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History effects play a significant role in determining the velocity in boundary layers
with pressure gradients, complicating the identification of a velocity scaling. This work
pivots away from traditional velocity analysis to focus on fluid acceleration in boundary
layers with strong adverse pressure gradients. We draw parallels between the transport
equation of the velocity in an equilibrium spatially evolving boundary layer and the
transport equation of the fluid acceleration in temporally evolving boundary layers with
pressure gradients, establishing an analogy between the two. To validate our analogy,
we show that the laminar Stokes solution, which describes the flow immediately after
the application of a pressure gradient force, is consistent with the present analogy.
Furthermore, fluid acceleration exhibits a linear scaling in the wall layer and transitions to
logarithmic scaling away from the wall after the initial period, mirroring the velocity in an
equilibrium boundary layer, lending further support to the analogy. Finally, by integrating
fluid acceleration, a velocity scaling is derived, which compares favourably with data
as well.

Key words: turbulent boundary layers

1. Introduction
The study of turbulent boundary layers (TBLs) is a fundamental aspect of turbulence
research: TBLs enhance momentum and heat transfer rates compared to their laminar
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counterparts, and play a significant role in determining the aerodynamic performance
of aircraft, turbomachines, wind turbines, and underwater vehicles. There has been
much work on zero-pressure-gradient (ZPG) TBLs (George & Castillo 1997; Smits
et al. 2011), reaching a consensus on the scaling of the velocity in the overlap region
(Marusic et al. 2013):

U+ = 1
κ

ln(y+) + B for 1 � y+, y/δ � 1, (1.1)

where U is the mean velocity, y is the wall-normal coordinate, κ ≈ 0.4 is the von
Kármán constant, B ≈ 5 is another constant, δ represents an outer length scale, such as
channel half-height, boundary layer height or pipe radius, and the superscript + denotes
normalisation by the viscous units uτ and δν = ν/uτ . Furthermore, uτ = √

τw/ρ is the
friction velocity, ν is the kinematic viscosity, τw is the wall-shear stress, and ρ ≡ 1 (unit)
is the fluid density. The scaling in (1.1), known as the logarithmic law of the wall, involves
only local flow variables, and will be termed ‘velocity scaling in its conventional sense’ in
this paper.

The existence of the law of the wall relies on the existence of an inner layer (Pope 2000),
within which we have

0 = ∂

∂y

(
ν
∂U

∂y

)
− ∂

〈
u′v′〉
∂y

, (1.2)

where the left-hand side represents the material derivative dU/ dt and is 0, and the right-
hand side contains the viscous stress and the Reynolds stress terms. Here, u′ and v′ are
the velocity fluctuation in the streamwise and wall-normal directions, and 〈·〉 denotes an
ensemble average. By regarding the Reynolds stress as a ‘stress’ (rather than fluid motion),
(1.2) suggests that the net force in the inner region is approximately 0.

The complexity of TBLs increases significantly under the influence of pressure gradients
(PGs). PG TBLs are encountered on aircraft wings during takeoff and landing, around the
curved surfaces of wind turbine blades, and on the rear sections of underwater vehicles.
The presence of a PG can induce flow separation, impacting stability, lift and drag
characteristics (Simpson 1989). Such PG TBLs have also been the focus of many works.
However, unlike their ZPG counterparts, there is no well-established velocity scaling for
PG TBLs.

Before any discussion on the velocity scaling for PG TBLs, a more fundamental question
is the existence of a region where a velocity scaling in the conventional sense can exist. As
the net force on a fluid parcel is no longer 0 in PG TBLs, Newton’s second law dictates

F = ma (1.3)

and

�U =
∫

a dt =
∫

F/m dt. (1.4)

Thus fluid velocity or the change therein becomes a cumulative function of the net force
over time, rather than being directly correlated to the local force. Here, F is the net force
on a fluid parcel, including the imposed PG and the viscous and Reynolds stresses, m is
the mass of the fluid parcel, a is the acceleration of the fluid parcel, and t is time.

