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Holomorphic functions of slow growth on coverings of

pseudoconvex domains in Stein manifolds

Alexander Brudnyi

Abstract

We apply the methods developed in our previous work to study holomorphic functions
of slow growth on coverings of pseudoconvex domains in Stein manifolds. In particular,
we extend and strengthen certain results of Gromov, Henkin and Shubin on holomorphic
L2 functions on coverings of pseudoconvex manifolds in the case of coverings of Stein
manifolds.

1. Introduction

1.1 Let M be a complex manifold satisfying

M ⊂⊂ M̃ ⊂ N and the natural map π1(M) → π1(N) is an isomorphism; (1.1)

here M and M̃ are open connected subsets of a complex manifold N , M̃ is Stein, and π1(X)
stands for the fundamental group of X. Condition (1.1) is valid, e.g., for M a strictly pseudoconvex
domain or an analytic polyhedra in a Stein manifold. It implies that the group π1(N) is finitely
generated. In [Bru06a] we presented a method to construct integral representation formulas for
holomorphic functions of slow growth defined on unbranched coverings of M . Using such formulas
we established that some known results for holomorphic functions on M can be extended to similar
results for holomorphic functions of slow growth on coverings of M . In this paper we continue to
study holomorphic functions of slow growth on coverings of M and apply the methods developed
in [Bru06a] to extend and strengthen certain results of Gromov, Henkin and Shubin [GHS98] on
holomorphic L2 functions on coverings of pseudoconvex manifolds in the case of coverings of Stein
manifolds.

1.2 The presentation in this paper is focused on several problems and results formulated in [GHS98].
To describe them, we first recall some definitions.

LetM ⊂⊂ N be a domain with a smooth boundary bM in an n-dimensional complex manifoldN ,
that is,

M = {z ∈ N : ρ(z) < 0} (1.2)

where ρ is a real-valued function of class C2(Ω) in a neighbourhood Ω of the compact set M :=
M ∪ bM such that

dρ(z) �= 0 for all z ∈ bM. (1.3)

Let z1, . . . , zn be complex local coordinates in N near z ∈ bM . Then the tangent space TzN at z is
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Holomorphic functions of slow growth in Stein manifolds

identified with C
n. By T cz (bM) ⊂ TzN we denote the complex tangent space to bM at z, i.e.,

T cz (bM) =
{
w = (w1, . . . , wn) ∈ Tz(N) :

n∑
j=1

∂ρ

∂zj
(z)wj = 0

}
. (1.4)

The Levi form of ρ at z ∈ bM is a hermitian form on T cz (bM) defined in the local coordinates by
the formula

Lz(w,w) =
n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk. (1.5)

The manifold M is called pseudoconvex if Lz(w,w) � 0 for all z ∈ bM and w ∈ T cz (bM). It is called
strictly pseudoconvex if Lz(w,w) > 0 for all z ∈ bM and all w �= 0, w ∈ T cz (bM).

Equivalently, strictly pseudoconvex manifolds can be described as those which locally, in a
neighbourhood of any boundary point, can be presented as strictly convex domains in C

n. It is also
known (see [Car60, Rem56]) that any strictly pseudoconvex manifold admits a proper holomorphic
map with connected fibres onto a normal Stein space.

Diminishing, if necessary, N we may assume that π1(M) = π1(N) for M defined by (1.2) and
(1.3). Let r : NG → N be the regular covering of N with (discrete) transformation group G.
Then MG := r−1(M) is a regular covering of M (with the same transformation group). It is a
domain in NG with the smooth boundary bMG := r−1(bM). By MG := MG ∪ bMG we denote the
closure of MG in NG.

Let X be a subspace of the space O(MG) of all holomorphic functions on MG. A point z ∈ bMG

is called a peak point for X if there exists a function f ∈ X such that f is unbounded on MG but
bounded outside U ∩MG for any neighbourhood U of z in NG.

A point z ∈ bMG is called a local peak point for X if there exists a function f ∈ X such that f
is unbounded in U ∩MG for any neighbourhood U of z in NG and there exists a neighbourhood U
of z in NG such that for any neighbourhood V of z in NG the function f is bounded on U \ V .

The Oka–Grauert theorem [Gra58a] states that if M is strictly pseudoconvex and bM is not
empty, then every z ∈ bM is a peak point for O(M). In general, it is not known whether the similar
statement is true for boundary points of MG with an infinite G.

Let dVMG
be the Riemannian volume form on MG obtained by a Riemannian metric pulled back

from N . By H2(MG) we denote the Hilbert space of holomorphic functions g on MG with norm(∫
z∈MG

|g(z)|2 dVMG
(z)

)1/2

.

In [GHS98], the von Neumann G-dimension dimG was used to measure the space H2(MG). In
particular, in [GHS98, Theorem 0.2] the following result was proved.

Theorem A. If M is strictly pseudoconvex, then:

(a) dimGH2(MG) = ∞; and

(b) each point in bMG is a local peak point for H2(MG).

In [GHS98, Theorem 0.5] a similar result was established for a covering MG of a pseudoconvex
manifold M with a strictly plurisubharmonic G-invariant function existing in a neighbourhood
of bMG. Finally, in [GHS98, § 4] the following open problems were formulated.

Suppose that M is strictly pseudoconvex.

(1) Does there exist a finite number of functions in H2(MG) ∩ C(MG) which separate all points
in bMG?
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(2) Assume that dimCM = 2. Does there exist f ∈ H2(MG) ∩ C(MG) such that f(x) �= 0 for all
x ∈ bMG?

(3) Is it true that for every Cauchy–Riemann (CR)-function f ∈ L2(bMG) ∩ C(bMG) in the case
dimCMG > 1 there exists f ′ ∈ H2(MG) ∩ C(MG) such that f ′|bMG

= f?

Here L2(bMG) is defined similar to H2(MG) with respect to the volume form on bMG obtained
by a Riemannian metric pulled back from N . Also, recall that f ∈ C(bMG) is called a CR-function
if for every smooth (n, n− 2)-form ω with a compact support one has∫

bMG

f ∧ ∂ω = 0.

If f is smooth this is equivalent to the fact that f is a solution of the tangential CR-equations:
∂bf = 0 (see, e.g., [KR65]).

The present paper deals with the above results and problems in the case of coverings of M
satisfying condition (1.1).

2. Formulation of main results

2.1 We start with some results related to question (2) of § 1.2.
Let M be a manifold satisfying condition (1.1) and M ′ be an unbranched covering of M .

Condition (1.1) implies that there is a covering r : N ′ → N of N such that M ′ is a domain
in N ′ (i.e. π1(M ′) = π1(N ′)). As above, M ′ denotes the closure of M ′ in N ′.

Let φ : N ′ → R be a function uniformly continuous with respect to the path metric induced by
a Riemannian metric pulled back from N .

Theorem 2.1. There exist a function fφ ∈ O(M ′)∩C(M ′) and a constant1 C = C(φ,M ′, N ′) such
that

|fφ(z) − φ(z)| < C and |dfφ(z)| < C for all z ∈M ′.

(Here the norm |ω(z)| of a differential form ω at z ∈M ′ is determined with respect to the Riemannian
metric pulled back from N .)

As a corollary of this result we answer an extended version of question (2) of § 1.2 for coverings
of manifolds M satisfying condition (1.1). Namely, let d be the path metric on N ′ obtained by the
pullback of a Riemannian metric defined on N . Fix a point o ∈M ′ and set

do(x) := d(o, x), x ∈ N ′.

From the triangle inequality it follows that the function φ(x) := do(x), x ∈ N ′, satisfies the
hypothesis of Theorem 2.1.

Corollary 2.2. Let f := fφ be the function from Theorem 2.1 for φ = do. Then there exists a
constant α > 0 such that F = e−αf ∈ H2(M ′) ∩C(M ′).

(Note that here F (x) �= 0 for all x ∈M ′ and there are no restrictions on dimCM .)

2.2 In this part we formulate our results related to Theorem A.
Let M ′ be an unbranched covering of M satisfying (1.1). Let ψ : M ′ → R+ be a continuous

function and dVM ′ be the Riemannian volume form on M ′ obtained by a Riemannian metric pulled
back from N . For an open set D ⊂ M we introduce the Banach space Hp

ψ(D′), 1 � p � ∞,

1Here and below the notation C = C(α, β, γ, . . . ) means that the constant depends only on the parameters α, β, γ, . . . .
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of holomorphic functions g on D′ := r−1(D) ⊂M ′ with norm(∫
z∈M ′

|g(z)|pψ(z) dVM ′(z)
)1/p

.

