
8 
A stochastic process for string decay 

8.1 Introduction 

In Chapter 7 we considered the kinematics of string decay. At the same 
time we found and formulated a set of constraints stemming from causal­
ity, confinement and Lorentz covariance which are necessary for a consis­
tent description of the decay process. 

The intention of this chapter is to show that there is only one stochastical 
process for string decay which is consistent with the requirements derived in 
Chapter 7 and it contains essentially two parameters. The discussion is 
based upon results obtained in [19]. 

Once again only semi-classical physical arguments as well as probability 
concepts will be used during the discussion. We begin by listing the basic 
concepts which were derived in Chapter 7. They must all be incorporated 
into the stochastical process for which we are looking. 

A The process of string breakup corresponds to the production of a 
set of yo yo-states with given masses. Each yoyo-hadron is composed 
of a q-particle and a q-particle stemming from adjacent vertices (i.e. 
string breakup points) together with the string piece between them. 

B 1 Each pair from a vertex is massless (local energy-momentum conser­
vation); the particles start to move apart after their production, due 
to the force from the string field. 

B2 There is no interaction between the q and q of such a vertex after 
their production, i.e. the string force field ends on the endpoint 
charges (this implies confinement). 

C The separation of the vertices is space like with adjacent vertices, 
in particular, on hyperbolas determined by the yoyo-hadron masses 
(this implies causality conditions). 

146 

https://doi.org/10.1017/9781009401296.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401296.008


8.1 Introduction 147 

Dl All vertices therefore are of the same dynamical status. There should 
not be a different treatment of anyone of these decay situations. 

D2 Each vertex corresponds to the partitioning of the final state into one 
left-moving and one right-moving set of final-state yoyo-hadrons. 

E Each vertex pair contains the internal (flavor) quantum numbers of 
the vacuum (local conservation of internal quantum numbers). 

With regard to the ordering and the variables we have found: 

F A convenient ordering of the process is rank-ordering. Two hadrons 
of adjacent rank share a qq-pair produced at a vertex and therefore 
(according to property E above) contain the corresponding internal 
quantum numbers (e.g. flavors and antiflavors). Rank-ordering cor­
responds to an ordering along either the positive or the negative 
lightcone. The process should be independent of which lightcone we 
use. 

G Rank ordering also implies that the process can be described as a 
set of steps from one vertex to the next. The steps correspond to 
choosing a partitioning of the energy-momentum of the original qq­
pair P+o, P-o (which at the time of the breakup goes into field energy 
and is then given back to the produced particles). This implies total 
energy-momentum conservation. 

Hi A convenient Lorentz-invariant set of variables are the scaled light­
cone energy-momentum fractions P±j/P±o, with P±j the positive or 
negative lightcone energy-momentum of the rank-j yoyo-hadron. 
The P±j are carried by the q- or q-particle, respectively, at the time 
when they meet during the yoyo-cycle. 

H2 The steps referred to under property G above correspond to the 
space-time interval during which the particles have obtained that 
energy-momentum, i.e. dX±j = P±j/K where K is the string tension. 

It is necessary to introduce a further assumption, which later we will 
show to be consistent with the results. 

J Even when the energy of the original pair becomes very large the 
proper times of the vertices stay finite. 

At the end of the chapter we will bring up a different approach, the 
Artru-Menessier model, [26], which was further extended and improved 
by Bowler, [32] (it is therefore known as the AMB model). This model 
contains many similarities to the Lund model fragmentation formulas 
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2 1 

Fig. 8.1. The production of a hadron with mass m between two adjacent vertices 
1 and 2 (the notation is explained in the text). 

and it was conceived many years before we started our work. It was not 
until Artru, [24], pointed out to us that our considerations of hadrons 
produced in a linear potential (i.e. the yoyo string modes [14]) were similar 
to his results that we realised that these states actually correspond to some 
particular modes of the MRS. The two models, the Lund model and the 
AMB model, nevertheless contain major differences which we will briefly 
consider at the end of this chapter. 

8.2 The unique breakup distribution for a single hadron 

If the squared mass s = P+oP-o of the original qq-pair is very large then 
there will be many yoyo-hadrons produced, i.e. the process will contain 
many steps. A hadron produced at the centre will be little affected by the 
original pair and will be essentially independent of the many steps and 
production points that occur before its own production (or 'after'). We are 
introducing the idea that the process leads to a steady-state fragmentation 
behaviour. Property J, above, means that the density of hadrons will stay 
finite in the centre, as we will see further on. 