Perry et al. (1966), among others, posited the existence of a region in PG TBLs where
the velocity is determined locally. They divided the PG TBL into a ‘wall region’ and a
‘history region’. In the wall region, a velocity scaling in its conventional sense exists.
Although the exact mechanism of a wall region is still a research topic, its existence can
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be argued through the concept of (quasi)-equilibrium boundary layers (EBLs). Kader &
Yaglom (1978) argued that a TBL is in equilibrium if the freestream velocity U∞ and the
PG Px vary slowly in the flow direction. Townsend and Mellor & Gibson introduced self-
similarity of the mean velocity defect as the criterion for equilibrium (Mellor & Gibson
1966; Townsend 1976), showing that the flow is at equilibrium if the freestream velocity
follows the power law U∞ = C(x − x0)

m , where C is a constant, x0 is a virtual origin, and
the power law exponent is m > −1/3. It follows from this definition that some types of
favourable PG (FPG) TBLs and mild adverse PG (APG) TBLs are at equilibrium (Skote
et al. 1998; Lee & Sung 2009; Lee 2017). Evidently, ZPG TBLs are at equilibrium as
well (Schlatter et al. 2009; Bailey et al. 2013). In these flows, a wall region exists, and the
velocity can be expressed using local flow variables.

This study addresses primarily large APGs, and a wall region is not essential.
Nonetheless, examining existing literature on the topic will be instructive. Perry et al.
(1966), alongside other researchers (Galbraith et al. 1977; Alving & Fernholz 1995;
Johnstone et al. 2010), have documented the persistence of the logarithmic law of the wall
in the wall region, albeit with a diminished logarithmic region compared to ZPG TBLs
(Monty et al. 2011; Vinuesa et al. 2014). Monkewitz & Nagib (2023) and Vishwanathan
et al. (2023) observed variations in the constants of the logarithmic law as influenced by
the PG. Moreover, Monkewitz & Nagib (2023), among others (Yang et al. 2015; Luchini
2017; Lv et al. 2021), have explored the inclusion of a linear term in the velocity scaling.
In addition to the logarithmic law and its variations, some studies have identified a half-
power law prevailing above the logarithmic region (Stratford 1959; Perry et al. 1966;
Kader & Yaglom 1978; El Telbany & Reynolds 1980; Coleman et al. 2018). Wei et al.
(2023) further established a scaling law for velocity in the wall-normal direction. Efforts
to unify velocity scalings across the viscous sublayer, buffer layer, logarithmic layer and
square-root layer have also been reported, contributing to a more cohesive understanding
of velocity dynamics in TBLs (Materny et al. 2008; Dróżdż et al. 2015; Knopp et al. 2021;
Knopp 2022; Romero et al. 2022a,b; Subrahmanyam et al. 2022).

While (quasi-)equilibrium is not hard to fathom at the limit of ZPG, Bobke et al. (2017),
among others (Vinuesa et al. 2017; Parthasarathy & Saxton-Fox 2023), highlighted clear
history effects in PG TBLs, even at moderate PGs, challenging the existence of a wall
region, and by extension, the existence of any velocity scaling in the conventional sense.
For instance, Bobke et al. (2017) found that the velocity profiles in two TBLs differ due
to different histories of the imposed PG even though the Clauser PG parameters and the
friction Reynolds numbers match. In light of this significant role of history effects and the
complexity of flow history itself, Pozuelo et al. (2022) proposed to establish a family of
baselines for non-equilibrium PG TBLs . They followed Clauser (1954) and suggested that
a good baseline could be PG TBLs where the Clauser PG parameter

β = δ∗ Px

τw

(1.5)

does not change, where δ∗ is the displacement height, and Px is the PG. It is worth noting
that velocity profiles in such PG TBLs were termed ‘equilibrium profiles’ by Clauser
(1954), which is a rather odd use of the word ‘equilibrium’. In the same paper, Clauser
also defined EBLs as TBLs for which the profiles are identical when (U − U∞)/uτ is
plotted against y/δ, which is a more typical use of the word ‘equilibrium’. This paper
does not involve or need the concept of equilibrium, but it is still instructive to know that
the word has different bearings in different papers and even in the same paper. Reynolds
number effect is also critical. The increasing Reynolds number was known to lead to a
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decreasing APG effect (Sanmiguel Vila et al. 2017; Tanarro et al. 2020; Pozuelo et al.
2022; Deshpande et al. 2023).

