the lines of the standard
proof for the classical Griiss result. They are also direct consequences [2, Proposi-
tion 3.2]. We omit the details.

We need also the following counterpart of the weighted Cauchy inequality (see [8,
p. 125]).

LEMMA 3. Let (a,-), (6,-) and (io,) be positive n-tuples such that

0 < m <aj/bi <M, 0 = 1,2 n).

Then

Y^ wrf J2 WJ b) - (J2 WiCiibi) - (/M - J™) J2 w>a>bi J2 WJ br (2-3)

When n -> oo, (2.3) still holds if all the sums involved converge. Hence (2.3)
holds with £ / e / in place of £"=i for any finite or countable discrete set / .

3. A counterpart of the discrete Shannon inequality

First we prove our main result in this section.
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THEOREM 4. Let I be a finite or countable set of integers and {/?,, i € / ) and
[qi, i e / ) sets of positive numbers such that £ , € / p (

 = 1 and a '•= 5ZI6/ <?; < oo.
Suppose Sq is finite. Then Sp is finite and we have 0 < Sp < 59+loga. If additionally

Ei 6 i PVit < °°>then

o < sq - sp

with equality throughout if and only ifqt = aptfor all i 6 /.

PROOF. Since £ I € / pt = 1 we have thatp, < 1 and so log(l/p,) > 0 for all i e / .
This implies 0 < Sp < oo. Similarly, since £ I 6 / q{ < oo, we have that qt < 1 and
log(l/g,) > 0 for all but finitely many i e /, which implies that —oo < Sq < oo.
As remarked in the introduction, 5, finite implies Sp finite, so our first assertion is a
consequence of Theorem 1.

To prove the second assertion, set £, = qjpi (i 6 / ) . We have £ \ 6 / p,f, = a < oo
and Eie/ Pil%> = 5Zi€/ P\IQ' < °° a n ( ' w e c a n aPPly Corollary 1 to obtain

Since S := J2iei P> l°g(9i/P/) is finite a nd 59 is finite, we have that Sq + S = Sp

is finite, so we can write S = Sp — Sq and (3.1) is proved. Moreover, by Corollary 1,
we know that equality holds throughout if and only if £, = c, that is, if qt = cpi for
all i € / . Since £,-e/ <?i = or and ̂ <e/ Pi = 1 we have c = a.

The assumptions about the finiteness of the sums involved can be omitted when /
is finite.

THEOREM 5. Suppose the assumptions of Theorem 4 are satisfied and

0 < m < pilq, < M for all i € /.

Then

0 < > p.log > p.log— + log or <log—— < — — — .
iei Q' ief P' 4Mm 4lnb Mm

PROOF. Because 1/M < qjpi < l/m for all i e / we may apply Lemma 1 with
ai = Qi/Pi, bi = Pt/qi for i € I and P = 1 to obtain

tr
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Therefore we have

a /^ —'- < (-1 = .
i—' o. AMm 4Mm
16/ ^

The desired result follows by Theorem 4.

THEOREM 6. Under the assumptions of Theorem 5 we have

o < y^Pi l o g — y ^ p . i°g —i- log"

< log I a ( V M - Vm)2 + 11 < r^r

PROOF. Set wt = l/qi, a, = />, and fe, = g, for i € / . Now apply Lemma 3 (with

iei m pla c e °f Yl"i=i)t0 obtain

;e/

Therefore we have

k2aE^«( + i.

The desired result follows by (3.1).

If X is a discrete random variable with finite range {xlt x2,..., xn] and probability
distribution p, := P{X = xt) > 0 (J]"= 1 pt = l), the entropy of X is defined by

1
log - ( f t> l )

with the usual convention OlogO = 0. We can apply Theorem 4 with qt = \/n
(i = 1,2,..., n) to obtain

L^ LL^p J (32)

Equality holds throughout if and only if p, = \/n for all i. The above result is an
improvement of some results from [3,4,6].

^p? <_LL^p,2 _J
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The first inequality in (3.2), that is,

Hb(X)<\ogn, (3.3)

shows that the entropy function Hb(X) achieves its maximum value on the discrete
uniform probability distribution. The following generalization of this inequality is a
simple consequence of a well-known majorization theorem ([10, pp. 319-320]).