1 The distributions Hand f 

We now consider two adjacent vertices at the space-time points 1 and 2, 
a hadron of mass m being produced in between (see Fig. 8.1). 

We may describe this process as the result of taking many steps along 
the positive lightcone to reach vertex 1 and then one further step to reach 
vertex 2, thereby producing the hadron m. Another way would be to 
consider vertex 2 as the result of many steps along the negative lightcone, 
the production of m being one further step from 2 to 1. 
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In the first description the positive-lightcone energy-momentum remain­
ing before the hadron m is produced is given by W+l = KX+l. Similarly in 
the second description the negative-lightcone energy-momentum remain­
ing is given by the corresponding 2-component W-2 = KX-2. We are now 
going to make use of assumption J above and conclude that there is a 
finite probability of arriving at vertex 1 after many steps: 

(8.1) 

In this expression we have introduced hyperbolic coordinates rl,Yl instead 
of the lightcone variables for the vertex 1: 

1 (X+l) Yl = -log -
2 X-I 

(8.2) 

Owing to Lorentz invariance the distribution H can depend only upon r 1, 

the only Lorentz invariant available. From its definition it is obvious that 
r 1 is essentially equal to the squared proper time of vertex 1, K2X+1X_l = 
K2(ti - xi) (cf. Chapter 2). 

There is, of course, a corresponding probability of reaching vertex 2 
after many steps along the negative lightcone: 

(8.3) 

Given that we have arrived at vertex 1 the production of the hadron 
corresponds to taking a step to 2, with probability 

(8.4) 

of taking a fraction z+ of the remaining energy-momentum W+l defined 
above. Note that z+ is defined by a scaling with W +1 instead of with the 
original energy-momentum P+o. This is a convenient quantity to use at 
this point, its range 1 > z+ > 0 being independent of the other variables. 

The joint probability of being at vertex 1 and of producing the hadron 
is then given by the product of the two probabilities in Eqs. (8.1), (8.4). 
The hadron is the result of the last in a long row of steps along the 
positive axis. On the other hand it may also be considered as the result of 
the final step of many along the negative axis. Then the joint probability 
is 

(8.5) 

where z- is likewise scaled with respect to the energy-momentum remain­
der, in this case W -2. 

We are now going to equate these two probabilities. Surprisingly enough 
we will then be able to prove that there is a single (two-parameter) 
solution for Hand f. (To be more precise there will, in principle, be nf + 1 
parameters if there are nf different qq-flavors). 
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150 A stochastic process for string decay 

2 The derivation of the distributions 

We start by noting that the two quantities dYl,2 can evidently be taken 
to be equal and that there is a set of relations between the remaining 
variables rl,2 and z±. From Fig. 8.1 we obtain the relations 

rl = (1-L)W-2W+l 

r2 = W-2(1- Z+)W+l 

m2 = (L W -2)(Z+ W +d 
(8.6) 

Thus there are only two independent variables in the problem (assuming 
m2 as fixed), which we may take as e.g. z±. We obtain immediately 

rl = m2(1-L), 
z+z_ 

r2 = m2(1- z+) 
z+z_ 

dr l dz+ = dr2 dL 
z+ z_ 

(8.7) 

Therefore the requirement of equality introduced at the end of the last 
subsection reduces to 

H(rl(Z+,L))Z+!(Z+) = H(r2(Z+,L))L!(L) (8.8) 

where the z±-dependence has been explicitly written out. 
Taking the logarithm of this equation we obtain with h(r) = 10gH(r) 

and g(z) = log(z!(z)) 

h(rd + g(z+) = h(r2) + g(L) (8.9) 

If this expression is differentiated first with respect to z+ and then with 
respect to L (keeping the other one fixed, i.e. using partial differentiation) 
then all the g-dependence vanishes. We will be left with only the variations 
in h. The result is 

dh(rd r d2h(rd _ dh(r2) r d2h(r2) (8.10) 
dr 1 + 1 drI - dr 2 + 2 dq 

To obtain this result a z±-dependent expression has been divided out from 
both sides. Further the chain rule for differentiation has been used: 

ah(rd _ dh(rd arl _ dh(rd [ m2(1- L)] (8.11) 
~-~az+ -~ - L4 

An important property of the differential equation in Eq. (8.10) is that 
the left-hand side only depends on r 1 and the right-hand side only on r 2. 

