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Abstract

The objective of this retrospective longitudinal study was to evaluate the relationship between
dry period length and the production of milk, fat, protein, lactose and total milk solids in the
subsequent lactation of Holstein dairy cows under tropical climate. After handling and clean-
ing of the data provided by the Holstein Cattle Breeders Association of Minas Gerais, data
from 32 867 complete lactations of 19 535 Holstein animals that calved between 1993 and
2017 in 122 dairy herds located in Minas Gerais state (Brazil) were analysed. In addition to
dry period length, calving age, lactation length, milking frequency, parity, calf status at
birth, herd, year, and season of calving were included in the analysis as covariables to account
for additional sources of variation. The machine learning algorithms gradient boosting
machine, extreme gradient boosting machine, random forest and artificial neural network
were used to train models using cross validation. The best model was selected based on
four error metrics and used to evaluate the variable importance, the interaction strength
between dry period length and the other variables, and to generate partial dependency
plots. Random forest was the best model for all production outcomes evaluated. Dry period
length was the third most important variable in predicting milk production and its compo-
nents. No strong interactions were observed between the dry period and the other evaluated
variables. The highest milk and lactose productions were observed with a 50-d long dry per-
iod, while fat, protein, and total milk solids were the highest with dry period lengths of 38, 38,
and 44 d, respectively. Overall, dry period length is associated with the production of milk and
its components in the subsequent lactation of Holstein cows under tropical climatic condi-
tions, but the optimum length depends on the production outcome.

The dry period is the time before the calving of cows when they are not milked. A 55- to 60-d
dry period is traditionally recommended and it has an important role in the milk production
cycle. In addition to giving cows a chance to rest before the beginning of a new lactation, the
dry period provides the opportunity to treat animals with chronic intramammary infection
(van Hoeij et al., 2016). It also allows for the regeneration of epithelial tissues in the mammary
gland before the onset of a new lactation (Capuco et al., 1997), which maximizes milk produc-
tion (van Knegsel et al., 2013). Previous studies indicate that a dry period of 50 to 60 d is
necessary to maximize milk production in the subsequent lactation (Sørensen and
Enevoldsen, 1991; Rastani et al., 2005). However, some results indicate that the reduction of
the dry period could have a positive consequence not only on milk production and its com-
position, but also on the metabolic status and fertility of the animals (Bachman and Schairer,
2003; Gulay et al., 2003; de Feu et al., 2009).

Most studies of dry period length were, however, carried out under different climatic and
management conditions than those observed in a tropical country such as Brazil. For instance,
the regeneration of the mammary gland epithelial tissue during the dry period might be
delayed or compromised by high environment temperatures, potentially having a negative
effect on milk production (Fabris et al., 2019). The available evidence indicates a negative asso-
ciation of dry periods shorter or longer than 60 to 79 d with milk production (Teixeira et al.,
1999), but the relationship with milk components still requires evaluation, especially consider-
ing the implementation of genetic selection programmes for milk production (Boligon et al.,
2005; Canaza-Cayo et al., 2016). Therefore, it is necessary to evaluate the relationship between
the dry period length and milk production, but also its components in animals kept under
tropical conditions to establish an ideal duration to maximize production. We hypothesized
that different lengths of dry period would influence milk production and its components.
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Thus, the objective of this study was to evaluate the relationship
between dry period length and the production of milk, fat, pro-
tein, lactose, and total milk solids in the subsequent lactation of
Holstein dairy cows in tropical climate.

Materials and methods

The dairy herd improvement (DHI) data used in this study were
provided by the Holstein Cattle Breeders Association of Minas
Gerais (ACGHMG). All data were collected by producers and
ACGHMG technicians as part of the regular ACGHMG on-farm
milk recording and conformed to normal farm animal handling.
Consequently, approval from the Ethics Committee on the Use of
Animals was not required.

The initial data file consisted of 85 046 records of completed
lactations (i.e. one record per animal per lactation) from 37 581
Holstein cows of 129 dairy herds located in Minas Gerais state,
Brazil. The data were collected from animals that calved between
1982 and 2017. Over the study years, the overall average daily
temperature was 22.0°C (standard deviation; SD = 3.38°C) and it
ranged from 4.2°C to 33.5°C (INMET, 2022). The average daily
humidity was 71.7% (SD = 13.53%; minimum = 8.0%; maximum
= 100.0%), and the average yearly rainfall was 1277.1 mm (SD =
402.36 mm; minimum 136.3 mm; maximum 3631.3 mm;
INMET, 2022).