Let r : N ′ → N be the covering of N satisfying (1.1) such that π1(N ′) = π1(M ′). Then
M ′ (= r−1(M)) is a domain in N ′. Suppose that ψ : N ′ → R+ is such that logψ is uniformly
continuous with respect to the path metric induced by a Riemannian metric pulled back from N .
We set φ := logψ and consider the holomorphic function fφ from Theorem 2.1. This theorem implies
that for C̃ := eC

1

C̃
ψ(z) � |efφ(z)| � C̃ψ(z), z ∈M ′. (2.1)

Therefore, the following result holds.

Proposition 2.3. For any open set D ⊂M and every p ∈ [1,∞) the map Lψ : Hp
ψ(D′) → Hp

1 (D′),
Lψ(g) = g · efφ/p, is an isomorphism of Banach spaces.

Let us now formulate an extension of Theorem A.
Suppose that M is a strictly pseudoconvex domain in a complex manifold N such that π1(M) =

π1(N) and N is a domain in a Stein manifold. Let r : N ′ → N be an unbranched covering of N
and M ′ = r−1(M) be the corresponding covering of M . Let bM ′ = r−1(bM) be the boundary of
M ′ in N ′.

Theorem 2.4. Each point in bM ′ is a peak point for O(M ′) and for every Hp
1 (M ′), 1 � p <∞.

From Theorem 2.4 and Proposition 2.3 we get (for ψ as in Proposition 2.3) the following corollary.

Corollary 2.5. If logψ is bounded from below, then each z ∈ bM ′ is a peak point for Hp
ψ(M ′),

1 � p <∞.

Remark 2.6. The main ingredient of the proof of Theorem 2.4 is uniform estimates for solutions
of certain ∂-equations on M ′. In fact, similar estimates are valid on coverings of so-called non-
degenerate pseudoconvex polyhedrons on Stein manifolds (see [SH80] and [Heu83] for their defini-
tion). This class contains, in particular, piecewise strictly pseudoconvex domains and non-degenerate
analytic polyhedrons on Stein manifolds. Also, every M from this class satisfies condition (1.1). Let
M ′ be a covering of such M and z ∈ bM ′ be such that M ′ ∩ U is strictly pseudoconvex for a
neighbourhood U ⊂ N ′ of z. Then, arguing as in the proof of Theorem 2.4, one obtains that z is
a peak point for O(M ′) and for every Hp

1 (M ′), 1 � p <∞.

2.3 In this section we discuss some results related to question (3) of § 1.2.
Let r : N ′ → N be a covering of N satisfying (1.1). As before we set M ′ = r−1(M) ⊂ N ′.

Consider a function ψ : N ′ → R+ such that logψ is uniformly continuous with respect to the path
metric induced by a Riemannian metric pulled back from N . For such ψ and every x ∈ M , we
introduce the Banach space lp,ψ,x(M ′), 1 � p � ∞, of functions g on r−1(x) ⊂M ′ with norm

|g|p,ψ,x :=
( ∑
y∈r−1(x)

|g(y)|pψ(y)
)1/p

. (2.2)

Next, for an open set D ⊂ M we introduce the Banach space Hp,ψ(D′), 1 � p � ∞, of functions f
holomorphic on D′ := r−1(D) ⊂M ′ with norm

|f |Dp,ψ := sup
x∈D

|f |p,ψ,x. (2.3)
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Clearly, one has a continuous embedding Hp,ψ(D′) ↪→ Hp
ψ(D′). Let U ⊂ N be an open set

containing D and U ′ = r−1(U). Then for ψ as above using the mean value property for plurisub-
harmonic functions one can easily show that for each p ∈ [1,∞] the restriction f 	→ f |D′ induces a
linear continuous map Hp

ψ(U ′) → Hp,ψ(D′). (However, it is unknown whether the image of Hp,ψ(D′)
is dense in Hp

ψ(D′) for each p ∈ [1,∞].) Also, for such ψ from the results proved in [Bru06a] follow
that holomorphic functions from Hp,ψ(M ′) separate all points in M ′ (for each p ∈ [1,∞]).

Let us formulate the main result of this section.
Let M ⊂⊂ M̃ ⊂ N be manifolds satisfying condition (1.1) with dimCM � 2. Suppose that

D ⊂⊂M is an open subset whose boundary bD is a connected Ck submanifold of M (1 � k � ∞).
For a covering r : N ′ → N we set D′ = r−1(D) and bD′ = r−1(bD).

Theorem 2.7. For every CR-function f ∈ Cs(bD′), 0 � s � k, satisfying

f |r−1(x) ∈ lp,ψ,x(M ′) for all x ∈ D and sup
x∈bD

|f |p,ψ,x <∞

there exists a function f ′ ∈ Hp,ψ(D′) ∩ Cs(D′) such that f ′|bD′ = f .

Remark 2.8. (1) The converse to this theorem is always true: the restriction of every f ′ ∈ Hp,ψ(D′)∩
Cs(D′) to bD′ is a CR-function satisfying the hypotheses of the theorem.

(2) We will also prove (see (6.6)) that for some c = c(M ′,M,ψ, p)

|f ′|Dp,ψ � c sup
x∈bD

|f |p,ψ,x.

(3) An interesting question is whether the space of CR-functions of Theorem 2.7 is Lp-dense
in the space of Lp CR-functions on bD′ where the Lp norm on bD′ is defined by the Riemannian
volume form obtained by the pullback of the Riemannian metric on N .

As a corollary we obtain an analog of the Hartogs extension theorem (see [Boc43]). We formulate
it for functions of the maximal possible growth for which our method works.

Suppose that M satisfies (1.1). Let D ⊂ M be a domain and K ⊂⊂ D be a compact set such
that U := D \K is connected. Consider a covering r : M ′ →M and set D′ = r−1(D), U ′ = r−1(U).
By do, o ∈M ′, we denote the distance function on M ′ as in Corollary 2.2.

Corollary 2.9. There exists a constant c > 0 such that for every f ∈ O(U ′) satisfying for some
c2 > 0 and 0 < c1 < c the inequality

|f(z)| � ec2e
c1do(z)

, z ∈ U ′,

there is f ′ ∈ O(D′) such that

|f ′(z)| � ec3e
c1do(z)

, z ∈ D′, and f ′|U ′ = f ;

where c3 depends on c2, c1, c,M,M ′ only.

We do not know whether a similar extension result holds for functions f growing faster than
those of the corollary.

2.4 Finally, we formulate a result related to question (1) of § 1.2. First, we recall some definitions
of the theory of flat vector bundles (see, e.g., [Oni67]).

Let X be a complex manifold and ρ : π1(X) → GLk(C) be a homomorphism of its fundamental
group. We set G := π1(X)/Ker ρ. It is well known (see, e.g., Example 3.2(b) below) that to any such
ρ corresponds a complex flat vector bundle Eρ on X (i.e. a bundle constructed by a locally constant
cocycle). We call Eρ the bundle associated with ρ. Assume that ρ is such that Eρ is topologically
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trivial, i.e. is isomorphic in the category of continuous bundles to the bundle X × C
k. Every such

ρ can be obtained as the monodromy of the equation dF = ωF on X where ω is a matrix-valued
1-form on X satisfying dω−ω∧ω = 0. By T (X) we denote the class of quotient groups G obtained
by representations ρ as above.

Now, let r : MG →M be the regular covering ofM satisfying condition (1.1) with transformation
group G. Let G1 ⊂ G be a subgroup of a finite index. Then there is a finite covering r1 : M1 →M
whose fibre is the quotient set G/G1 such that MG is also the regular covering of M1 with trans-
formation group G1.

Theorem 2.10. Assume that G1 ∈ T (M1). Then there is a finite number of functions in H2,1(MG)∩
C(MG) that separate all points in MG.

Remark 2.11. (1) We will see from the proof that the functions in Theorem 2.10 can be taken even
from H2,ψ(MG) where ψ : MG → R+ has a double exponential growth.

(2) As the group G in Theorem 2.10 one can take, e.g., a finitely generated free group (see, e.g.,
[Oni67]) or a polycyclic group (see, e.g., [Rag72]). If dimCM = 1, then, since M is homotopically
equivalent to a one-dimensional CW-complex (see, e.g., [GR77]), every quotient group G obtained
by a linear representation ρ belongs to T (M).