Suppose x = (* , , . . . , xn) and y = (yu ..., yn) and let * m > xm >•••> x[n] and
y[i] > y\2\ > • • • > y[n\ be their ordered components. The n-tuple y is said to majorize
x (or x is majorized by y) and we write y >- x (or x < y) if

m

[,] < 2_^ yii) holds for m = 1 , . . . , n — 1, and
i=i 1=1 i=i i=i

Let / be an interval in R and x, y two n-tuples such that JC,-, y,•, € I (i = 1 , . . . , n).
The majorization theorem states that

holds for every continuous convex function <p : I -> R if and only if y >- x.
Suppose X and Y are discrete random variables with finite ranges and respective

probability distributions p = {p,}?=1 and q = {qi}
n

i={ ( £ ; _ , p , = £ ? = 1 q, = l) such
that p >- q. Since the function <p{x) = x logx is convex, — x logx is concave and we
have the reversed inequality

Hb(X) < Hb(Y). (3.4)

It is well-known (and easily established) that p >- (1 /n , . . . , 1/n), so the last inequality
gives (3.3).

An extension of (3.4) was recently considered in [1]. The incomplete Renyi entropy
was defined by

„ ( , ) _ t = 1,...,n,
Z,/=i Pi

and the inequality

Hk
b (p) < //*(q)

proposed in the case when px > ••• > pn and qx > • • • > qn and p > q. However the
proof is not correct: it depends on a step which states that because

> ff *(q) - log k, log I —. > i/*(p) - log k
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and

/ i \

<log

for 1 < it < n, we must have //£(p) — log it > H£(q) — log it. This need not hold.
In the case when X is a discrete random variable with countable range {*,}°1[ and

probability distribution p, := P{X = *,} > 0 ( £ ° ! , p , = l), we can define the
entropy of X by

oo

(3.5)

but now only for those random variables X for which the sum is finite. In that case
it is evident that Hb(X) > 0 since 0 < p, < 1 for all i. Since there is no uniform
probability distribution on an infinite sample space, we can't extend our finite-range
results to the general case of a countable range. In that case the main question is
finding sufficient conditions on the probability distribution of X under which the
entropy Hb(X) exists. Here we offer one possible answer to this question. A central
role is played by the quantity v := Y^li ipi when it exists. We begin with an example.

Let X be a discrete random variable with a geometric probability distribution

Pi = P{X = i] = (1 - a)a'~\ i = l , 2 0 < a < 1.

This random variable has a finite mean
oo .

H = v = ^^ ' (1 ~~ a)a'~x = > 1
i=i

and entropy

Since a = 1 — l/fx, we get

Hb{X) = log
(fl -

THEOREM 7. Let X be a discrete random variable with countable range {x j , x2,...}
and probability distribution p, = P{X = *,} > 0 (YlHi Pi = l) sucn tnat v < °°-
Then the entropy Hb(X) defined by (3.5) is finite and

0 < Hb(X) < log
{v-iy-
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If in addition £ ~ , [v'/(v — l)'~']p? < oo. then

with equality throughout ifandonly ifp, — (y — \)'~^ /v' for all i e N.

PROOF. Set qt, = (1 - a)a'~l (i e N), where a is any real number with 0 < a < 1.
We have a = £ ^ , <7i = 1 and

00

5, = ^ pi [-log(l -a) - (i - l)loga] = log uloga < oo.
1 = 1

By Theorem 4 we know that Sp = £ ~ , p, log(l/p,) = Hb(X) < oo and

a
0 < Sp < Sq + log a = log v logrt.

1 — a

It is easily shown that for 0 < a < 1 the function

/ (a) = log(a/( 1 - a)) - v log a

achieves its minimal value at a = (v — \)/v and that the minimal value is

(Note that v = £ ~ , ipt > J^~, p , = 1.) For a = (v - l)/v we have (1 - a)a'~l =
(v — l)'~l/v' and the desired results follow by Theorem 4 with q{ = (v — l)'~l/v'.

The first inequality in (3.6) has been proved in [5].
The first upper bound for the difference log [vv/(v - I)""1] - Hb(X) given by (3.6)

is nontrivial only in the case when

T—-—p2<—-—.

~ (v — I)'"1 ' (v — I)"- '

while the last upper bound is nontrivial in the case when

i r ^ „' 2 l
/ P — 1 < log ,

\nb \^f(v- I ) - 1 ' ( w - I ) - 1
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since Hb(X) > 0. The last condition is equivalent to

00 ,- „
• ^ v 2 V e

Theorem 7 shows that the entropy Hb(X) is approximately log K, where K :=
v"/(v — l)v~', whenever X has a probability distribution 'close enough' to the geo-
metric probability distribution qt = (1 - a)a'~x (i € N) with a — (v — l)/v, where v
is the mean of X.