Data cleaning and handling

Data handling, cleaning, and modelling were done using the R
software (R Core Team, 2021) and its specific packages. Editing
was performed to ensure both reliability and consistency for the
analysis. Duplicated (n = 557) and first lactation (n = 34 309)
observations were removed. Next, cows with lactation greater
than or equal to six were grouped together (6+). Based on a fre-
quency analysis, the following constraints were imposed on calv-
ing age by parity to ensure that parities were consistent with
sensible ages at calving: 29 to 60 months for second parity, 38
to 70 months for third parity, 47 to 90 months for fourth parity,
60 to 110 months for fifth parity and 70 to 130 months for 6+
parity. Observations falling out of this range were excluded (n =
5155). Besides, observations in which lactation length was equal
to zero or greater than 600 d (n = 1205) as well as if the length

of dry period was missing (n = 3093) or greater than 120 d (n =
6404) were also excluded. Outliers on the production of milk
(n = 790), fat (n = 272), protein (n = 225), lactose (n = 42), and
total solids (127) were identified and sequentially removed follow-
ing the methodology proposed by Leys et al. (2013), in which the
range of valid observations is defined as the median ± 2.5 times
the median absolute deviation. The valid range of observations
was calculated based on calving year and parity number.

Multiple imputation was used to handle missing observations.
After data cleaning, the percentage of missing observations ranged
from 0.95% on calf status at birth (n = 313) to 18.94% on lactation
length (n = 6225). The average percentage of missing observations
per herd was 4.26% (SD = 2.59%) and ranged from 0 to 14.0%.
The function missForest from the package missForest (Stekhoven
and Buehlmann, 2012) was used to impute the missing observations.
In short, this is a nonparametric approach that consists of training a
random forest model based on complete observations to impute
each of the missing values (Stekhoven and Buehlmann, 2012). In
addition to multiple imputation being a better approach compared
with other methodologies in order to increase power and accuracy
of the data analysis (van Buuren, 2019), random forest is able to
handle complex interactions between variables even in conditions
where there is a high number of missing observations (Tang and
Ishwaran, 2017), which is frequently observed in DHI data.

After data handling and cleaning, the remained data from 32
867 complete lactations of 19 535 Holstein animals that calved
between 1993 and 2017 in 122 herds was analysed. Descriptive
statistics of the variables considered in this study are presented
in Tables 1 and 2.

Analysis

Completed lactation production of milk, fat, protein, lactose, and
total solids were considered as the response variables while dry
period length was considered the explanatory variable. Calving
age, lactation length, milking frequency, parity number, and calf
status at birth were also considered in the analysis as covariables
to account for additional sources of variation. In addition, herd,
calving year, and calving season were included in the analyses
as proxies for clustering, time, and seasonal effects, respectively.

Variance inflation factors (VIF) were calculated, using the vif
function from the car R package (Fox and Weisberg, 2019), to

Table 1. Distribution of numeric variables used in this study

Variable Mean SD

Quantile

0 25 50 75 100

Dry period (d) 28.0 35.3 0 0 0 57 120

Calving age (month) 55.7 17.9 29 42 51 65 130

Lactation length (d) 295.2 115.6 5 240.8 308 364 600

Milka (kg) 7764.1 3387.9 6.6 5567.2 8139.7 10 188.9 18 153.4

Fata (kg) 254.4 117.6 0.38 176 26.8 335.6 619.4

Proteina (kg) 235.7 105.0 0.37 164.1 248.9 312 539.6

Lactosea (kg) 335.9 160.2 0.54 218.2 341.2 456.0 823.3

Milk solidsa (kg) 908.6 406.2 1.46 636.0 942.2 1196.4 2116.9

SD, standard deviation.
aTotal production over the complete lactation.
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evaluate the multicollinearity between the explanatory variable
and covariates using the complete data set. A threshold of 10.0
was used to evaluate the estimated VIF (James et al., 2013).
Next, a stratified splitting, based on the response variables, was
used to split the data into training and validation sets using a
75 to 25 ratio, respectively, for each response variable separately,
creating a separate set of training and validation data for each
response variable. The training data sets were used to train the
models and the validation data sets were used to evaluate their
performance.