2.5 Remark added in February 2006
The present paper was written in February–March of 2005. Since then, the author obtained sev-
eral new results related to questions posed in [GHS98] on holomorphic L2-functions on coverings
M ′ of strongly pseudoconvex (not necessarily Stein) manifolds M . In particular, in connection
with [GHS98, Theorem 0.2] (see Theorem A) the following important question was asked (see
[GHS98, p. 3]): ‘A natural question arises: is the cocompact group action (on M ′) really relevant
for the existence of many holomorphic L2-functions (on M ′) or is it just an artifact of the chosen
methods which require a use of von Neumann algebras? ’ and further ‘It is not clear how to formulate
conditions assuring that dimL2O(M ′) = ∞ without any group action’ (this is dimH2

1 (M ′) = ∞
in our notation). In [Bru06b] it was shown that the regularity of M ′ is irrelevant for the existence
of many holomorphic L2-functions on M ′. Moreover, a substantial extension of the above result of
[GHS98] was also proved. To formulate our result, let CM ⊂M be the union of all compact complex
subvarieties of M of complex dimension � 1. It is known that if M is strongly pseudoconvex, then
CM is a compact complex subvariety of M . Let zi, 1 � i � m, be distinct points in M \ CM and
ψ : N ′ → R+ be as in § 2.3.

Theorem 2.12 [Bru06b, Theorem 1.1]. If M is strongly pseudoconvex, then:

(a) for any fi ∈ l2,ψ,zi
(M ′), 1 � i � m, there exists F ∈ H2

ψ(M ′) such that F |z′i = fi, 1 � i � m;

(b) if ψ is such that logψ is bounded from below on N ′, then each point in bM ′ is a peak point
for H2

ψ(M ′).

Also, in [Bru06c, Bru06d] new Hartogs type theorems on coverings of strongly pseudoconvex
manifolds were obtained that, in a sense, extend Theorem 2.7.

3. Preliminary results

3.1 First, we recall some basic facts from the theory of bundles (see, e.g., [Hir66]).
Let X be a complex analytic space and S be a complex analytic Lie group with unit e ∈ S.

Consider an effective holomorphic action of S on a complex analytic space F . Here holomorphic
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action means a holomorphic map S × F → F sending s × f ∈ S × F to sf ∈ F such that
s1(s2f) = (s1s2)f and ef = f for any f ∈ F . Efficiency means that the condition sf = f for some
s and any f implies that s = e.

Definition 3.1. A complex analytic space W together with a holomorphic map (projection) π :
W → X is called a holomorphic bundle on X with structure group S and fibre F , if there exists a
system of coordinate transformations, i.e., if:

(1) there is an open cover U = {Ui}i∈I ofX and a family of biholomorphisms hi : π−1(Ui) → Ui×F ,
that map ‘fibres’ π−1(u) onto u× F ;

(2) for any i, j ∈ I there are elements sij ∈ O(Ui ∩ Uj, S) such that

(hih−1
j )(u× f) = u× sij(u)f for any u ∈ Ui ∩ Uj, f ∈ F.

A holomorphic bundle π : W → X whose fibre is a Banach space F and the structure group is GL(F )
(the group of linear invertible transformations of F ) is called a holomorphic Banach vector bundle.
A holomorphic section of a holomorphic bundle π : W → X is a holomorphic map s : X → W
satisfying π ◦ s = id.

We will use the following construction of holomorphic bundles (see, e.g., [Hir66, ch. 1]).
Let S be a complex analytic Lie group and U = {Ui}i∈I be an open cover of X. By Z1

O(U , S)
we denote the set of holomorphic S-valued U -cocycles. By definition, s = {sij} ∈ Z1

O(U , S), where
sij ∈ O(Ui ∩ Uj , S) and sijsjk = sik on Ui ∩ Uj ∩ Uk. Consider the disjoint union

⊔
i∈I Ui × F and

for any u ∈ Ui ∩ Uj identify the point u × f ∈ Uj × F with u × sij(u)f ∈ Ui × F . We obtain a
holomorphic bundle Ws on X whose projection is induced by the projection Ui×F → Ui. Moreover,
any holomorphic bundle on X with structure group S and fibre F is isomorphic (in the category of
holomorphic bundles) to a bundle Ws.

Example 3.2. (a) Let M be a complex manifold. For any subgroup H ⊂ π1(M) consider the un-
branched covering r : M(H) → M corresponding to H. We will describe M(H) as a holomorphic
bundle on M .

First, assume that H ⊂ π1(M) is a normal subgroup. Then M(H) is a regular covering of M and
the quotient group G := π1(M)/H acts holomorphically on M(H) by deck transformations. It is
well known that M(H) in this case can be thought of as a principal fibre bundle on M with fibre G
(here G is equipped with the discrete topology). Namely, let us consider the map RG(g) : G → G,
g ∈ G, defined by the formula

RG(g)(q) = q · g−1, q ∈ G.

Then for an open cover U = {Ui}i∈I of M by sets biholomorphic to open Euclidean balls in some
C
n there is a locally constant cocycle c = {cij} ∈ Z1

O(U , G) such that M(H) is biholomorphic to
the quotient space of the disjoint union V =

⊔
i∈I Ui × G by the equivalence relation: Ui × G �

x×RG(cij)(q) ∼ x× q ∈ Uj ×G. The identification space is a holomorphic bundle with projection
r : M(H) →M induced by the projections Ui ×G→ Ui. In particular, when H = e we obtain the
definition of the universal covering Mu of M .

Assume now that H ⊂ π1(M) is not necessarily normal. Let XH = π1(M)/H be the set of cosets
with respect to the (left) action of H on π1(M) defined by left multiplications. By [Hq] ∈ XH we
denote the coset containing q ∈ π1(M). Let A(XH) be the group of all homeomorphisms of XH

(equipped with the discrete topology). We define the homomorphism τ : π1(M) → A(XH) by the
formula:

τ(g)([Hq]) := [Hqg−1], q ∈ π1(M).
Set Q(H) := π1(M)/Ker(τ) and let g̃ be the image of g ∈ π1(M) in Q(H). By τQ(H) : Q(H) →
A(XH) we denote the unique homomorphism whose pullback to π1(M) coincides with τ .
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Consider the action of H on V =
⊔
i∈I Ui × π1(M) induced by the left action of H on π1(M)

and let VH =
⊔
i∈I Ui × XH be the corresponding quotient set. Define the equivalence relation

Ui ×XH � x× τQ(H)(c̃ij)(h) ∼ x× h ∈ Uj ×XH with the same {cij} as in the definition of M(e).
The corresponding quotient space is a holomorphic bundle with fibre XH biholomorphic to M(H).

(b) We retain the notation of example (a). Let B be a complex Banach space and GL(B) be the
group of invertible bounded linear operators B → B. Consider a homomorphism ρ : G → GL(B).
Without loss of generality we assume that Ker(ρ) = e, for otherwise we can pass to the corresponding
quotient group. The holomorphic Banach vector bundle Eρ → M associated with ρ is defined as
the quotient of

⊔
i∈I Ui × B by the equivalence relation Ui × B � x× ρ(cij)(w) ∼ x× w ∈ Uj × B

for any x ∈ Ui ∩ Uj . Let us illustrate this construction by an example.

Let φ : XH → R
+ (XH := π1(M)/H) be a function satisfying

φ(τ(h)(x)) � chφ(x), x ∈ XH , h ∈ π1(M), (3.1)

where ch is a constant depending on h. By lp,φ(XH), 1 � p � ∞, we denote the Banach space of
complex functions f on XH with norm

‖f‖p,φ :=
( ∑
g∈XH

|f(g)|pφ(g)
)1/p

. (3.2)

Then according to (3.1) the map ρ defined by the formula [ρ(g)(f)](x) := f(τ(g)(x)), g ∈ π1(M),
x ∈ XH , is a homomorphism of π1(M) into GL(lp,φ(XH)). By Ep,φ(XH) we denote the holomorphic
Banach vector bundle associated with this ρ.

3.2 We retain the notation of Example 3.2. Let r : M ′ → M be a covering where M ′ = M(H)
(i.e. π1(M ′) = H). Assume that M satisfies condition (1.1), i.e. M ⊂⊂ N and π1(M) = π1(N).
Then there is an embedding M(H) ↪→ N(H). (Without loss of generality we consider M(H) as an
open subset of N(H).) Let {Vi}i∈I be a finite acyclic open cover of M by relatively compact sets.
We set Ui := Vi ∩M and consider the open cover U = {Ui}i∈I of M . Then as in Example 3.2(a) we
can define M(H) by a cocycle c = {cij} ∈ Z1

O(U , π1(M)).

Further, let ψ : N(H) → R+ be a function such that logψ is uniformly continuous with respect
to the path metric induced by a Riemannian metric pulled back from N . Fix a point z0 ∈ M and
identify r−1(z0) with z0 × XH (XH := π1(M)/H). We define the function φ : XH → R+ by the
formula

φ(x) := ψ(z0, x), x ∈ XH .