THEOREM 8. Under the assumptions of Theorem 7, if

v'
0 < L < — - p i < U for all i e N,

then

0<\ogK- Hb(X) < log (U
At!? < A!_L

(U7r? • (3-?)
Also we have

0 < log K - Hb(X) < log U-/U - VI)2 + 11 < p r (SO - VZ)2. (3.8)

PROOF. TO obtain (3.7) apply Theorem 5, and to obtain (3.8) apply Theorem 6,
with L, U in place of m, M and with qt = (v - 1)'~7V' (« e N).

Since fffc(X) > 0, the first upper bound for the difference D := log K - Hb(X)
given in (3.7) is nontrivial only in the case when

If we set p = U/L, then (3.9) is equivalent to (p + 1)2/P < 4£ , that is,

p2 - 2(2K - \)p + 1 < 0

or
\2K - 1 + 2y/K(K - 1)1 < p < 2K - 1 + 2^K(K - 1).
L J

Since p > 1, it follows that the first upper bound in (3.7) gives a nontrivial upper
bound for D only in the case when p = U/L < 2K - 1 + 2y/K(K - 1). Similarly,
the second upper bound in (3.7) gives a nontrivial upper bound for D only in the case
when

> i^<logK (3.10,
4 In b LU
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or p < l+21n/sT + 2V(1 + In K) In K. Likewise (3.8) gives a nontrivial first upper
bound for D only when */TJ — \fh < *JK — 1 and a nontrivial second upper bound
only when </V — y/T < Vln K.

Shannon's inequality can be given in the form

L(p ,q )>0 ,

where L(p, q) := £ I 6 / P< l°g(Pi/(7>) represents the Kulback-Leibler distance or rel-
ative entropy between the distributions p = {p,-},-6/ and q = {qi\iei. Alencar and
Assis [1] established the inequality

, q) + H{p) > ^ £ , (3.11)

where d(p,q) := $^,-e/ \pt — <7,| is the variational distance between the probability
distributions p and q. The quantity L(p, q) + H(p) is referred to as 'inaccuracy'. The
following stronger result also holds.

THEOREM 9. With the above notation,

L(p, q) + H(p) > - log 1 - -d(p, q) > P' ^ .
L 2 J 2 l n *

PROOF. Jensen's inequality gives ^2iel Pi log qt < log £ , 6 / p,9i, so

E T—\ Pi

Pilogp, — >^^;log — < log
iel iel

or

iel ie/ "' ie/

>-log J^ptq,. (3.12)
iel

We now address the right-hand side of (3.12). We have

ie/ ie/

Moreover,

p , ( l - q,) + qt{\ ~ Pi) > \Pi ~q>\- (3.14)

By symmetry it suffices to show this for p, > qit when (3.14) becomes

Pi — Pi°i + Qi - PiQi ^ Pi ~ Qi

or the trivial inequality 2^,(1 —pi) > 0.
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Hence (3.14) holds and we have from (3.13) that

V < 1 - 1 V i - l - l - -d
16/ 16/

and so from (3.12) that

L(p, q) + tf(p) > - log Fl - ±<f(p, q)l.

The elementary inequality log* < (x — 1)/ In b or — log x > (—* + 1)/ In b yields

- log [l - If*.,)] > J j [-1 + Irf(p,,) + l] = jijrffr.,).

4. A counterpart to Shannon's integral inequality

We begin this section with a counterpart of the integral Shannon inequality.

THEOREM 10. Let I be a measurable subset of the real line and p(x) and q(x)
positive integrable functions on I such that ft p(x) dx = 1 and a := ff q{x) dx < oo.
Suppose that for b > 1 at least one of the integrals

JP-= P(x) log — - dx and Jq := / p(x) log —— dx
Ji P(x) Ji q(x)q(x)

is finite. If fl(p
2(x)/q(x)) dx < oo, then both Jp and Jq are finite and

0<Jq- Jp+\ogba < log [« f ^ - d x ] < - L [a f ^ dx - l l , (4.1)
I Ji Q(x) J \nb [ J/ ^(Jc) J

with equality throughout if and only if q(x) = ap(x) a.e. on I.