A covariate shift analysis was conducted to evaluate if the dis-
tribution of the explanatory variable and covariates differed
between training and validation data sets. A label identifying
the data set (training or validation) was created and a random for-
est classifier was trained using 10-fold cross-validation to predict
the label. A classifier model was trained for each of the response
variables individually using the h2o.randomForest function from
the h2o package (LeDell et al., 2020) and these were evaluated
based on the area under the curve (AUC) metric.

Machine learning algorithms

The data were analysed with machine learning algorithms as they
are able to automatically handle potential nonlinearities and high-
order interactions present in the data. Gradient boosting machine
(GBM), extreme gradient boosting machine (XGBM), random
forest (RF), and artificial neural network (ANN) were the
machine-learning algorithms used in this study to train models.
The best model was then used to analyse the relationship between
the dry period length and response variables. All models were
trained on the training data sets using 10-fold cross-validation.
The GBM, XGBM, and RF models were trained using the caret
package (Kuhn, 2020) by specifying the methods gbm, xgbTree,
and ranger respectively. Hyperparameters for these models were
tuned using adaptive resampling, which resamples the hyperpara-
meter tuning grid by concentrating on values closer to the iden-
tified optimal settings (Kuhn, 2014, 2020). The ANN model was
trained using the h2o package (LeDell et al., 2020). The hyper-
parameters for this model were tuned using a random grid search

composed of activation functions (hyperbolic tangent, rectifier
linear, and maxout), number of hidden layers (2, 3, and 4), num-
ber of neurons in each hidden layer (150, 200, and 250), and
dropout ratio (0, 5, 10, and 15%). The search was set to stop if
the improvement in prediction error, measured by the root
mean square error (RMSE), did not decrease by 1 × 10−4 after
five consecutive models.

Four metrics were used to evaluate the final models. The effi-
cacy of adjustment was evaluated through the coefficient of deter-
mination (R2), while the deviation between the observed and
predicted values was evaluated by the RMSE, mean absolute
error (MAE), and mean percentage error (MPE). The best
model would have the highest R2 and lowest RMSE, MAE, and
MPE. This evaluation was done using the validation data set.
The best model was used for further analysis that were conducted
using the complete data set (i.e. training and validation data set
combined).

Inferential analysis

Different statistical approaches were used to obtain biological
insights from the best model for each of the response variable
(i.e. completed lactation production of milk, fat, protein, lactose,
and total solids). Permutation was used to evaluate variable
importance. In short, this is a model agnostic approach that mea-
sures the prediction error of the model after shuffling the vari-
ables’ values, which changes the relationship between the
variables and the outcome. Shuffling the values of important vari-
ables would result in an increase of the error while the error
would remain unchanged for variables that bare not important
(Molnar, 2019).

The strength of interaction between dry period length and the
covariables was measured using the Friedman’s H-statistic
(Friedman and Popescu, 2008), which is also a model agnostic
approach. This statistic measures the fraction of the variance
explained by interactions that is not explained by the additive
effect of the variables alone (Friedman and Popescu, 2008). The
influence of the dry period length was obtained from the best
model using partial dependence plots (PDP). It indicates the mar-
ginal relationship between the dry period length and the produc-
tion after controlling for the covariates (Friedman, 2001). It
depicts if the shape of the relationship between the response vari-
ables and the dry period length is linear, monotonic, or more
complex (Molnar, 2019).

Variable importance and PDP were calculated using the func-
tions FeatureImp and FeatureEffect, respectively, from the R pack-
age iml (Molnar et al., 2018). The overall interaction strength was
calculated using the light_interaction function from the R package
flashlight (Mayer, 2021).