It was proved in [Bru06a, Lemma 2.3] that φ satisfies inequality (3.1). Then the bundle Ep,φ(XH)
is well defined. By definition, any holomorphic section of this bundle is determined by a family
{fi(z, g)}i∈I of holomorphic functions on Ui with values in lp,φ(XH) satisfying

fi(z, τ(cij)(h)) = fj(z, h) for any z ∈ Ui ∩ Uj.

We introduce the Banach space Bp,φ(XH) of bounded holomorphic sections f = {fi}i∈I of Ep,φ(XH)
with norm

|f |p,φ := sup
i∈I,z∈Ui

||fi(z, ·)||p,φ. (3.3)

(Here ‖ · ‖p,φ is the norm on lp,φ(XH), see (3.2).)

Further, let f ∈ Hp,ψ(M(H)) (see § 2.2 for the definition). We define the family {fi}i∈I of
functions on Ui with values in the space of functions on XH by the formula

fi(z, g) := f(z, g), z ∈ Ui, i ∈ I, g ∈ XH . (3.4)
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It was established in [Bru06a, Proposition 2.4] that the correspondence f 	→ {fi}i∈I determines an
isomorphism of Banach spaces D : Hp,ψ(M(H)) → Bp,φ(XH). (Here D is an isometry for ψ ≡ 1.)

Next, suppose that {xn}n�1 ⊂ M converges to x ∈ M . Then for sufficiently large n we can
arrange r−1(xn) and r−1(x) in sequences {yin}i�1 and {yi}i�1 such that every {yin} converges to yi
as n→ ∞. For such n we define maps τn(x) : r−1(x) → r−1(xn) so that τn(yi) = yin, i ∈ N. Below,
τ∗n denotes the transpose map generated by τn on functions defined on r−1(xn) and r−1(x).

Definition 3.3. Let X ⊂M be a subset. We say that a function f on r−1(X) belongs to the class
Cp,ψ(r−1(X)) if

(1) f |r−1(x) ∈ lp,ψ,x(M ′) for all x ∈ X; and
(2) for any x ∈ X and any sequence {xn} ⊂ X converging to x the sequence of functions

{τ∗n(f |r−1(xn))} converges to f |r−1(x) in the norm of lp,ψ,x(M ′).

By Cbp,ψ(r−1(X)) we denote the Banach space of functions f ∈ Cp,ψ(r−1(X)) with norm

|f |Xp,ψ := sup
x∈X

|f |r−1(x)|p,ψ,x. (3.5)

Note that if X ⊂M is compact, then |f |Xp,ψ <∞ for every f ∈ Cp,ψ(r−1(X)).

Comparing with the above definition of D one determines a similar map for Cbp,ψ(r−1(X)). This
gives an isomorphism D : Cbp,ψ(r−1(X)) → CBX

p,φ(XH) where CBX
p,φ(XH) is the Banach space of

bounded continuous sections of Ep,φ(XH)|X with norm defined as in (3.3).

3.3 Most of our proofs are based on [Bru06a, Theorem 1.3]. In its proof we use the above isomor-
phisms D and Cartan’s A and B theorems for coherent Banach vector sheaves (see [Bun68]). Let
us formulate this result.

Suppose that r : M ′ → M is a covering with M satisfying (1.1). We define ψ : M ′ → R+ as in
§ 3.2. Also, we define Hp,ψ(M ′) and lp,ψ,x(M ′) as in § 2.3. For Banach spaces E and F by B(E,F )
we denote the space of all linear bounded operators E → F with norm ‖ · ‖.

Theorem 3.4. For any p ∈ [1,∞] there is a family {Lz ∈ B(lp,ψ,z(M ′),Hp,ψ(M ′))}z∈M holomorphic
in z such that

(Lzh)(x) = h(x) for any h ∈ lp,ψ,z(M ′) and x ∈ r−1(z).
Moreover,

sup
z∈M

‖Lz‖ <∞.

The following facts are simple corollaries of this result.
Suppose that X ⊂ M and f ∈ Cbp,ψ(r−1(X)). We define the function F on X × M ′ by the

formula
F (x, z) := (Lx(f |r−1(x)))(z), x× z ∈ X ×M ′. (3.6)

Then F is continuous and F (x, ·) ∈ Hp,ψ(M ′) for every x. Moreover, if X is open and f ∈
Hp,ψ(r−1(X)), then F ∈ O(X ×M ′) and the map X → Hp,ψ(M ′), x 	→ F (x, ·), is holomorphic.

We can also express F in local coordinates. Namely, take x ∈ X and let U ⊂ M be a neigh-
bourhood of x biholomorphic to an open Euclidean ball. Then r−1(U) =

⊔
y∈r−1(x) Vy and there are

biholomorphisms sy : U → Vy such that r ◦ sy = id. Now, the restriction of f ∈ Cbp,ψ(r−1(X)) to
r−1(U ∩X) can be written as

f(z) =
∑

y∈r−1(x)

f(z)χy(z), z ∈ r−1(U ∩X), (3.7)
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where χy is the characteristic function of Vy. Let us introduce the functions f̃y, y ∈ r−1(x), by the
formulas

f̃y(v) = f(sy(v)), v ∈ X ∩ U.
Then we have

f(z) =
∑

y∈r−1(x)

f̃y(v)χy(z), v = r(z) ∈ U ∩X. (3.8)

Consider the series ∑
y∈r−1(x)

f̃y(v)Lv(χy|r−1(v)), v ∈ U ∩X, (3.9)

with Lv as in Theorem 3.4.

Proposition 3.5. For p ∈ [1,∞) the series in (3.9) converges in Hp,ψ(M ′) to F (v, ·) := Lv(f |r−1(v))
uniformly on every compact subset of U ∩X. If p = ∞ and f ∈ Cb1,1(r

−1(X)) then this series also
converges in H∞,ψ(M ′) to F (v, ·) uniformly on every compact subset of U ∩X.

Proof. Suppose that p ∈ [1,∞) and f ∈ Cbp,ψ(r−1(X)). Let C ⊂ U ∩ X be a compact subset. By
the definition the function Φ : U ∩X → lp,ψ(XH), z 	→ f̃·(z), is continuous (here we identify r−1(x)
with XH). Thus Φ(C) ⊂ lp,ψ(XH) is compact. Fix a family {Xi}i∈N of finite subsets of XH such
that Xi ⊂ Xi+1 for any i and

⋃∞
i=1Xi = XH . Let Vi ⊂ lp,ψ(XH) be a finite-dimensional subspace

generated by functions δz on XH with z ∈ Xi. Here δz(v) = 1 if v = z and δz(v) = 0 if v �= z.
Then

⋃∞
i=1 Vi is everywhere dense in lp,ψ(XH) (since 1 � p < ∞). This and compactness of Φ(C)

imply that for any ε > 0 there exists an integer l such that Φ(C) ⊂ Vl + Bε where Bε is the open
ball in lp,ψ(XH) centered at 0 of radius ε. By pl : lp,ψ(XH) → Vl we denote the projection sending
v =

∑
x∈XH

vxδx ∈ lp,ψ(XH) to
∑

x∈Xl
vxδx ∈ Vl (here all vx ∈ C). Then for ε as above and every

v ∈ Φ(C) we have ||v − pl(v)||p,φ < ε. From this by (3.8), identifying r−1(x) with XH , we obtain

sup
v∈C

∥∥∥∥f |r−1(v) −
∑
y∈Xl

f̃y(v)χy |r−1(v)

∥∥∥∥
p,φ

< ε. (3.10)

Thus, by the definition of operators Lv (see Theorem 3.4)

sup
v∈C

∣∣∣∣F (v, ·) −
∑
y∈Xl

f̃y(v)Lv(χy|r−1(v))
∣∣∣∣M
p,ψ

< Cε (3.11)

for some constant C. This implies the required uniform convergence for p ∈ [1,∞).
For p = ∞ and f ∈ Cb1,1(r

−1(X)) we obtain a new that Φ(C) ⊂ l1,1(XH) is compact. Then in the
above notation we easily get ||v−pl(v)||∞,φ < ε for any v ∈ Φ(C) (because ‖·‖∞,φ = ‖·‖∞,1 � ‖·‖1,1).
Thus, (3.10) is also valid for p = ∞. This gives (3.11) with p = ∞.