Given the difficulty in defining any velocity scaling in the history region, there is limited
discussion on the behaviours of the velocity scaling therein. Chen et al. (2023a) seems to
be the only work that claimed to have found a velocity scaling in the history region. In
that work, the authors proposed a velocity transformation that maps the velocity profiles
in the history region back to the logarithmic law of the wall. The transformation contains
an integral of the total shear stress, through which it accounts for history effects in the
flow. However, since the integral cannot be evaluated locally, the potential utility of the
velocity transformation in turbulence modelling is limited.

Based on this literature review, we may conclude the following. The existing literature
predominantly focuses on velocity: on the one hand, velocity scaling in the conventional
sense can be anticipated in the wall region, although the exact form of the scaling is still
a research topic; on the other hand, no velocity scaling in the conventional sense exists in
the history region. This study moves away from the conventional velocity analysis to focus
on fluid acceleration, i.e. D̄U/D̄t and its scaling in PG TBLs. In particular, our approach
involves making an analogy between the velocity in a ZPG boundary layer and the fluid
acceleration in a PG boundary layer.

In preparation for the ensuing discussion, we highlight several key considerations. First,
from the standpoint of turbulence modelling, APGs present a more compelling subject
of study than FPGs. Perry et al. (1966) noted that the existing wall law is adequate for
FPG TBLs. Kays et al. (1980) demonstrated that models based on a ZPG boundary layer
wall law work well under conditions of strong acceleration and very mild deceleration,
with discrepancies primarily emerging in scenarios involving APGs – a finding recently
reaffirmed by Volino (2020). Spalart & Watmuff (1993) further articulated the greater
practical and theoretical relevance of APGs over FPGs. In alignment with this research
trajectory, our study will concentrate on large APGs, where the presence of a wall region is
not anticipated. Second, we introduce the laminar Stokes solution (Schlichting & Gersten
2016), which is a very good approximation of the mean flow when a fully developed
channel flow is subjected to a suddenly imposed PG, although for a limited time:

U

At
= 1 + 2√

π
ŷ exp(−ŷ2) − (1 + 2ŷ2) erfc(ŷ). (1.6)

Here, A is the bulk fluid acceleration, ŷ = y/(2
√

νt) is a self-similarity variable, and
erfc(·) denotes the complementary error function. Finally, we note that the method
of analogy is prevalent in turbulence research, drawing parallels between turbulent
phenomena and other more well-understood physical phenomena, both within and beyond
the field of turbulence. Examples include: the Reynolds analogy, which relates the
turbulent transfer of momentum to the turbulent transfer of heat (So & Speziale 1999);
Prandtl’s mixing length theory, which attempts to model the turbulent viscosity using an
analogy to molecular viscosity (Prandtl 1925; Bradshaw 1974); the Raupach’s mixing layer
analogy, which relates the mixing layer and the shear layer formed at the top of surface
roughness in rough-wall boundary layers (Raupach et al. 1996; Zhang et al. 2022); and
the analogy between the turbulent transient channel flow experiencing a step increase
in its Reynolds number and the laminar–turbulent bypass transition (He & Seddighi
2013, 2015). The analogy in He & Seddighi (2013, 2015) highlights parallels between
temporally evolving channel flow and spatially developing boundary layer flow, and as
we will see, is particularly relevant to this study. A similar process was found in rapidly
accelerating/decelerating turbulent pipe flows (He et al. 2016; Guerrero et al. 2023).
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Figure 1. Schematic of the model problem: (a) the spatially developing boundary layer (BL) flow subjected to
an APG; (b) the temporally evolving channel flow with an APG. The IBL is initially laminar, then transitions
to turbulence, and may eventually separate.

Taylor & Seddighi (2024) extended the analogy in He & Seddighi (2015) to the turbulent
channel with intermediate- and low-frequency pulsations.

The rest of the paper is organised as follows. The model problem is described in § 2.
Details of the log-layer analogy are presented in § 3, with validation results in § 4. Finally,
concluding remarks are given in § 5.

2. Model problem
Consider the scenario of a spatially developing TBL influenced by PGs. The complexity
arises from the turbulent nature of the flow and from the potentially complex patterns of
the PG force, which may be represented as

Px = P0 +
∑

i

Pi cos(ki x + φi ), (2.1)

where Px is the PG force, Pi is the amplitude, ki is the wavenumber, x is the streamwise
coordinate, and φi is a phase. Analysing the interplay among the many scales that make
up the PG and the many scales in a boundary layer presents a considerable challenge – and
is unnecessary. Here, we limit ourselves to a constant PG

Px = P0. (2.2)

The model flow problem is illustrated in figure 1(a), depicting an initial EBL subjected
to an APG. This leads to the development of an internal boundary layer (IBL) (Smits
& Wood 1985; Baskaran et al. 1987; Garratt 1990; Li et al. 2022). The IBL is
initially laminar, and its behaviour can be described by the Stokes solution. It then
undergoes a transition before becoming turbulent downstream, where flow separation may
occur.