Results

The VIF values ranged from 1.03 to 6.61, which did not indicate
the presence of multicollinearity (i.e. high linear correlation)
between explanatory variable and covariates since they were all
lower than 10.0 (James et al., 2013). The AUC obtained in the
covariate shift analysis of milk (AUC = 0.495), fat (AUC =
0.503), protein (AUC = 0.497), lactose (AUC = 0.509), and total
solids (AUC = 0.501) did not imply strong evidence of covariate
shift between the training and the validation data sets.

All algorithms showed good overall predictive ability between
all response variables. The efficacy of adjustment, as measured by

Table 2. Distribution of categorical variables used in this study

Variable N %

Milking frequency

2 15 538 47.28

3 17 329 52.72

Parity

2 15 193 46.23

3 8832 26.87

4 5008 15.24

5 2379 7.24

6+ 1455 4.43

Calf status at birth

Alive 31 698 96.44

Deceased 863 2.63

Aborted 306 0.93
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the R2, ranged from 0.70 to 0.79 and the prediction error, as mea-
sured by the MPE, ranged from 20.39 to 28.60% across all
response variables (Table 3). The best performing models were
selected by comparing their performance in the validation data
set. The RF algorithm produced the models with the best per-
formance for most of the metrics (Table 3) and they were used
for further inferential analysis.

The explanatory variable and covariates were ranked according
to their importance in contributing to the models’ predictions
based on permutation. Lactation length, milking frequency, and
dry period length ranked first, second, and third, respectively,
for all response variables (Fig. 1). The overall interaction strengths
were weak and did not imply strong evidence of interaction
between explanatory variable and covariates (Fig. 2). Similar to
variable importance, lactation length, milking frequency, and
dry period length had the first, second, and third highest

interaction strength, respectively, for all response variables. The
highest interaction strength ranged from 0.23 in milk production
to 0.27 in lactose production, both for the lactation length variable
(Fig. 2). On the other hand, dry period length interaction strength
only ranged from 0.10 on lactose to 0.12 on protein (Fig. 2).

The relationship between dry period length and complete lac-
tation milk, fat, protein, lactose, and total milk solids production
are shown in Figure 3. A positive parabolic relationship was found
between dry period length and production, but the estimated
highest average production differed depending on the response
variable. Highest milk production was observed when dry period
length was, on average, 50 d long, while the average highest pro-
duction of fat, protein, lactose and total milk solids were observed
when the dry period was 38, 38, 50, and 44 d long, respectively
(Fig. 3).

Discussion

A retrospective longitudinal study was carried out to evaluate the
relationship between dry period length and milk production and
its components in animals under tropical climate conditions.
Machine learning analytical techniques were used to test the
hypothesis that the length of the dry period is associated with
changes in production in the subsequent lactation. Among the
variables included in the analysis, dry period length was the
third most important variable for all production variables evalu-
ated. Lactation length and milking frequency were first and
second, respectively. Based on the standard lactation curve of
dairy cows, the longer a lactation, the higher the cumulative
milk produced. In addition, the effect of increasing milking fre-
quency on both milk production and its components are well
established in the literature. Milk production increases when
cows are milked three times compared with two times a day,
while the opposite is observed for concentrations of fat and pro-
tein (Smith et al., 2002). Therefore, we expected to find the cov-
ariables lactation length and milking frequency to be important
on the observed milk production and its components.

Shorter dry periods were associated with reduction in milk
production in the subsequent lactation compared with the con-
ventional 60 d. This result is consistent with the findings reported
by Sørensen and Enevoldsen (1991) and Rastani et al. (2005), who
found that managing cows for a dry period of less than 40 d
resulted in decreased milk production in the subsequent lactation
compared with cows managed for a 60-d dry period. The reduced
cell turnover and the secretory capacity of the mammary epithelial
have been reported as the reasons for such reduction in cattle
(Annen et al., 2004b). However, the reduction varies not only
between animals but also between herds (Santschi et al., 2011;
Safa et al., 2013), indicating the existence of an interaction
between management aspects, animal health and animal physi-
ology. For instance, having an abortion as the starting reason of
a new lactation, which would result in an unplanned short dry
period, will have a negative effect on lactation productivity
(Keshavarzi et al., 2020).