4. Proofs of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. Let M ⊂⊂ M̃ ⊂ N be complex manifolds such that π1(M) = π1(N) and
M̃ is Stein. Consider an unbranched covering r : N ′ → N of N and the corresponding coverings
M ′ = r−1(M) and M̃ ′ = r−1(M̃ ) of M and M̃ . According to Example 3.2(a), M̃ ′ is defined on an
open cover U = {Ui}i∈I of M̃ by sets biholomorphic to open Euclidean balls by a locally constant
cocycle {c̃ij} ∈ Z1

O(U , Q(H)). (Here we retain the notation of Example 3.2(a) so that M̃ ′ = M̃(H).)
Using this construction we identify r−1(Ui) with Ui×XH (XH = π1(M)/H). Also, we choose some
points zi ∈ Ui and assume that diameters of all Ui in the path metric on N induced by a Riemannian
metric are uniformly bounded by a constant.
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Let φ : N ′ → R be a function uniformly continuous with respect to the path metric induced by
the Riemannian metric pulled back from N . For every i ∈ I we define a function φi : r−1(Ui) → R

by the formula

φi(z, g) := φ(zi, g), z × g ∈ r−1(Ui).

Then from the uniform continuity of φ and boundedness of diam(Ui) for all i we obtain that there
exists a constant c such that

|φ(v) − φi(v)| � c for every v ∈ r−1(Ui), i ∈ I. (4.1)

Define a locally constant cocycle φij on the open cover {r−1(Ui)} of M̃ ′ by the formula

φij(v) = φi(v) − φj(v) for v ∈ r−1(Ui ∩ Uj).

Then from (4.1) by the triangle inequality we get

sup
i,j,v

|φij(v)| � 2c. (4.2)

This inequality implies that rewriting cocycle {φij} in the coordinates on M̃ (i.e. taking its
direct image {r∗(φij)} with respect to r) we can regard it as a holomorphic cocycle on the cover U
with values in the Banach vector bundle E∞,1(XH) with fibre l∞,1(XH) defined on M̃
(see Example 3.2(b)). This correspondence is described in [Bru04, Proposition 2.4]. Since U is
acyclic and M̃ is Stein, from the above construction, a version of Cartan’s B theorem for coherent
Banach sheaves (see [Bun68]), and the classical Leray theorem we obtain as in [Bru04] that there
are holomorphic functions fi ∈ O(r−1(Ui)) such that:

(1) for every compact set K ⊂ Ui,

sup
y∈r−1(K)

|fi(y)| <∞;

(2)

fi(z) − fj(z) = φij(z) for z ∈ r−1(Ui ∩ Uj).
Let V = {Vj}j∈J be a refinement of U such that every Vj is open and relatively compact in some
Uij . Then condition (1) implies that

sup
y∈r−1(Vj)

|fij(y)| <∞. (4.3)

Finally, define a function f̃ ∈ O(M̃ ′) by the formula

f̃(z) := φi(z) − fi(z), z ∈ r−1(Ui). (4.4)

Since M ⊂ M̃ is a compact set, there is a finite subcover of V that covers M . From here, (4.3) and
(4.1) for the restriction fφ := f̃ |M ′ we obtain (for some C)

|fφ(z) − φ(z)| < C and |dfφ(z)| < C for any z ∈M ′. (4.5)

The proof of the theorem is complete.

Proof of Corollary 2.2. We retain the notation of the proof of Theorem 2.1.
Let do := d(o, ·) be the distance on N ′ from a fixed point o ∈ M ′ and let f := fφ be the

function from Theorem 2.1 for φ = do. Consider a finite open cover {Ui}li=1 of M such that every
Ui ⊂⊂ M̃ is biholomorphic to an open Euclidean ball. As above we identify r−1(Ui) ⊂ N ′ with
Ui ×XH . Fix an element e ∈ XH and set oi(z) = (z, e) ∈ r−1(Ui) for every z ∈ Ui, 1 � i � l, and
doi(z)(v) := d(oi(z), v), v ∈ N ′. Then from compactness of every Ui by the triangle inequality we
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get

|doi(z)(v) − do(v)| � a, 1 � i � l, (4.6)

for some constant a. By Bz,i(R) we denote the open ball on r−1(z) of radius R centered at oi(z)
with respect to the induced metric d|r−1(z). Also, by #A we denote the number of elements of A.
Now we prove

Lemma 4.1. There is k ∈ N such that

#Bz,i(R) � ekR, 1 � i � l.

Proof. Let r̃ : Nu → N be the universal covering of N and r′ : Nu → N ′ be the intermediate
covering, i.e. r̃ = r ◦ r′. We equip Nu with the path metric d̃ induced by the Riemannian metric
pulled back from N , the same as in the definition of the metric d on N ′. Let õi(z) ∈ r̃−1(z) be such
that r′(õi(z)) = oi(z). By B̃z̃,i(R) we denote the open ball on r̃−1(z) of radius R centered at õi(z)
with respect to the metric d̃|r̃−1(z). Let us check that r′(B̃z̃,i(R)) = Bz,i(R).

Indeed, let y ∈ B̃z̃,i(R) and γy be a path joining õi(z) and y in Nu whose length is less than R

(such a path exists by the definition of d̃). Then r′(γy) is a path joining oi(z) and r′(y) in N ′. By
the definition of the metrics on Nu and N ′ the length of r′(γy) does not exceed the length of γy. In
particular, it is less than R. Thus doi(z)(r

′(y)) < R, i.e., r′(y) ∈ Bz,i(R). Conversely, let w ∈ Bz,i(R)
and let γw be a path in N ′ joining oi(z) and w with length less than R. By the covering homotopy
theorem (see, e.g., [Hu59, ch. III]) there is a path γ̃w ⊂ Nu that covers γw and joins õi(z) with some
point w̃ such that r′(w̃) = w. Moreover, by the definition, the length of γ̃w is the same as the length
of γw. In particular, it is less than R. Thus, w̃ ∈ B̃z̃,i(R). This shows that r′(B̃z̃,i(R)) = Bz,i(R). In
turn, the latter implies that

#Bz,i(R) � #B̃z̃,i(R). (4.7)

Next, let A be a finite set of generators of π1(N) (recall that condition (1.1) implies that π1(N)
is finitely generated). By dw we denote the word metric on π1(N) with respect to A. Now, from
compactness of every Ui by the Švarc–Milnor lemma (see, e.g., [BH99, p. 140]) we obtain that there
exists a constant c such that for any z ∈ Ui, 1 � i � l, and g, h ∈ π1(N),

c−1dw(g, h) � d̃((z, g), (z, h)) � cdw(g, h) (4.8)

(Here we identify r̃−1(Ui) with Ui×π1(N) as in Example 3.2(a).) Let BR ⊂ π1(N) be the open ball
of radius R centered at 1 with respect to dw. Then there is a natural number k̃ such that

#BR � ek̃R for any R � 0. (4.9)

From here, (4.8) and (4.7) we get for k := k̃c

#Bz,i(R) � ekR, 1 � i � l.

We proceed with the proof of the corollary. Let us define α := (k + 1)/2 and prove that F =
e−αf ∈ H2,1(M ′)∩C(M ′). Since H2,1(M ′) ↪→ H2

1 (M ′) (see § 2.3), this implies the required statement.

Let z ∈ Ui for some 1 � i � l. We will estimate |F |2,1,z (see (2.2)). By the definition using
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inequalities (4.5), (4.6) and Lemma 4.1 we obtain

|F |22,1,z =
∑

y∈r−1(z)

|e−αf(y)|2 � e2α(a+C) ·
∑

y∈r−1(z)

e−2αdoi(z)(y)

� e2α(a+C) ·
∞∑
R=0

e−2αR · #Bz,i(R)

� e2α(a+C) ·
∞∑
R=0

e(−2α+k)R =
e2α(a+C)+1

e− 1
.

Therefore,

|F |M2,1 := sup
z∈M

|F |2,1,z �
(
e2α(a+C)+1

e− 1

)1/2

.

This shows that F ∈ H2,1(M ′) ∩ C(M ′).

Remark 4.2. (1) Using some construction from [Bru04] one can prove that the constant C in
Theorem 2.1 for φ = do (see (4.5)) can be chosen independent of the covering r : M ′ → M .
It depends only on M , M̃ and the Riemannian metric on N .

(2) Consider the holomorphic map f : M ′ → C with f as in Corollary 2.2. Then

f(M ′) ⊂ S := {z ∈ C : |Im z| < C,−C < Re z <∞}

where C is the constant in Theorem 2.1 for φ = do. Let Bt = {x ∈M ′ : do(x) < t} be the open ball
in M ′ centered at o of radius t and SR := {z ∈ S : Re z � R}. Then

f−1(SR) ⊂M ′ \BR−C for R > C and f−1(S \ SR) ⊂ BR+C .