The two r-variables are just as independent of each other as the two 
z±-variables. The z± can of course be expressed in terms of the r's by 
the equations above. Since the r's are taken as independently varying 
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quantities then the only way that the equation can be fulfilled is if both 
sides are equal to the same constant, to be called -b. 

Then the differential equation for h is 

d ( dh) dr r dr =-b (8.12) 

which implies 

h(r) = -br + a log r + log C (8.13) 

In this way we obtain for H(r) (neglecting the indices 1 and 2 as the 
equation works equally well for both) 

H(r) = Craexp(-br) (8.14) 

The parameters b, a and C are all constants of integration. While b (which 
has the dimension of an inverse squared mass) must be the same for 
all the vertices the (dimensionless) constants a and C may have different 
values. They may e.g. depend upon the flavor quantum numbers of the 
pair produced at a particular vertex. The constant C plays the role of 
a normalisation constant for the distribution H. We will later show the 
significance of a and b. 

If we introduce the results for h into the original equation for hand g, 
Eq. (8.9), it is possible to derive an expression for the original distribution 
f(z). This can be arranged so that all the dependence on z+ is on one side 
of the equation and all the L-dependence on the other: 

(8.15) 

Then we use the same argument based upon independence to deduce that 
both sides must be equal to the same constant. The result for f is 

1 ( bm2) f(z) = N ~(1 - z)a exp --z- (8.16) 

if there is only a single value of the a-parameter for all vertices. The 
quantity N is again a normalisation constant. When there are different 
values aa, ap at two adjacent vertices then we obtain, with a labelling such 
that the produced hadron stems from a step from vertex IX to vertex /3, 

fap = Nap ~za. (1 ~ z rp exp (b~2) (8.17) 

From Eq. (8.15) we conclude that the normalisation constants N12 and 
N21 are related to the normalisation of the distributions Hj, j = 1,2, by a 
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common factor Nc: 

N _ Nc 
12 - C 2al' 1m 

(8.18) 

The combined probability of being at vertex 1 and of taking the step Z+ 
towards vertex 2, thereby producing the hadron m, is (for equal values of 
a): 

CN [r(1- z+Wexp [-b (r + ;:) 1 drd:: 

_ CN [ 2 (1- L)(l- z+)] a (bm2 ) m2dz+dL - m exp ---
LZ+ Z+L (Z+L)2 

(8.19) 

From the second line we find that the distribution is the same if we decide 
to go 'in the opposite direction', i.e. express the distribution in terms of 
the variables relevant for the negative lightcone description. We leave it to 
the reader to derive the corresponding relations for the case when a and 
C are different at neighboring vertices. In particular it is useful to note 
that the product CNm2a becomes Nc as defined in Eq. (8.18). 

Phenomenologically it has not up to now been necessary in the Lund 
model to use different a-values to describe the data from the experiments. 
We will present an idea of Bowler, [32], in connection with the discussion 
of heavy flavor fragmentation in Chapter 13 which fits very nicely into 
the Lund model scenario and would require a different a-value for the 
first-rank hadron in the fragmentation of a heavy quark jet. 

If we should, nevertheless, require to use several a-values then it would 
be necessary to normalise the distributions H j (j being an index cor­
responding to different flavor values) to the relative occurrence of the 
different flavors in phase space and to choose the normalisation(s) of the 
distributions !jk in a similar way. We will come back to these normalisa­
tions in a later chapter. 

Thus, using a remarkably simple assumption, we have obtained a very 
precise result for the string-breaking process. For the Lund model to 
work it is essential that the expressions we have obtained really do fit the 
experimental data. 

It is, however, necessary, before we can compare with data, to extend the 
model. We need to remember that the hadronic momenta are measured in 
a three-dimensional world: therefore the model must be extended outside 
1 + 1 dimensions. We also need to prescribe a way of normalising our 
distributions in the case where we would like to describe several different 
flavors and different hadrons (and one should not forget that we should 
also be able to account for baryon-antibaryon production!). 
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Before doing all these things in later chapters we will provide an 
interpretation of the results we have obtained. 