The discussion thus far has centred on spatially developing boundary layers; however,
the principles discussed are equally applicable to temporally evolving boundary layers.
Temporal simulations, particularly of wakes and mixing layers – which are traditionally
conceptualised as spatially developing phenomena – have demonstrated considerable
effectiveness (Brucker & Sarkar 2010; de Stadler et al. 2010; de Bruyn Kops & Riley 2019;
Li et al. 2024). Particularly relevant to this study is the exploration of temporal simulations
as alternatives to spatially developing ZPG TBLs in Kozul et al. (2016). Additionally,
temporal simulations of PG TBLs have been reported, notably in studies by He & Seddighi
(2015), Mathur et al. (2018) and Lozano-Durán et al. (2020), where a common focus is on
the dynamics of a fully developed channel flow when subjected to a suddenly imposed PG.
In the context of temporal PG TBLs, as illustrated in figure 1(b), the representation of the
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PG force adapts to incorporate time, leading to

Px = P0 +
∑

i

Pi cos( fi t + φ′
i ), Px = P0 (2.3)

instead of (2.1) and (2.2). Here, fi is the frequency.
Comparing a PG TBL and an accelerating or decelerating channel, the most notable

difference lies in the outer length scale. In a PG TBL, the outer length scale evolves
with the flow, whereas in a channel, it remains fixed at the channel half-height. This
difference becomes more pronounced when the flow encounters an APG. The PG induces
a negative ∂U/∂x , and due to continuity, a positive ∂V/∂y. The resulting increase in wall-
normal velocity thickens the boundary layer, producing a ‘straining effect’ in the outer
layer (Coleman et al. 2000, 2003). However, the thickening of the boundary layer has
minimal influence on the properties of the inner layer, as the inner layer, by definition, is
independent of the outer scale. Consequently, an analogy can be drawn between the inner
layer of the spatially developing boundary layer and that of the temporally developing
boundary layer. The focus on the inner layer here is motivated by the emerging paradigm
of computational fluid dynamics for fluids engineering, where turbulence in the outer layer
is resolved directly, and the flow in the wall layer is modelled – often via some sort of mean
flow scaling (Bose & Park 2018).

3. Theory
In this section, we present the analogy between the velocity in a ZPG TBL and the flow
acceleration in a PG TBL.

3.1. The log-layer analogy
We begin by examining the mean flow equation

D̄U

D̄t
= −Px + ν

∂2U

∂y2 − ∂
〈
u′v′〉
∂y

. (3.1)

Here, D̄/D̄t = ∂/∂t + U ∂/∂x + V ∂/∂y is the mean substantial derivative (Pope 2000).
In the absence of any PG force, the equation above becomes

D̄U

D̄t
= ν

∂2U

∂y2 − ∂
〈
u′v′〉
∂y

, (3.2)

and it describes the development of a ZPG boundary layer. Define fluid acceleration

g = 1
A

D̄U

D̄t
, (3.3)

where A is the acceleration outside the IBL. Notice that g has no dimension. In this
study, we focus on a temporally evolving TBL, therefore g becomes (∂U/∂t)/A. By
differentiating (3.1) with respect to time, we derive the governing equation for g:

∂g

∂t
= ν

∂2g

∂y2 + ∂

∂y

(
− 1

A

∂
〈
u′v′〉
∂t

)
. (3.4)

The PG emerges as a critical flow parameter. Define

ζ = −Aν/(τw,0/ρ)3/2. (3.5)
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This parameter is analogous to the Clauser PG parameter (Clauser 1956), but instead of
the displacement height, we employ the viscous length scale for non-dimensionalisation.