Using such f one can construct holomorphic functions on M ′ decreasing faster than the function
F from Corollary 2.2. Actually, let l : R+ → R+ be a continuous function monotonically increasing
for x � R0. Consider a holomorphic function g on S satisfying

log |g(x + iy)| � l(x) for x � R0 and inf
z∈S

|g(z)| > 0. (4.10)

Then one can easily check that the function G = g ◦ f ∈ O(M ′) ∩ C(M ′) satisfies

|G(z)| � el(do(z)−C) for do(z) � R0 +C.

In particular, H = 1/G ∈ O(M ′) ∩ C(M ′) satisfies (for some c1 > 0)

|H(z)| � c1e
−l(do(z)−C), z ∈M ′ \BC . (4.11)

Observe that the Harnack inequality for positive harmonic functions implies for g as in (4.10) (for
some positive c̃1, c̃2)

l(x) � log |g(x)| � c̃1e
c̃2x, x � R0.

This and the properties of f impose the following restriction on the decay of H:

|H(z)| � e−c̃3e
c̃2do(z)

, z ∈M ′. (4.12)

Example 4.3. As the function g in (4.10) one can take, e.g., g(z) = ez
n

for n ∈ N (in this case
l(x) = (1 − ε)xn for any ε > 0), or g(z) = eC1eC2z

for C1 > 0 and 0 < C2 < π/2C with C as above
(in this case l(x) = C1 cos(C2C)eC2x). For the latter example estimate (4.11) shows that the lower
bound (4.12) of the decay of H is attainable.
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5. Proof of Theorem 2.4

Suppose that M ⊂⊂ N are domains in a Stein manifold, M is strictly pseudoconvex and π1(M) =
π1(N). Using the Remmert embedding theorem (see, e.g., [GR77]) we may assume without loss of
generality that N is a domain in a closed complex submanifold of some C

k. Let r : N ′ → N be an
unbranched covering of N . As usual, we set M ′ = r−1(M) and bM ′ = r−1(bM) where bM is the
boundary of M . We must show that every point in bM ′ is a peak point for Hp,1(M ′), 1 � p � ∞.
In our proof we use a result on uniform estimates for solutions of certain ∂-equations on M ′. To its
formulation we first introduce the corresponding class of (0, 1)-forms on M ′.

Let {Vi}i∈I be a finite acyclic open cover of M by relatively compact complex coordinate sys-
tems. We set Ui ∩M and consider the open cover U = {Ui}i∈I of M . Let XH be the fibre of N ′

with H = π1(N ′). Using the construction of Example 3.2(a) we identify r−1(Ui) with Ui ×XH . Let
ω be a (0, 1)-form on M ′. Then in local coordinates on r−1(Ui) it is presented as

ω(v, x) =
n∑
j=1

aj(v, x) dvj for v × x ∈ Ui ×XH

where v = (v1, . . . , vn) are coordinates on Ui. Consider every aj as a function on Ui with values in
the space of functions on XH . We assume that for every i ∈ I

aj ∈ C∞(Ui, lp,1(XH)), 1 � j � n. (5.1)

Then for such an ω its direct image r∗(ω) is a bounded C∞ form with values in the Banach vector
bundle Ep,1(XH) (see § 3.1). Also, we assume that the norm of ω defined by the formula

‖ω‖ := sup
i∈I

max
1�j�n

|aj |Ui
p,1 (5.2)

is finite. (Recall that | · |Ui
p,1 are norms on Cp,1(r−1(Ui)), see (3.5).)

Proposition 5.1. There is a constant C > 0 and for each ∂-closed (0, 1)-form ω satisfying (5.1)
there is a function f ∈ C∞(M ′) ∩ Cbp,1(M ′) such that

∂f = ω and |f |Mp,1 � C‖ω‖.

Proof. We apply the operators Lz from Theorem 3.4 to ω. Namely, let us define a form ω̃ on M by
the formula

ω̃(v, z) :=
n∑
j=1

(Lvaj(v, ·))(z) dvj for v × z ∈ Ui ×M ′, i ∈ I.

It is readily seen that ω̃ is a bounded ∂-closed C∞ form on M with values in Hp,1(M ′) (i.e. the form
with values in the holomorphically trivial Banach vector bundle on M whose fibre is Hp,1(M ′)). We
define the norm of ω̃ by

‖ω̃‖ := sup
i∈I,v∈Ui

max
1�j�n

|Lvaj(v, ·)|Mp,1 (5.3)

where | · |Mp,1 is norm on Hp,1(M ′). Then according to Theorem 3.4 there is a constant c (independent
of ω) such that

‖ω̃‖ � c‖ω‖. (5.4)

Further, we use [Heu83, Lemma 1]. According to this lemma there exist a strictly pseudoconvex
domain W ⊂ C

k with C2 boundary such that W ∩ N = M and a holomorphic map π from a
neighbourhood U(W ) of W onto U(W )∩N such that π(W ) = M and π|U(W )∩N is the identity map.

Using this result we obtain that the pullback π∗ω̃ with respect to π is a bounded ∂-closed C∞

form on W with values in Hp,1(M ′). Moreover, there is a constant c′ (depending on π and W ) such
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that

‖π∗ω̃‖ � c′‖ω̃‖. (5.5)

Here, for π∗ω̃(w, ·) =
∑k

j=1 ãj(w, ·) dwj, w = (w1, . . . , wk) ∈ C
k, we define

‖π∗ω̃‖ := sup
w∈W

max
1�j�k

|ãj(w, ·)|Mp,1.

In [SH80], uniform estimates for solutions of ∂-equations on so-called pseudoconvex polyhe-
dra were obtained by means of global integral formulas. This class contains, in particular, strictly
pseudoconvex domains with C2 boundaries. Note that the estimates in [SH80] remain valid if one
solves Banach-valued ∂-equations. Therefore, from the results of [SH80] we obtain that there exists
a bounded C∞ function h on W with values in Hp,1(M ′) such that ∂h = π∗ω̃. Moreover,

‖h‖ � c′′‖π∗ω̃‖ (5.6)

for some c′′ (depending on W only). Here

‖h‖ := sup
w∈W

|h(w, ·)|Mp,1.

Finally, define a function f on M ′ by the formula

f(z) := h(r(z), z), z ∈M ′.

Using that r is holomorphic, ω̃(r(z), z) = ω(z), z ∈ M ′, and (π∗ω̃)|M = ω̃ we easily conclude that
∂f = ω. By the definition f ∈ C∞(M ′) ∩ Cbp,1(M ′) and from (5.4)–(5.6) we have (for some C)

|f |Mp,1 � C‖ω‖.

Remark 5.2. (1) A statement analogous to Proposition 5.1 is valid for a similar class of bounded
∂-closed (0, q)-forms on M ′.

(2) Using the main result of [Heu83] and the estimates from [SH80] one can show that the result
of Proposition 5.1 is also valid for coverings of non-degenerate pseudoconvex polyhedrons on Stein
manifolds (see [Heu83] and [SH80] for the definition).

We proceed to the proof of Theorem 2.4. Take a point z ∈ bM ′ and set v = r(z) ∈ bM .
Let U ⊂⊂ N be a simply connected coordinate neighbourhood of v and let W ⊂ N ′ be the
neighbourhood of z such that r : W → U is biholomorphic. Since M is strictly pseudoconvex, v is a
peak point for O(U ∩M) for a sufficiently small U . Moreover, for such U we can find f̃ ∈ O(U ∩M)
with a peak point at v such that f̃ ∈ Lq(U ∩M) for all 1 � q < ∞ (see [GHS98, p. 575]). Then
f := (r∗f̃)|W∩M ′ has a peak point at z and f ∈ Lq(W ∩M ′) for all 1 � q <∞. Next, let ρ̃ ∈ C∞(U)
be a cut-off function that equals 1 in a neighbourhood O ⊂⊂ U of v and 0 outside U . Consider its
pullback ρ := (r∗ρ̃)|W ∈ C∞(W ). Clearly the (0, 1)-form ω = ∂(ρf) on M ′ satisfies the conditions of
Proposition 5.1. Then this proposition implies that there exists a function h ∈ C∞(M ′) ∩Cbp,1(M ′)
such that ∂h = ω. Finally, consider the function hz := ρf − h. Then hz is holomorphic, has a peak
point at z0 and belongs to Hp

1 (M ′) for 1 � p <∞ by the choice of f . Also, for p = ∞ the function
hz is bounded outside W .

The proof of the theorem is complete.