3 The interpretation of the distributions Hand f 

We will start with the combined expressions occurring in the exponentials 
of the distributions in Eq. (8.19). For the case when we have arrived at 
vertex 1 and take a step z+ we obtain the negative exponential of 

b (rl + ;:) (8.20) 

From Fig. 8.1 we find that the sum multiplying the parameter b is the area 
which is spanned below the first meeting point of the two constituents 
(the ql-particle from vertex 1 and the zh-particle from vertex 2) of the 
hadron; it is evidently common to the two situations because it can just 
as well be described as follows (if we are at the vertex 2 and take step 
L): 

(8.21 ) 

We leave it to the reader to prove the equality of the expressions in Eqs. 
(8.20) and (8.21). 

Thus the exponential suppression is related to the size of an area charac­
teristic of the production process. We will come back to this property later 
on in Chapter 11 when we provide a quantum mechanical interpretation 
of the Lund fragmentation distributions. 

For the remaining non-exponential factors obtained by multiplying f 
and H in the two cases we obtain (for different art, ap) 

dz;d~_ (1 -L)a. (1 - z+)ap (8.22) 
z+z_ z_ z+ 

(besides some constant factors). This expression is evidently again sym­
metric between the two vertices and can also be interpreted as the size of 
certain areas. For the case when art = ap we obtain the symmetrical area 
marked area in Fig. 8.1 as the common factor, i.e. 

(area)a (8.23) 

From this result we conclude (parameter a being positive) that there is a 
(power-)suppression if we take too large a step in the production process, 
i.e. when anyone of the variables z± is chosen to be close to unity. 

We will later see that the appearance of the parameter a stems from 
the requirement of not using up all the remaining energy-momentum. 
The reason is, of course, that we are implicitly assuming in all our 
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considerations that we are far from the end or the beginning of the process. 
The distributions f and H are called inclusive distributions, i.e. they are 
characteristic of a single-production event independent of anything else 
that comes before or after. But there is, of course, a tacit assumption that 
there are other particles produced, over which we are summing. 

8.3 The production of a finite-energy cluster of hadrons 

We will in this section derive the distribution for a finite number of 
hadrons which are rank-ordered, for definiteness along the positive light­
cone. From the resulting formulas all other possible situations can be 
deduced. Such a group of particles is often called a cluster or a single jet. 
Together they will have a finite mass, conventionally called JS. 

The first-rank particle will then contain the flavor fo of the original qo 
together with the antiflavor Jl of the iiI produced at the first vertex. The 
second-rank particle will contain the flavor fI and antiflavor J2 of the ql 
from the first vertex and the ii2 from the second, etc. 

The probability of obtaining a first-rank meson with mass mOl and with 
a fractionallightcone component Zl of the total energy-momentum p+o of 
the original qo is according to Eq. (8.17) 

dZl a (1 - Zl ) aj (bm6l ) f(zddz l = N-zlo -- exp ---
Zl Zl Zl 

(8.24) 

In order to simplify the formulas we will from now on consider the case 
when all the a-values as well as the masses are the same. At the end of 
the derivation we will provide the formulas for the general case. We will 
also use the convention of writing Zoj for the lightcone energy-momentum 
fraction of the hadron of rank j, scaled with respect to the original quark's 
energy-momentum p+o; we call Zoj the 'observable' fraction. 

Thus the variable Zl in Eq. (8.24) equals Zol while for the second-rank 
hadron, which takes a fraction Z2 of the remaining energy-momentum, 
(1 - zodp+o, we have 

(8.25) 

The variable Z2 is again distributed according to the function f (for equal 
a-values cf. Eq. (8.16)). Therefore the combined distribution for produc­
ing first- and second-rank hadrons with observable fractional lightcone 
components Zol and Zo2 is 

( Zo2 ) dZo2 
f(zddzd(Z2)dz2 = f(zoddzod 1 1 

- Zol - Zol 

= (NdZOl ) (NdZ02 ) (1- zoda (1- Zo2 )a exp[-b(Al +A2)] (8.26) 
Zol Zo2 1 - Zol 
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Fig. 8.2. The production of the first- and second-rank hadrons, with the areas 
in the exponent of Eq. (8.26) indicated. 