The volume of milk produced is determined by the osmotic
property of lactose, which explains the optimum dry period
length being the same for production of both milk and lactose
in our study. The synthesis of lactose is responsible for the uptake
of water by the mammary alveolus (González and Noro, 2011).
The more lactose is produced, the greater the volume of water
drawn into the alveolus and, consequently, the greater the volume
of milk produced. Therefore, there is a positive correlation

Table 3. Results of gradient boosting machine (GBM), extreme gradient
boosting machine (XGBM), random forest (RF), and artificial neural network
(ANN) models obtained on the validation data set of each response variable
(milk, fat, protein, lactose, and total solids)

Metric

Model

GBM XGBM RF ANN

Milk

R2 0.78 0.78 0.78 0.70

RMSE 1584.07 1601.34 1583.13 2198.23

MAE 1239.53 1256.00 1221.66 1757.61

MPE 20.40 20.62 20.39 28.31

Fat

R2 0.72 0.72 0.73 0.71

RMSE 61.95 62.75 61.67 72.80

MAE 47.71 48.40 47.02 60.37

MPE 24.34 24.65 24.23 28.60

Protein

R2 0.78 0.78 0.79 0.73

RMSE 48.78 49.47 48.23 56.11

MAE 37.43 38.07 36.55 43.60

MPE 20.68 20.97 20.45 23.79

Lactose

R2 0.77 0.77 0.78 0.77

RMSE 77.02 77.55 75.71 81.78

MAE 59.19 59.25 57.31 65.45

MPE 22.92 23.08 22.53 24.34

Total solids

R2 0.78 0.77 0.78 0.76

RMSE 192.74 194.31 190.91 200.48

MAE 147.82 148.04 144.47 155.62

MPE 21.20 21.38 21.00 22.05

Best results within rows are bolded.
R2, coefficient of determination; RMSE, root mean squared error; MAE, mean absolute error;
MPE, mean percentage error.
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Fig. 1. Importance (x axis) of explanatory variables ( y axis) to predict complete lactation production of milk (a), fat (b), protein (c), lactose (d), and total milk solids
(e) based on random forest models. Variable importance indicates the increase in model error prediction, measured as root mean squared error, when shuffling the
values of explanatory variables (Molnar, 2019).
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between lactose and milk volume (Haile-Mariam and Pryce, 2017;
Costa et al., 2019). Factors that change the metabolic balance of
the mammary gland, such as higher than normal levels of somatic
cells count, disrupt the water secretion role of lactose

(Haile-Mariam and Pryce, 2017) and, consequently, reduce the
volume of milk produced (González and Noro, 2011).

Reducing the dry period increases total milk production in the
current lactation due to extension of the number of days in milk

Fig. 2. Overall interaction strength (x axis) of explanatory variables ( y axis) to predict complete lactation production of milk (a), fat (b), protein (c), lactose (d), and
total milk solids (e). The higher the value -.
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Fig. 3. Partial dependence plots depicting the relationship between dry period length and complete lactation production of milk (a), fat (b), protein (c), lactose (d),
and total milk solids (e). Partial dependence is represented by the black line. A loess trend (blue line) along with the standard error (shade) was included to facili-
tate the interpretation of the partial dependence shape and a rug at the bottom of each plot indicates the distribution of the observations.
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(Borges et al., 2011). The decision of reducing the dry period
should consider the trade-off between the additional milk yield
in the current lactation and the reduction in the subsequent
lactation. In our study, it was estimated that milk production
after a zero- and a 30-d dry period were 4% (323 kg) and 1%
(35 kg), respectively, lower than 50 d, which was found to be
the length with the highest milk yield. Our results were lower
that what was found by Teixeira et al. (1999), who reported a
reduction of 438 and 421 kg on 305-d milk yield of cows with a
dry period of 30 and 0 d compared to a more conventional
50-d dry period length under tropical climate. Studies conducted
under more mild climates reported a reduction on milk yield
associated with shorting the dry period ranging from 1 to 18%
(Bachman and Schairer, 2003; Annen et al., 2004a).