We see that (3.2) and (3.4) have similar forms, suggesting an analogy between the
velocity U in a ZPG TBL and the fluid acceleration g in PG TBLs. In particular,
since

U = f1

(
ν, ν

∂U

∂y

∣∣∣∣
w

, y

)
for y � δ, (3.6)

in a ZPG TBL, by the analogy, we should have

g = f2

(
ν, ν

∂g

∂y

∣∣∣∣
w

, y

)
for y � δ, (3.7)

in a PG TBL. Here, f1 and f2 are generic functions, and the subscript w denotes quantities
evaluated at the wall. Applying dimensional analysis to (3.6) gives

U = f1

(
y

ν

√
ν
∂U

∂y

∣∣∣∣
w

)
, (3.8)

in a ZPG TBL, and similarly,

g = f3(η), η =

(
ν

∂g

∂y

∣∣∣∣
w

)
y

ν
. (3.9)

Before we proceed further, we study the limit of Px approaching 0, i.e. the ZPG TBL, a
limit that is fairly well understood. A direct consequence of (3.3), (3.5) and (3.9) is

D̄U+

D̄t+
= ζ f3(η) = −Aδ

u2
τ

f3(η)

Reτ

. (3.10)

where Reτ = uτ δ/ν is the friction Reynolds number. When Px = 0, A = −u2
τ /δ and

D̄U+/D̄t+ ∼ 1/Reτ , which is consistent with the result in Morrill-Winter et al. (2017).

3.2. Scaling of the acceleration g and the velocity U

We now examine (3.9). It is easy to verify that (3.9) is consistent with the Stokes
solution (1.6):

g = erf
(√

π

2
η

)
. (3.11)

The Stokes solution is valid when the IBL is laminar. When the IBL becomes turbulent,
we anticipate the scaling

g =

⎧⎪⎪⎨
⎪⎪⎩

η for η � 0.1,
1
κg

ln(η) + Bg for 0.1 � η ≤ eκg(1−Bg),

1 for η ≥ eκg(1−Bg),

(3.12)

mirroring the mean velocity U in a ZPG TBL. The first line in this equation is the scaling
in the sublayer, which can be confirmed directly by evaluating (3.4) at the wall as follows.
Because g = 0 at the wall, ∂g/∂t = 0. Also, because

〈
u′v′〉= O(y3), ∂2 〈u′v′〉 /∂y ∂t = 0
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at the wall. Consequently, (3.4) simplifies to

ν
∂2g

∂y2

∣∣∣∣
w

= 0 (3.13)

at the wall, leading directly to the sublayer scaling

g = g|w + ∂g

∂y

∣∣∣∣
w

y = η. (3.14)

The second line in (3.12) is the scaling of g in the inertial layer. The two constants κg
and Bg are analogous to the two constants κ and B in the law of the wall, albeit without
implying their universality. The selection of η = 0.1 as a threshold between linear and
logarithmic scaling is based on the rationale that the viscous sublayer should be unaffected
by freestream conditions, necessitating g � 1 in the sublayer. With the choice g � 0.1, we
have η = g � 0.1 in the sublayer. The exact location of transition between the linear and
logarithmic scalings depends on the balance between the two terms in (3.4). When the
bulk flow acceleration is dominant, the transition from the linear scaling to the viscous
scaling occurs at a large η; conversely, when the turbulent term is dominant, the transition
occurs at a small η – which we will verify against empirical data in § 4.2. Finally, the last
line in (3.12) represents the transition from the IBL to the outside boundary layer, where
the acceleration is constant. The transition location is determined by assuming that g is
monotonically increasing.

The scalings of the fluid acceleration in (3.12) have implications for the scaling of the
velocity. Integrating g, we should have

U (y, t) = U (y, t2) +
∫ t

t2
A g(η(y, t)) dt, (3.15)

where t2 marks the time when the IBL becomes turbulent.

4. Validation

4.1. Validation data
We focus on temporally evolving TBLs, employing direct numerical simulations (DNS) to
examine a fully developed turbulent channel flow subjected to a suddenly imposed APG.
The flow is transient and is controlled by the Reynolds number, i.e. Reτ,0 = δuτ,0/ν,
and the magnitude of the APG (on top of the PG that drives the initial flow), i.e.
Π = Pxδ/τw,0 + 1. Here, δ is the channel half-height, and the subscript 0 denotes the
state before the PG is applied. Table 1 tabulates the details of our DNS, including
Reτ,0, Π , ζ , the simulation time, and the time it takes for incipient separation. The bulk
flow acceleration is A = −(Px + τw,0)/(ρδ), and ζ = Π/Reτ,0. Notice that ζ ∼ Re−1