The a-dependent factors obviously combine to give 

(1 - Zol - Zo2)a 

and the fractional differentials can be reexpressed as follows: 

( dzOI ) (dZ02) _ d2 d2 >:+( 2 2)>:+( 2 2) -- -- - Pol Po2U Pol -m u Po2- m 
Zol Zo2 

(8.27) 

(8.28) 

Here d2p = dp+dp_. We consequently introduce two new variables, in this 
case the negative-lightcone energy-momenta (note that P+oj = ZojP+o). 
This is done by the introduction of two ~-distributions which fix their 
values. We have used the following properties of the ~-distribution, which 
was also used in Chapter 3 with the requirement that C = D / B : 

dB 
dBdC~(BC - D) ~ -

B 
(8.29) 

The arrow implies that the left- and right-hand sides are equal if we 
actually perform the integral. We shall always use an equality sign even 
if we do not perform the integrals. The right-hand side of Eq. (8.28) 
explicitly exhibits the Lorentz invariance of the phase-space factors. The 
factor Al + A2 in the exponential in Eq. (8.26) corresponds to the two 
regions indicated in Fig. 8.2 (the interpretation as an area size is given to 
the exponential factor in the fragmentation function in Eqs. (8.20), (8.21)). 

From this result we may already guess what the result will be if we 
produce n particles with energy-momenta {P+oj} == {zojP+o,P-oj}: 

dP(poh· .. , Poo) '" (1 -t, ZOj) 0 t! N d'Pojb+(p;j - m') exp( -bA j). 

(8.30) 
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Fig, 8.3, An n-particle cluster with notation as explained in the text 

This formula is straightforward to prove; we will leave this to the 
reader. 

The situation after n steps is depicted in Fig, 8.3. We note firstly that 
the total area in the exponent, 'L,J=l Aj == A tot , can be subdivided into two 
parts, 

Atot = Arest + r (8,31) 

as shown in the figure, The quantity r then corresponds to the proper 
time (cf. Eq. (8.2)) of the 'last' vertex of the cluster. 

Secondly we note that it seems as if the system of the n particles 
could have been produced just as well by the original q-particle and an 
antiparticle lin. This pair would then have started out at the point On in 
Fig. 8.3. We know in fact that the cluster is part of the system produced 
from the force field of the original qq-pair which started at the point 0 
and produced the pair qnqn at the vertex Vn. But we would not have that 
knowledge unless we had been able to observe some parts of the system 
outside the cluster! 

The energy-momentum of the 'new' paIr is then (W+n, W-n) where 
W+n = ZP+o, Z == 'L,J=l Zoj and 

n m2 
W-n=L:_l­

j=l ZojP+o 
(8.32) 

The formulas for W ±n are a somewhat complex way of writing the total 
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energy-momenta of all the particles in the cluster: W±n = ~j=l P±oj. We 
conclude that the total squared mass of our n-particle system is 

(8.33) 

The variable s is also the size of an area according to Fig. 8.3. Using this 
fact it is easy to convince oneself that the area r defined in Eq. (8.31) is 
given by 

r = s(l- z) (8.34) 
Z 

which we again leave to the reader to prove. 
Consequently all the interesting external properties of our n-particle 

system (i.e. its properties with regard to the original origin 0) are given by 
the two Lorentz invariants sand z. It is useful to introduce these variables 
into the formulas and define (using Eq. (8.30)) 

dP(z,s;Pol, ... 'Pon) = dzt> (z- tZOj) dst> (s- tm2~) 
j=l j=l ZO] 

XdP(Pol, ... ,Pon)' (8.35) 

As z > 0 we may change the first t>-distribution as follows: 

dzt> (z - t ZOj) = dz t> (1- t ZOj) 
. 1 z . 1 Z ]= ]= 

(8.36) 

Then the two new t>-distributions (i.e. the s-definition and the above 
reorganised z-definition) only depend upon the internal variables 

_ Zoj _ P+oj 
Uj=- ---

Z W+n 
(8.37) 

These would be the scaling variables if we consider the cluster as arising 
from the qqn-pair produced at the space-time point On in Fig. 8.3. We 
then obtain for the expression in Eq. (8.35) 

dz ( n ) ( n m2) dP(Z,S;pol,···,Pon) = ds-(l-z)a exp(-br}t> 1-LUj t> s-L-. 
Z j=l j=l u] 
n 

X II N d2pOjt>+(p~j - m2) exp( -bArest) 
j=l 

(8.38) 

By a further 'division trick' the two t>-distributions can be written as 
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follows: 

<5 (1-t Uj) <5 (S - t :2) 
J=l J=l J 

n 

== <52(Prest - LPoj) 
j=l 

(8.39) 

where the quantity Prest is the energy-momentum of the n-particle system 
(Prest = (W +n, W -n)). The superscript 2 on the <5 at the end of Eq. (8.39) 
indicates that here we use (the lightcone-component version of) the two­
dimensional energy-momentum conservating <5-distribution. 