6. Proofs of Theorem 2.7 and Corollary 2.9

Proof of Theorem 2.7. LetM ⊂⊂ M̃ ⊂ N be manifolds satisfying condition (1.1) with dimCM � 2.
Let D ⊂⊂M be an open subset whose boundary bD is a connected Ck submanifold of M (1 � k �
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∞). Consider a covering r : N ′ → N and set M ′ = r−1(M), D′ = r−1(D) and bD′ = r−1(bD). Let
ψ : N ′ → R+ be such that logψ is uniformly continuous with respect to the path metric induced by
a Riemannian metric pulled back from N . Let f ∈ Cs(bD′), 0 � s � k, be a CR-function satisfying
the hypotheses of Theorem 2.7.

(A) First, we will prove the theorem for s = 0 under the additional assumption

f ∈ Cp,ψ(bD′) for p ∈ [1,∞) and f ∈ C1,1(bD′) for p = ∞. (6.1)

(We use here that C1,1(bD′) ⊂ C∞,1(bD′) = C∞,ψ(bD′), see Definition 3.3.)
For a CR-function f satisfying (6.1) we define a continuous Hp,ψ(M ′)-valued function F on bD′

by the formula

F (v) := Lv(f |r−1(v)), v ∈ bD,

where Lv are operators from Theorem 3.4, see § 3.3.

Lemma 6.1. F is a Hp,ψ(M ′)-valued continuous CR-function.

Proof. Let U ⊂ M be a simply connected coordinate neighbourhood of a point x ∈ bD. It suffices
to check that F |U∩bD satisfies the required property. Note that by Proposition 3.5

[F (v)](z) =
∑

y∈r−1(x)

f̃y(v)Hy(v, z), v × z ∈ (U ∩ bD) ×M ′, (6.2)

where f̃y(v) = f(sy(v)), v ∈ U ∩ bD, and sy : U → Vy is a biholomorphic map onto the connected
component Vy of r−1(U) containing y. By the definition of operators Lv functions Hy are restrictions
to bD ×M ′ of some holomorphic functions on U ×M ′. Moreover, Proposition 3.5 implies that the
series in (6.2) converges uniformly to F on every compact subset of (U ∩ bD) ×M ′. Next, since
f |Vy∩bD′ is a continuous CR-function, f̃y is a continuous CR-function on U ∩ bD. Also, by the
definition of Hy, for a fixed z ∈ M ′ every Hy(·, z) is a continuous CR-function on U ∩ bD. Hence,
f̃y ·Hy(·, z) is a continuous CR-function on U ∩ bD, as well. Indeed, for each (n, n− 2)-form ω with
a compact support in U we have∫

U∩bD
f̃y(v) ·Hy(v, z)∂ω(v) =

∫
U∩bD

f̃y(v)∂(Hy(v, z) · ω(v)) = 0

because f̃y is CR. Since the series in (6.2) converges uniformly to [F (·)](z) on every compact subset
of (U ∩ bD) × z, every [F (·)](z), z ∈ M ′, is a continuous CR-function on U ∩ bD. This implies the
required statement.

Further, since [F (v)](z) from Lemma 6.1 is holomorphic in z ∈ M ′, we can expand it in the
Taylor series in a complex coordinate neighbourhood Uz,

[F (v)](w) =
∑

0�|α|<∞
Fα(v)wα, v ∈ bD. (6.3)

Here α = (α1, . . . , αs) ∈ (Z+)s, |α| =
∑s

i=1 αi, w
α = wα1

1 . . . wαn
n and w = (w1, . . . , wn) are

coordinates on Uz such that w(z) = 0. Now, from Lemma 6.1 it follows that each Fα in (6.3) is a
continuous CR-function on bD. Then by Theorem 3.14 of Harvey [Har77], for every Fα there exists
a function F̃α ∈ O(D)∩C(D) such that F̃α|bD = Fα. Also, for a sufficiently small Uz using estimates
of the Cauchy integrals for derivatives of a holomorphic function and compactness of bD we get,
from (6.3),

M := sup
α,v∈bD

|Fα(v)| <∞.
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Thus, by the maximum modulus principle

sup
α,v∈D

|F̃α(v)| = M <∞.

The latter implies that, for a sufficiently small Uz, the series

F̃z(v,w) =
∑

0�|α|<∞
F̃α(v)wα, v × w ∈ D × Uz,

converges absolutely and uniformly. Hence, F̃z ∈ O(D×Uz)∩C(D×Uz). Further, assume that for
y, z ∈M ′ we have Uy ∩ Uz �= ∅. Then for every w ∈ Uy ∩ Uz and v ∈ bD

F̃y(v,w) − F̃z(v,w) = [F (v)](w) − [F (v)](w) = 0.

This leads to the identity

F̃y(·, w) = F̃z(·, w), w ∈ Uy ∩ Uz.
Thus, we can define a function F ∈ O(D ×M ′) ∩C(D ×M ′) by the formula

F̃ (v,w) := F̃z(v,w), v × w ∈ D × Uz. (6.4)

Lemma 6.2. We have F̃ (v, ·) ∈ Hp,ψ(M ′) for any v ∈ D.

Proof. Observe that the evaluation at v ∈ D is a linear continuous functional on the Banach space
O(D)∩C(D) equipped with supremum norm. Identifying O(D)∩C(D) with its trace space on bD
and using the Hahn–Banach and Riesz theorems we have

h(v) =
∫
bD
h(ξ) dµ(ξ), h ∈ O(D) ∩C(D),

where µ is a complex regular Borel measure on bD with the total variation Varµ = 1. Thus for
every fixed w ∈M ′ we have

F̃ (v,w) =
∫
bD

[F (ξ)](w) dµ(ξ).

Now, by the definition of the norm on Hp,ψ(M ′) using the triangle inequality, the identity F̃ (v, ·) =
F (v), v ∈ bD, and the fact that F is a continuous Hp,ψ(M ′)-valued function on bD we obtain

|F̃ (v, ·)|Mp,ψ := sup
z∈M

( ∑
y∈r−1(z)

|F̃ (v, y)|pψ(y)
)1/p

� sup
z∈M

( ∑
y∈r−1(z)

(∫
bD

|F̃ (ξ, y)|| dµ(ξ)|
)p
ψ(y)

)1/p

� sup
z∈M

(∫
bD

( ∑
y∈r−1(z)

|[F (ξ)](y)|pψ(y)
)1/p

| dµ(ξ)|
)

� sup
ξ∈bD

|F (ξ)|Mp,ψ <∞.

Further, set

f ′(z) := F̃ (r(z), z), z ∈ D′. (6.5)

Then using the inequalities of Lemma 6.2 we get

f ′ ∈ O(D′) ∩ C(D′), f ′|bD′ = F |bD′ = f, and

|f ′|p,ψ,z :=
( ∑
y∈r−1(z)

|f ′(y)|pψ(y)
)1/p

� sup
ξ∈bD

|F (ξ)|Mp,ψ � c|f |bDp,ψ, z ∈ D,
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see (3.5) for the definition of | · |bDp,ψ. (Here the last inequality follows directly from Theorem 3.4.)
The latter implies that f ′|r−1(z) ∈ lp,ψ,z(M ′), z ∈ D, see § 2.3. Thus, f ′ ∈ Hp,ψ(D′) ∩ C(D′) and

|f ′|Dp,ψ := sup
z∈D

|f ′|p,ψ,z � c sup
z∈bD

|f |p,ψ,z (:= c|f |bDp,ψ). (6.6)

This completes the proof of the theorem for s = 0 under assumption (6.1).

(B) Let us consider the general case of a continuous CR-function f on bD′ satisfying

f |r−1(x) ∈ lp,ψ,x(M ′) for any x ∈ D and m := sup
x∈bD

|f |p,ψ,x <∞. (6.7)

According to Remark 4.2(2) and Example 4.3 there is a constant c > 0 such that for any 0 < c1 < c
and c2 > 0 there exists a function Fc1,c2 ∈ O(M ′) ∩ C(M ′) satisfying

e−c3e
c1do(z) � |Fc1,c2(z)| � e−c2e

c1do(z)
for all z ∈M ′ (6.8)

with c3 depending on c2, c1, c, M , M ′ such that c3 → 0 as c2 → 0. (Recall that do, o ∈ M ′, is the
distance on N ′ defined as in Corollary 2.2.) Define a continuous CR-function fc1,c2 by the formula

fc1,c2(z) := f(z)Fc1,c2(z), z ∈ bD′.

Lemma 6.3. The continuous CR-function fc1,c2 satisfies assumption (6.1).

Proof. Note that for any l ∈ N there is a nonnegative r such that

e−c2e
c1do(z)

< e−ldo(z) for do(z) > r, z ∈M ′.

Let U ⊂⊂M be a neighbourhood of D and U ′ = r−1(U) ⊂M ′. From the above inequality arguing
as in the proof of Corollary 2.2 we obtain that Fc1,c2 ∈ Hp,1(U ′) for any p ∈ [1,∞]. Then from
[Bru06a, Proposition 2.4] follows that Fc1,c2|bD′ belongs to Cp,1(bD′) for all p.