τ

for a given PG, implying that the effects of PGs decrease with the Reynolds number
(Tanarro et al. 2020; Deshpande et al. 2023). We explore two distinct Reynolds numbers,
Reτ,0 = 544 and 1000, across a range of PG forces, with Π values extending from 5 to 20.
The flow maintains homogeneity in both the streamwise and spanwise directions, allowing
for averages to be taken across these axes. Additionally, ensemble averages are computed
from eight independent realisations to ensure statistical convergence. The numerics of our
DNS code are identical to those in Lee & Moser (2015). Further details of the code can
be found in Chen et al. (2023b) and Graham et al. (2016), and are not repeated here for
brevity. The domain sizes are listed in table 1, which are larger than the minimal channel
in Lozano-Durán & Jiménez (2014). Figure 2 illustrates the grid resolutions as the flow

1010 A13-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.313


Journal of Fluid Mechanics

Case Reτ,0 Π ζ Lx × L y × Lz Nx × Ny × Nz t+e t+sep

R544A5 544 6 0.011 4π × 2 × 2π 576 × 243 × 540 1600 1495
R544A10 544 11 0.020 4π × 2 × 2π 576 × 243 × 540 1000 696
R544A20 544 21 0.039 4π × 2 × 2π 576 × 243 × 540 1000 304.1
R1000A10 1000 11 0.011 8π × 2 × 3π 2048 × 512 × 1536 1400 1392
R544A10-20 544 – – 4π × 2 × 2π 576 × 243 × 540 1000 445.5

Table 1. Details of the DNS. The nomenclature is R[Reτ,0]A[Px/τw,0]. We list the initial Reynolds
number Reτ,0 = δuτ,0/ν, the PG Π = Pxδ/τw,0 + 1, the non-dimensional PG ζ = −Aν/u3

τ,0, the size of the
computational domain Lx , L y and Lz , the grid size Nx , Ny and Nz , and the simulation time te and the time
until incipient separation tsep . The superscript + indicates normalisation by ν/u2

τ,0. For R544A10-20, Π and ζ

vary, and their variations are illustrated in figure 3.

(a) (b)

(c) (d )
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1000

R544A5 R1000A10
R544A10-20R544A10

R544A20

1500

�y+
w �y+

c

Figure 2. Grid resolution normalised with the instantaneous friction scales, i.e. δν(t) = ν/
√|τw|/ρ. Here, �x

and �z are the grid spacings in the streamwise and spanwise directions, respectively; �yw is the grid spacing
in the wall-normal direction at the wall, and �yc is the one at the centreline.

evolves, normalised using the instantaneous friction scales. The flow initially decelerates,
then accelerates in the opposite direction. Throughout the entire evolution process, the grid
resolutions adhere to established heuristics: �x+ � 10, �z+ � 6, �y+

w < 1 and �y+
c � 6

(Kim et al. 1987; Chen et al. 2023b).
The DNS are not the focus of the study, and here we show some relevant results. Figure 4

shows the evolution of the wall-shear stress τw. The times for incipient separation are listed
in table 2. The flow separates earlier when a larger non-dimensional PG is applied. Notice
that the R544A5 and R1000A10 results collapse in figure 4, showing the power of ζ as a
controlling parameter.
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ζΠ

Figure 3. (a) The PG force Π = Pxδ/τw,0 +1 and (b) the non-dimensional PG parameter ζ = −Aν/u3
τ,0,

as functions of tuτ,0/δ in R544A10-20.

Case κg Bg t+1 t+2
R544A5 10 0.66 5 × 10 4 × 102

R544A10 11 0.72 5 × 10 3 × 102

R544A20 11 0.76 5 × 10 3 × 102

R1000A10 11 0.67 3 × 10 4 × 102

R544A10-20 11 0.75 5 × 10 3 × 102

Table 2. The measured κg and Bg . The IBL is laminar for 0 < t < t1 , and turbulent for t2 < t .

15001000500

t+
0

–1.0

–0.5

0

0.5

1.0

τ+
w

R544A5

R1000A10

R544A10-20

R544A10

R544A20

Figure 4. Evolution of the wall-shear stress in our DNS.