In this way we have been able to partition the formula for the production 
probability of an n-particle cluster with a given endpoint (squared) proper 
time r, Eq. (8.34), and a given total energy-momentum W±n with a squared 
mass s = W +n W -n, into two parts. These will be called, according to the 
notions introduced above, the external part 

dPext = ds dz (1 - z)a exp( -br) (8.40) 
z 

and the internal part: 
n n 

dPint = II N d2pOj<5+(p~j - m2) exp( -bArest)<52(L Poj - Prest) (8.41) 
j=l j=l 

The external part corresponds to the (non-normalised) probability that 
the cluster as defined above will occur, while the internal part in the same 
way corresponds to the probability that the cluster will decay into the 
particular channel considered, containing the given n particles. 

The general result for an n-particle cluster which starts at a vertex with 
the parameter ao and ends at a vertex with an is, for the external part, 

dPext = ds ~z zao (1 ~ z) an exp( -br) (8.42) 

The corresponding general formula for the internal part is 

_ IIn (dUj) aj_l-aj dPint - Nj-1,j -. Uj 
j=l UJ 

x exp( -bAresd<5 (1 -t U j) <5 (s -t m~_l,j) 
J=l J=l J 

(8.43) 

where we have kept the scaling variable description. We leave it to the 
reader to derive Eqs. (8.42), (8.43). 
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The result in Eq. (8.41) is evidently completely symmetric with respect to 
the different particles and therefore it has an obvious left-right symmetry 
with respect to the lightcones. This property is not so obvious in Eq. (8.43). 
We note, however, that the negative-lightcone variables Vj corresponding 
to the u j obviously should fulfil 

2 
m· l' 

v·u·-~ ] ] - S (8.44) 

(these are the mass-shell conditions). Therefore a change from the variables 
Uj to Vj can be carried through in a straightforward manner in Eq. (8.43). 
We obtain for the terms in Eq. (8.43): 

duo dv' 
_J~_J 

Uj Vj 

In the second line we have absorbed a (j, j - 1 )-dependent mass factor 
into the normalisation constant Nj_l,j and in the third line we have again 
made use of a 'division trick' for the two c)-distributions. 

Obviously the result in Eq. (8.43) is, after these operations, the same in 
the urlanguage as in the vrlanguage apart from the fact that we are now 
ordering the vertices as j, j - 1, ... along the negative lightcone. 

In the following chapters we will investigate the internal- and external­
part formulas in great detail and also exhibit several different interpreta­
tions from both quantum field theory and statistical mechanics. 

8.4 The Artru-Menessier-Bowler model 

We will now briefly consider a different approach to the decay of a high­
mass string, the AMB model, [26], [32]. Here the idea is to take classical 
probability arguments, which also occur in the Lund model derivation as 
presented above, as far as they can go. There are two basic rules. 

AMB1 There is a constant probability f!}J per unit time and per unit 
length in the string's space-time history that it may break up by the 
production of qq-pairs. 

AMB2 The string cannot break up further in the forward lightcone with 
respect to an 'earlier' vertex. 
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160 A stochastic process for string decay 

The procedure can be visualised as the game of stochastic dart-throwing 
on a target corresponding to the original string's space-time history. The 
landing of each dart then produces a possible vertex and one accepts those 
vertices which have no other vertex in their prehistory. 

A continuous mass spectrum will then be obtained for the produced 
particles. There is then a third rule to interpret the result. 

AMB3 Using AMB1 and AMB2 one obtains afirst generation of breakups 
producing a first generation of yoyo-hadrons. These states are then 
considered as 'resonances' and will be allowed to decay again, inde­
pendently, according to the same rules. 