Next, take a point x ∈ bD and prove that fc1,c1 is Cp,ψ-continuous over x. Let Ux ⊂ M be a
complex (simply connected) coordinate neighbourhood of x. We will identify r−1(Ux) with Ux×XH

where XH is the fibre of r : M ′ → M . Consider a sequence {xn} ⊂ Ux ∩ bD converging to x.
For g ∈ XH put an(g) := f(xn, g), a(g) := f(x, g), bn(g) := Fc1,c2(xn, g), b(g) := Fc1,c2(x, g) and
cn := anbn, c := ab. Then we must check that

lim
n→∞ |c− cn|p,ψ,x := lim

n→∞

( ∑
g∈XH

|c(g) − cn(g)|pψ(x, g)
)1/p

= 0.

Using the triangle inequality we have

|c− cn|p,ψ,x � |(a− an)b|p,ψ,x + |an(b− bn)|p,ψ,x := I + II.

According to (6.8) for any ε > 0 we can decompose b in the sum b′ + b′′ where b′ = 0 outside a finite
subset Sε ⊂ XH and b′′ = 0 on Sε such that |b′′(g)| < ε for all g. Note also that |b′(g)| � 1 for all g.
Also, (6.7) and uniform continuity of logψ on the compact set bD imply that |a−an|p,ψ,x � km for
some k > 0. Finally, by continuity of f on bD′ we can find a number N such that for any n � N
we have |(a − an)χε|p,ψ,x < ε, where χε is the characteristic function of Sε. Using all of these facts
we get, for n � N ,

I � |(a− an)χεb′|p,ψ,x + |(a− an)b′′|p,ψ,x � ε+ kmε = (1 + km)ε.

To estimate II observe that from (6.7) and uniform continuity of logψ follow that for each g ∈ XH

(|an(g)|pψ(x, g))1/p � |an|p,ψ,x � k′|an|p,ψ,xn � k′m
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(for some k′). Moreover, since Fc1,c2|bD′ ∈ Cp,1(bD′), there is an integer N ′ such that for any n � N ′

we have |b− bn|p,1,x < ε. These two inequalities yield for n � N ′

II � sup
g∈XH

(|an(g)|pψ(x, g))1/p|b− bn|p,1,x � k′mε.

Combining the estimates for I and II we obtain

lim
n→∞ |c− cn|p,ψ,x = 0.

This is equivalent to Cp,ψ-continuity of fc1,c2 over x.
Similarly one can check that if p = ∞, then fc1,c2 belongs to C1,1(bD′). We leave it as an exercise

to the readers.

Let us finish the proof of the theorem. According to Lemma 6.3 and case (A) there is a function
f ′c1,c2 ∈ O(D′)∩C(D′) such that f ′c1,c2|bD′ = fc1,c2. Note also that since |Fc1,c2| � 1 inequality (6.6)
yields

|f ′c1,c2|
D
p,ψ � c sup

z∈bD
|f |p,ψ,z := cm.

Consider f ′ := fc1,c2/Fc1,c2. Then f ′ ∈ O(D′) ∩ C(D′) and f ′|bD′ = f . The uniqueness property for
holomorphic functions implies that f ′ does not depend on c1 and c2. Since Fc1,c2 converges uniformly
on compact subsets of M ′ to 1 as c2 → 0 from the last inequality we get

|f ′|Dp,ψ � c sup
z∈bD

|f |p,ψ,z.

Therefore, f ′ ∈ Hp,ψ(D′) ∩ C(D′).
The proof of the theorem for s = 0 is complete. If, in addition, f ∈ Cs(bD) for 1 � s � k, then,

in fact, the extended function f ′ ∈ Cs(D′) (see, e.g., Theorem 3.14 in [Har77], and the discussion
that follows it).

Proof of Corollary 2.9. Let us consider the function Fc1,c2 from (6.8). Suppose that f ∈ O(U ′)
satisfies the hypotheses of Corollary 2.9 with c1, c2 and c as in the definition of Fc1,c2. Then fc1,c2 :=
fFc1,c2 ∈ H∞(U ′) with the norm bounded by 1. Further, by the hypotheses we can find a connected
C∞ compact submanifold bS ⊂ U that bounds a domain S containing K. By Theorem 2.7 (applied
to S′ := r−1(S) and bS′ := r−1(bS)) the function fc1,c2 admits an extension f ′c1,c2 ∈ H∞(D′). Since
f ′c1,c2 = fc1,c2 on U ′ and h(z) := supy∈r−1(z) |f ′c1,c2(y)| is a continuous plurisubharmonic function
on D,

|f ′c1,c2|
D
∞ = sup

z∈U ′
|f(z)| � 1.

Then the function f ′ := f ′c1,c2/Fc1,c2 ∈ O(D′) extends f and satisfies

|f ′(z)| � ec3e
c1do(z)

, z ∈ D′,

with c3 as in (6.8).

7. Proof of Theorem 2.10

Let r : MG →M be the regular covering of M satisfying condition (1.1) (for some M̃ and N) with
transformation group G. Let G1 ⊂ G be a subgroup of a finite index and let r1 : M1 → M be
the covering with fibre G/G1. Then there are coverings N1 and M̃1 of N and M̃ with fibre G/G1

such that M1 ⊂⊂ M̃1 ⊂ N1. Clearly this triple also satisfies condition (1.1). Thus, without loss of
generality we may assume that M := M1, G := G1, M̃ := M̃1 and N := N1, and so G ∈ T (M). The
latter means that G admits a linear representation ρ into GLk(C) and that the flat vector bundle
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Eρ on N associated with ρ is topologically trivial. Then the restriction Eρ|M̃ is topologically trivial.
Since M̃ is Stein, according to the Oka-Grauert principle (see [Gra58b]), Eρ|M̃ is holomorphically
trivial. In particular, ρ can be obtained as the monodromy of an equation dF = ωF on M̃ where ω is
a matrix-valued holomorphic 1-form on M̃ satisfying dω−ω∧ω = 0. Let ω̃ = r∗ω be the pullback of
ω on M̃G = r−1(M̃ ). (Here r : NG → N is the regular covering of N with the transformation group
G so that MG and M̃G are domains in NG.) Then there exists a function F̃ ∈ O(M̃G,GLk(C))
such that dF̃ = ω̃F̃ . This follows from the fact that the monodromy of the last equation is the
restriction of ρ to π1(MG) and so it is trivial (since π1(MG) ⊂ Ker ρ). Note that F̃ can be obtained
by Picard iteration applied to ω̃. Since M is a compact subset of M̃ (and so ω|M is bounded),
the Picard iteration produces, for some positive c = c(M,ω), the estimate

‖F̃ (z)‖2 � ecdo(z), z ∈MG, (7.1)

where ‖ · ‖2 is the l2-norm on GLk(C) and o ∈MG. (Here as before do is the distance from o in the
path metric induced by a Riemannian metric pulled back from N .) Moreover, for every z ∈ M̃G

there exists a matrix Cz ∈ GLk(C) such that F̃ (gz) = C−1
z ρ(g)Cz for any g ∈ G. These are standard

facts of the theory of flat connections. In particular, from the last identity we derive easily that F̃
separates points in every orbit of the action of G on MG.

Next, let f be the function from Corollary 2.2. Then by (7.1) we get (for some c1 = c1(f, α))

‖e−αf(z)F̃ (z)‖2 � c1e
(c−α)do(z), z ∈MG.

From here, arguing as in the proof of Corollary 2.2, we deduce that for a sufficiently large α
all entries of the matrix e−αf · F̃ belong to H2,1(MG) ∩ C(MG). Now the family consisting of
these entries and the function e−αf separate all points in any orbit of the action of G on MG; for
otherwise, there are x, y ∈ MG, y = gx, g �= 1, g ∈ G, such that e−αf(x)F̃ (x) = e−αf(y)F̃ (y) and
e−αf(x) = e−αf(y). However, this implies that F̃ (x) = F̃ (y), a contradiction. Finally, since M ⊂⊂ M̃

and M̃ is Stein, by the Remmert embedding theorem there are holomorphic functions h1, . . . , hl
from H∞(M) ∩ C(M) that separate all points in M . We set h̃i = e−αfr∗hi, 1 � i � l. Then, by
the definition, h̃i ∈ H2,1(MG) ∩C(MG) and so the family consisting of all h̃i, entries of e−αf F̃ and
e−αf separates all points in MG.

The proof of Theorem 2.10 is complete.
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