4.2. Validation results
The study has so far corroborated the analogy within the viscous sublayer through
comparisons with the Stokes solution and an evaluation of the Navier–Stokes equations
at the wall. Nonetheless, the validity (and the usefulness) of any analogy hinges on its
validation against empirical data. To this end, we juxtapose (3.11) and (3.12) against
experimental and DNS data. Here, (3.11) is equivalent to the Stokes solution and applies
to laminar IBLs, i.e. t < t1; (3.12) and (3.15), on the other hand, apply to turbulent IBLs,
i.e. t > t2. Table 2 lists the values of t1 and t2 for all DNS cases.

Figure 5 illustrates the flow acceleration g as a function of the non-dimensional distance
from the wall η for t < t1. The data closely follow (3.11). This is not unexpected as the
validity of the Stokes solution for laminar IBLs is known. Next, we assess (3.12). We
first present profiles of non-dimensional fluid acceleration g as a function of conventional
wall-normal coordinates y+ and y/δ in figure 6. Note that g does not collapse when plotted
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Figure 5. The non-dimensional fluid acceleration g as a function of η for t < t1. The profiles are evenly sampled
between t = 0 and t = t1: (a) R544A5, (b) R544A10, (c) R544A20, (d) R1000A10. The black dashed line
corresponds to (3.11).
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Figure 6. The fluid acceleration g as a function of (a,b,c,d) y+ and (e,f,g,h) y/δ, for (a,e) R544A5,
(b,f ) R544A10, (c,g) R544A20, (d,h) R1000A10. The profiles are evenly sampled between t = t2 and t = te.
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Figure 7. The fluid acceleration g as a function of η: (a) R544A5, (b) R445A10, (c) R544A20, (d) R1000A10.
The black dashed lines correspond to the linear and the logarithmic scalings in (3.12). The profiles are evenly
sampled between t = t2 and t = te.

against either y+ or y/δ. Figure 7 shows g as a function of η, and we see a good collapse of
the profiles. In particular, g adheres to a linear scaling in the wall layer and a logarithmic
one above, in accordance with (3.12). Furthermore, we see that the transition between
the linear and logarithmic scalings moves away from the wall as the non-dimensional PG
parameter ζ increases, corroborating the discussion in § 3.

The logarithmic scaling in (3.12) contains two parameters, κg and Bg , and it is
instructive to determine their values. Table 2 lists the measured values of κg and Bg .
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Figure 8. Plots of (a) 1/κg as a function of ζ , and(b) Bg as a function of ζ . In (a), the black solid lines
represent the mean values of the four cases.

Figure 8 illustrates κg and Bg as functions of the non-dimensional PG parameter ζ .
The data indicate that κg is insensitive to the flow condition, and its value is given by
1/κg ≈ 0.094 ± 0.004. On the other hand, Bg increases slightly as a function of the non-
dimensional PG parameter ζ . Its value is 0.66 when ζ = 0.011, and 0.8 when ζ = 0.038.
The present data suggest

Bg = 1.1ζ 0.11, (4.1)

indicating a weak dependence on ζ .
We proceed to examine the effectiveness of the velocity scaling (3.15). Figure 9

compares (3.15) to the DNS data at a few time instants between t = t2 and t = te.
For comparison purposes, we have also plotted the canonical logarithmic law in (1.1),
which proves to be a good approximation of the mean flow for the early times and
under conditions of mild APGs. Errors emerge as the flow evolves in R544A10, and
particularly in R544A20. In the latter, intense flow deceleration results in flow separation.
Consequently, the flow in the wall layer reverses, and is responsible for the significant
errors in the canonical logarithmic law. The scaling in (3.15), on the other hand, is accurate
across the board, including that leading to flow separation.

For completeness, we show g as a function of η for t1 < t < t2 in figure 10. The Stokes
solution and the logarithmic scaling in (3.12) are plotted for reference purposes. Here,
we see that the flow acceleration g converges from the Stokes solution to the logarithmic
scaling.