The economic implication of the reduction or extension of the
dry period not only depends on the volume of milk produced, but
also its composition. In addition to the reduction of production
associated with short dry periods, our results also indicated a
negative relationship between long dry periods and milk produc-
tion and its components, which is similar to what has been pre-
viously reported (Teixeira et al., 1999; Bachman and Schairer,
2003; Kuhn et al., 2006). No revenue is generated from milk sell-
ing while the animal is dry and an unnecessarily long dry period
would have a negative impact on profitability (Delgado et al.,
2017). On the other hand, even though shortening the dry period
is associated with a reduction in milk production, this might not
be reflected in revenue loss. Santschi et al. (2011) reported no
effect of a short dry period on energy-corrected milk, which con-
siders not only the amount of milk produced, but also its protein
and fat content that in turn dictates the selling price of the milk.
This was similar to our results. Even though energy-corrected
milk production was not evaluated in our study, the maximum
fat and protein yields were observed on short dry periods.

Decreasing the occurrence of metabolic disorders could be a
potential benefit of omitting the dry period. The transition period
between pregnant non-lactating to non-pregnant lactating stage,
which is when most of the metabolic disorders are more com-
monly observed (Østergaard and Gröhn, 1999; LeBlanc et al.,
2006), would be eliminated if the dry period is omitted. In fact,
removing the dry period was shown to improve the energy bal-
ance of the animals (van Knegsel et al., 2013; Mayasari et al.,
2017) and to reduce the risk of ketosis (van Knegsel et al.,
2013), even though no relationship was observed with the occur-
rence of other diseases (van Knegsel et al., 2013; Mayasari et al.,
2017). On the other hand, the dry period gives the opportunity
to treat chronic intramammary infection by using dry-cow ther-
apy (van Hoeij et al., 2016), which would not be possible if the
dry period is omitted for all cows.

Though hot climates pose an additional challenge to animal
production and reproduction (Das et al., 2016), our results indi-
cate that the association of dry period length and animal produc-
tion under tropical conditions is similar to more mild climatic
conditions. We found a positive parabolic relationship between
dry period and milk components. For instance, Kuhn et al.
(2006) also reported a similar relationship when evaluating the
effect of dry period length on both fat and protein production
from USA farms. For both components, production was maxi-
mized when dry period length was 60 d (Kuhn et al., 2006). In
our case, however, fat and protein production were maximized
with a dry period length of 38 d.

The relatively low prediction errors of the best models in our
study indicate that the variables evaluated here should be included

in precision livestock systems aiming to optimize the dry period
length, but other aspects should also be considered. The reduction
of dry period could be an appropriate strategy for healthy high
production cows (Santschi et al., 2011), but it would not be
appropriate for cows with low BCS or with a chronic intramam-
mary infection (van Hoeij et al., 2016). Consequently, dry period
length optimization should be carried out at animal level and con-
sidering individual cow characteristics. For instance, Kok et al.
(2021) evaluated customized dry periods based on parity number
and somatic cell count before dry-off. Even though milk revenue
was lower on cows with shorter dry periods, this could be finan-
cially feasible given the observed improvement on cow health.
Therefore, health aspects should also be considered in the opti-
mization of the dry period length in addition to the variables eval-
uated in the present study.

A limitation of our study was the use of retrospective data. Our
study was conducted using data collected from commercial dairy
farms, and the reasons for shorter or a longer dry periods were
unknown. Abortion, a potential reason for shorter dry periods,
was accounted in our analysis as this information was available,
but a shorter dry period length could have occurred due to errors
in conception records. On the other hand, a longer dry period
could be the result of fertility issues. Such factors should be con-
sidered when comparing the production results from animals
with different dry period lengths. However, using retrospective
DHI data allowed for a greater number of animals to be enrolled,
which is typically a limitation of traditional animal trials.

In conclusion, dry period length is associated with the produc-
tion of milk and its components in the subsequent lactation of
Holstein cows under tropical climatic conditions. It should not be
omitted in order to maximize the dairy production under these con-
ditions, but the optimum length depends on the production out-
come evaluated. A dry period of 50 d should be used to obtain
the highest volume of milk and lactose in the subsequent lactation,
while a 38-d long dry period maximizes the production of both fat
and protein. Lastly, a dry period of 44 d maximizes the production
of total milk solids. In addition to the features evaluated in the pre-
sent study, further research should focus on evaluating other animal
characteristics, such as those related to animal health and reproduc-
tion, for the development of precision livestock systems to automat-
ically determine the optimum dry period length for individual cows.
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