PROOF. Set £(*) = q(x)/p(x) (x € I). We have ftp{x)^{x)dx = a < oo and
f,(p(x)/Hx))dx = fl(p

2(x)/q(x))dx < oo. So we can apply Corollary 2 to obtain

and we know that J := f, p(x) log(q(x)/p(x)) dx is finite. Now if Jp is finite then
Jp — J = Jq is finite too; if 7, is finite then Jq + J = Jp is finite too. So we can
write J = Jp — Jq and (4.1) is proved. Moreover, by Corollary 2, equality holds
throughout (4.1) if and only if ^(x) = c a.e. on / , that is, q(x) = cp(x) a.e. on /.
Since / ; p(x) dx = 1 and / ; q(x) dx = a, we have c = a.
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Now we proceed to a result analogous to Theorem 5.

THEOREM 11. Suppose the assumptions of Theorem 10 be satisfied and

Then

0 < m < < M a.e. on I.
q(x)

0 < / p(x) log - — dx - / p{x) log —— dx + loga
Ji q(x) J, p{x)

(M + mf 1 (M - m)2

< log < .
4Mm 4lnb Mm

PROOF. Set / (x) = q(x)/p(x), g(x) = p(x)/q{x) for x € / and P = 1. Then by
Lemma 2

M

that is,

p2(x) J ^ (M + m)2

• / ' q{x) AMm

Theorem 10 provides the desired result.

We can prove an integral version of (3.2) and use it to obtain a result analogous to
Theorem 6. So under the assumptions ofTheorem 11, we have

d I () l —
p(x)

0 < / p(x) log - — dx - I p(x) log — - dx + loga
Ji <](x) J p(x)

< log a ( \ /A7 - v/m)2 + 1 < -^- (-/M - Vm)2. (4.2)

The notion of entropy Hb{X) can be extended to the case of a general random
variable X, by approximating X by discrete random variables. In the case when X is
nondiscrete, Hb(X) is usually infinite. For example, this always happens when X is
continuous (see [7, p. 38]).

In the case when X is a continuous random variable with density p (x) (a nonnegative
measurable function on R such that fRp(x)dx = 1), we may define the so-called
differential entropy of X by

hb(X):= f p(x)\og-±-dx (b>\) (4.3)
JR Pix)

whenever the integral exists. The following result (with b — e) is given in [9, p. 33].
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THEOREM 12. Let X bea continuous random variable with density p(x) (xeK).

(a) IfX has a finite variance s2, then hb{X) exists and

hb(X) < log (sV2^j , (4.4)

with equality if and only ifX is a Gaussian random variable with variance s2.
(b) Ifp (x) = Ofor allx < 0 and X has finite mean fi, then hb(X) exists and

hb(X) < log(/z<0, (4.5)

with equality if and only ifp(x) = (l/^i)e~x/tlforx > 0.
(c) Ifp(x) = Ofor allx e R\[c, d], where —oo < c < d < oo, then hb(X) exists

and

hb(X) < \og(d - c), (4.6)

with equality if and only ifp{x) = \/{d — c)forx € [c, d].

From (4.6) we conclude that hb(X) < 0 whenever d — c < 1. In fact the possibility
hb(X) = —oo is not excluded in (4.4)-{4.6), as is seen from the following example.

Define

fl/Ocln2*), xe(0,l/e),
P X ~ [0, x € R\(0, lie).

We have

f ri/e i r I V"
p(X)dx= —1-dx= - 7 — = 1

JR JO Jcln2^ L 1°* Jo

and

I xp(x)dx = I -^—dx < oo, / x2p(x)dx = I —5— dx < 00,
JR JO In x JR Jo In x

since the functions / (x) = 1/ In2 J: and g(x) = x/ In2 x are continuous, positive and
bounded on (0, 1/e). Thus a random variable with density p(x) (x € R) has finite
mean and variance but its differential e-entropy is

fl/' 1
he{X) = / —— Jdx +

since the first integral is ln(—ln^)|0
/d = —00 and the second (by the substitution

t = ln( - In*)) is found to be -2(t + l)e-\™ = 2.
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THEOREM 13. Let X be a continuous random variable with density p(x) (xeR).