4.3. Varying PGs
The analogy is formally developed for constant PGs, and its validity is likewise so
restricted. In this subsection, we study the behaviours of fluid acceleration in a TBL with
slowly varying PGs, i.e. case R544A10-20, and test if the analogy extrapolates to cases
with a varying PG. Like the other cases in table 1, the flow in R544A10-20 is a fully
developed channel flow at t = 0. The following APG is then imposed:

Π =
{

11 + 10tuτ,0/δ for t < δ/uτ,0,

21 for t > δ/uτ,0.
(4.2)

Notice that the PG doubles over one large-eddy turnover time. We proceed to compare
the scalings in (3.11) and (3.12) to data. Figure 11 shows the flow acceleration g as a
function of η for t < t1, t1 < t < t2 and t2 < t , i.e. when the IBL is laminar, transitional
and turbulent. The data follow the laminar Stokes solution when the IBL is laminar,
and the DNS data converge to the scaling in (3.12) as the IBL transitions to turbulence.
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Figure 9. Velocity U+ as a function of y+ at a few time instants between t = t2 and t = te: (a) R544A5,
(b) R544A10, (c) R544A20, (d) R1000A10. The dashed lines and the dot-dashed lines correspond to the
reference scalings in (3.15) and the canonical law of the wall.
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Figure 10. The fluid acceleration g as a function of η for t1 < t < t2: (a) R544A5, ζ = 0.011; (b) R544A10,
ζ = 0.020; (c) R544A20, ζ = 0.039; (d) R1000A10, ζ = 0.011. The black dashed lines correspond to the two
reference scalings in (3.11) and (3.12).

In particular, we see from figure 11(c) a logarithmic region in the fluid acceleration. The
values of the two constants are κg = 10.90 and Bg = 0.75, which are not far from the values
in cases R544A10 and R544A20. We further compare the velocity scaling in (3.15) to
data; figure 12 shows the results. The canonical law of the wall is included for comparison
purposes. The result is similar to that in § 4.2: the canonical log law is accurate initially, but
becomes increasingly inaccurate as the flow evolves, whereas the scaling in (3.15) remains
accurate. Hence we conclude that the log-layer analogy developed here is applicable to
TBLs with slowly varying PGs.

1010 A13-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.313


P.E.S. Chen, W. Zhang, M. Wan, X.I.A. Yang, Y. Shi and S. Chen

10–3 10–1 101
0

η
10–3 10–1 101

η
10–3 10–1 101

η

0

0.5g

1.0

0

0.5g

1.0

0

0.5g

1.0
t1 t2

t1

te

t2

(a) (b) (c)

Figure 11. The non-dimensional flow acceleration g as a function of η for (a) t < t1, (b) t1 < t < t2, (c) t2 <

t < te. In (a), the black dashed line corresponds to the reference scaling (3.11); (b) (3.11) and (3.12); (c) (3.12).
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Figure 12. The non-dimensional velocity U+ as a function of y+ at a few time instants between t = t2 and
t = te, for R544A10-20. The dashed lines and dot-dashed lines correspond to the reference scalings in (3.15)
and the canonical law of the wall.

5. Conclusions
In the current study, we establish an analogy between the inner layer of equilibrium
spatially evolving boundary layers and that of temporally evolving boundary layers
with pressure gradients (PGs) by drawing parallels between their governing transport
equations. Specifically, we compare the transport equation for velocity in the spatially
evolving case with the transport equation for fluid acceleration in the temporally evolving
scenario. As previous work has focused on velocity analysis, this study provides a new
perspective. Exploiting the log-layer analogy, we drew the following conclusions. First,
the fluid acceleration is a function of η = (ν ∂g/∂y)w y/ν in (3.9). Second, analogous
to the logarithmic law for velocity, fluid acceleration should exhibit similar scaling
behaviours in turbulent IBLs (3.12). Since the integration of acceleration leads to the
velocity scaling (3.15), the scaling of the fluid acceleration has implications for the
velocity scaling. Third, the non-dimensionalised PG force ζ = −Aν/(τw,0/ρ)3/2 emerges
as an important parameter, suggesting that flows with similar ζ values exhibit similar
behaviours. Empirical validation of this analogy was pursued through comparisons with
the Stokes solution for laminar flows immediately after the application of a PG, and
through direct numerical simulations of fully developed channel flows under suddenly
imposed adverse PGs. These comparisons yielded highly favourable outcomes, supporting
the analogy’s applicability. Nonetheless, by focusing on the channel configuration and
maintaining the channel half-height, the present work neglects the impacts of varying
outer length scales. Therefore, its applicability to boundary layer flows is yet to be tested,
a topic left for future investigation.
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