If we go back to Fig. 8.1 then we conclude that one will obtain (just as 
for a radiative decay) that the probability for an allowed vertex at a point 
(r1,Y1) is 

(8.46) 

where b = &J / ,,2. We will consider this result in more detail below when 
we compare to the Lund model results. 

Similarly there is a joint probability of having two primary neighboring 
AMB vertices at the two points 1 and 2 in Fig. 8.1. It is equal to 

dPAMB(12) = dPAMB(l)dPAMB(l -+ 2) 

dPAMB(l -+ 2) = b(W+1dz+)(W-2dL)exp [-b(W+1)(LW-2)] (8.47) 

with dPAMB(1 -+ 2) the conditional probability that given 1 we may also 
obtain 2. We are using the notation of Fig. 8.1 and the Eqs. (8.6). This 
time there is no mass-shell condition to constrain the location of the 
two vertices 1 and 2. Therefore we need all four (independent) quantities 
r 1, Y1, z+, L. (Note that due to Lorentz covariance there is no dependence 
on the rapidity variable Y1 in the formulas.) 

The probability distribution dPAMB(l -+ 2) contains the negative expo­
nential of the region (cf. Eq. (8.6» 

(8.48) 

with m the mass produced between the adjacent vertices 1 and 2; together 
the exponentials of the two distributions dP(l)dP(l -+ 2) contain the 
symmetrical surface W+1 W-2 from Eqs. (8.20), (8.21). Therefore the joint 
distribution dP(12) is symmetric with respect to vertices 1 and 2. 

The distribution dP AMB(12) can be reformulated into a distribution in 
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z+ and the mass m as 

dP (12) _ bdz+dm2 (bm2) 
AMB - exp --

z+ z+ 
(8.49) 

From this expression it is then possible to obtain the distribution in the 
mass m by means of an integral over z+: 

dP -101 bdz+ (bm2) _ bE (b 2) - - --exp -- - 1 m 
dm2 0 z+ z+ 

(8.50) 

where E1 is the exponential integral of the first rank. This function is 
singular when m2 ~ 0, which means that there is a large probability that 
the string in the AMB model breaks up into very tiny pieces. It is then 
necessary to introduce a lower cutoff in the mass spectrum. Such a cutoff 
is difficult to introduce in a consistent way if one wants to keep to the 
classical probability concepts which are at the basis of the model. It is 
nevertheless possible to interpret the resulting spectrum in a way similar to 
the resonance spectrum suggested by Hagedorn, [76] (although Hagedorn 
obtained a linear dependence upon the masses in the exponent). 

The results of the AMB model are evidently (apart from the continuous 
mass spectrum) similar to the results of the Lund model. It contains an 
iterative structure based upon an area suppression law. It is, however, not 
possible to obtain the Lund model relations by the use of the probability 
concepts in the AMB model. 

To see this, suppose that we specialise the AMB model to particular 
masses, e.g. a single mass with a width c5m2 around m2. This would mean 
that a new vertex would only be allowed in a band along the mass 
hyperbola corresponding to m. If we are at vertex V and we are looking 
for the next vertex H in that band we may subdivide the band into many 
small boxes (see Fig. 8.4) and call them 1,2, ... , n .... The boxes have areas 
(c5a)j and the probability of finding a vertex in such a box is equal to 
b( c5a) j. 

Then the probability of not finding a vertex in the first n boxes will be 

P[1- b(c5a)j] ~ exp [- J bd(c5a)] 
J=1 

(8.51) 

Here the right-hand expression is the limit found when we subdivide the 
band indefinitely, i.e. when n ~ 00. The expression for d(c5a) is c5m2dz+/z+ 
i.e. the width times an infinitesimal angular segment along the hyper­
bola. 

Therefore the probability of finding a vertex at the value z+ without 
having found it for any larger value of z+ (i.e. for any 'earlier' vertex, 
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Fig. 8.4. The allowed region for finding the next vertex H, after the vertex 
produced at V, is a band around a hyperbola. This region can be subdivided into 
small boxes as discussed in the text. 

closer to the origin, see Fig. 8.4) is 

Mm2dz+ (b;: 211 dZ~) b;: 2d Mm2-1 ---- exp - um -,- = um z+z+ 
z+ z+ z+ 

(8.52) 

This corresponds to a power law in Z+, owing to the fact that we no 
longer have a two-dimensional surface on which to apply the probability 
rule. 
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