(a) IfX has a finite mean fi and variance s2 and

I p2(x) exp — (x - (i)2 \dx < oo,

then hb{X) is finite and

0 < log (sV2^>) - hb(X) < log \ssPhi j P
2(x)exp \^(x - ^)21 dx

with equality throughout if and only ifp(x) = (\/s\/2n) exp [ — (x — /i)2/(2s2)] a.e.
on R.
(b) Suppose that p(x) = Ofor allx < 0 and that X has finite mean /x. If

f°°
I p(x)exp(x/fi)dx<oo,

Jo

then hb(X) is finite and
0 < log(fie) - hb(X) < log L / p2(x)exp(jc//t) d>

-infer/

with equality throughout if and only ifp (x) = (1/M) exp(—x/fi) a.e. on [0, oo).
(c) Suppose that p(x) = Oforx € R\[c, cf], where —oo < c < d < oo. If

/ p\x)dx < oo,
./c

hb(X) is finite and

- c ) - * 6 ( X ) < log | " (d - c ) f p \ x ) d x ]

with equality throughout if and only ifp(x) = l/(d — c) a.e. on [c, d].
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PROOF, (a) The finiteness of the variance s2 of X implies that /x = fRxp(x) dx and
s2 = fR(x — ii)2p(x) dx > 0 are well-defined real numbers. So we can define

q(x) = (l/sV^r") exp[-(x - fi)2/(2s2)]

forx e R. We have a = fRq(x)dx = 1 and

/ p(x)log - — dx = — / p(x)In - — dx
JR q(x) lnbJR q(x)

Application of Theorem 10 with / = R provides the desired results.
(b) Under the given assumptions, we have that fi = fRxp(x)dx = /0°°xp(x) dx is a
well-defined positive number and we can define q(x) = (l//x) exp(—x/n) (x € I =
[0, oo)). We have a = / , q(x) dx = 1 and

p(x) log — - dx = — / p(x) In —— dx
Ji q(x) Inbj, q(x)

1 f°° ( x\ 1

lnfeJo V M/ Infe

Again application of Theorem 10 yields the stated results.
(c) Set / = [c, d] and q(x) = \/{d- c), x € / . It is evident that a = / , g(;t) dx = 1
and

/ p(x) log — - dx = log(d - c) / /?(*) dx = log(d - c).

We can apply Theorem 10 again to complete our proof.

Theorem 13 shows that hb(X) % log {sy/2ne) when the distribution of X is 'close'
to the Gaussian distribution with variance s2. Also,/i(,(X) % log(/xe) if the distribution
of X is 'close' to the exponential distribution with mean \i. Finally hb(X) % log£
whenever the distribution of X is 'close' to the uniform distribution over an interval
of length I.

THEOREM 14. (a) Under the assumptions of Theorem 13 (a), if

0 < L < p(x)exp — (x - fi)2 \< U a.e. on R,
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then

/ / \ (U+L)2 1 (U-L)2

0 < ,og (s^) - MX) < log L _ ± < _ L_L.

(b) Under the assumptions of Theorem 13 (b), if

0 < L < p(x) e\p(x/ix) < U a.e. on [0, oo),

then

(c) Under the assumptions of Theorem 13 (c), if

0 < L < p(x) < U a.e. on [c, d],

then

0 < tofcW - c) - * . (X ) < log < ^ ^

PROOF, (a) Apply Theorem 11 with ssphtL and s\FhtU in place of m and M
respectively and with q(x) as in the proof of Theorem 13 (a).
(b) Apply Theorem 11 with /xL and ixU in place of m and M respectively and with
q(x) as in the proof of Theorem 13 (b).
(c) Apply Theorem 11 with (d — c)L and (d — c)U in place of m and M respectively
and with q{x) as in the proof of Theorem 13 (c).

We can obtain upper bounds of the types

log \(d - c) (-TO - y/t\ +

in an obvious way using the inequalities (4.2).

THEOREM 15. Suppose that the assumptions of Theorem 14 (c) are satisfied. Then

[(U-L)2 \ , 1 )
0 < logb(d -c)- hb(X) < log min (d - c)2, — \ + 1

(U-L)2 f , 1 1
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PROOF. Set / = [c, d] and p(x) = 1 and / (x) = g(x) = p(x) in Lemma 2 to

obtain

p (x)dx — 1 < -{U — L) (d — c) ,

that is,

c j p x x _-

Now apply Theorem 13 (c) to obtain

0 < log(d — c) — hb(X) < log (d — c)2 + 1 < (d - c)2.

Combine this with Theorem 14 (c) and the desired result follows.
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