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OPEN, CONNECTED FUNCTIONS 

BY 

LOUIS FRIEDLERC) 

1. Introduction. Recall that a function / : X-> Y is called connected if/(C) is 
connected for each connected subset C of X. These functions have been extensively 
studied. (See Sanderson [6].) A function/:X-> Y is monotone if for each y e Y, 
f~x(y) is connected. We shall use the techniques of multivalued functions to prove 
that if/: X-> Y is open and monotone onto 7, then / _ 1 (C) is connected for each 
connected subset C of Y. This result is used to prove that the product of 
semilocally connected spaces is semilocally connected and that the image of a 
maximally connected space under an open, connected, monotone function is 
maximally connected. 

2. Open, monotone functions. 
2.1 DEFINITION. A multivalued function F: X-> Y is called lower semicontinuous 

(l.s.c.) if F~X{V) is open for every open subset V oî Y. Note that we do not assume 
F(x) is closed for every x e X. 

2.2 NOTATION. If GrF={(x,y)\y eF(x)} then px:GrF->X will denote the 
restriction to GrF of the projection. 

2.3 LEMMA. (Borges, [1]) If F:X-+Y is a multivalued function, then F(x)= 
PYP~X(X) ondpx is open if F is l.s.c. 

The proof of the following theorem follows the techniques of Borges' Theorem 
3.4 [1], where he proves it for the special case E=X. 

2.4 THEOREM. IfF:X->Yis a l.s.c. multivalued function with F(x) connected for 
each x e X, then F{E) is connected for every connected subset EofX. 

Proof. Let E be a connected subset of X and G the graph multivalued function 
G(x)={(x, y) | yeF(x)}. Then we claim that G(E) is connected. For, if not 
G(E) g J7U V where t /and Fare open in Xx Y and disjoint. If U^U n G(X)9 

VX=V n G(X), then Ux and Vx are open in G(X)=GrF, G(E) c U1\JV1 and 
Ux n V1=(j). Since F has images of points connected p^(x) is connected for all x, 
so p~x(x) n U^c/* iSpx\x) ç Ux for x e E. Therefore, E c px(Ux) UJpx(K1), 
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and Px(Ux), px(^i) are open since F is l.s.c. If zePx{U^) n PxiYù n E, then 
Px1^) n UXî£if> and px

x(z) n Vx^9 which is clearly impossible. It follows that 
G(E)=px

1(E) is connected and hence, F(E)==pYpx
1(E) is connected. 

2.5 COROLLARY. # " / « «n open, monotone (single-valued) function from a space 
X onto a space Y, thenf~1(A) is connected for every connected subset A of Y. 

2.6 DEFINITION. A space X is semilocally connected if it is connected and for 
every point x e X, if U is a neighborhood of x, then there is a neighborhood V of 
x such that V ^ U and X— V has only finitely many components. 

2.7 COROLLARY. If fis an open, connected, monotone function from a space X 
onto a semilocally connected Tx space Y, then fis continuous. 

Proof. The proof follows from Corollary 2.5 and Theorems 3 and 9 of Sanderson 
[6]. 

2.8 REMARK. Corollary 2.7 improves a result which appears in [5]. Corollary 
2.5 improves a result due to Hagan [3]. Using Corollary 2.5, the condition of first 
countability may be removed in Hagan's Theorem 3. We state it here. The proof 
is exactly the same. 

2.9 THEOREM. Let f he an open, connected, monotone function from a uni-
coherent T2 continuum X onto a compact Tx space Y. Then Y is a unicoherent con­
tinuum. 

3. Applications. Whyburn [9] showed that the finite product of semilocally 
connected metric spaces is semilocally connected if one of the factors is. We do 
not know if this is true for infinite products of 7\ spaces. However, the following 
is true : 

3.1 THEOREM. If Xa is a semilocally connected 7\ space for all a, then Z = I l Z a 

is semilocally connected. 

3.2 DEFINITION. A function/from a space X onto a space F i s semiconnected 
i f / _ 1 (^) is closed and connected for every closed and connected subset A of Y. 

3.3 REMARK. It follows from Corollary 2.5 and Theorem 3 of [6] that an open, 
connected, monotone function onto a 7\ space is semiconnected. 

3.4 LEMMA. (Yu-Lee [10]) A connected Tx space Y is semilocally connected iff 
for all spaces X and all semiconnected functions f mapping X onto Y,fis continuous. 
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Proof of Theorem 3.1. Let f:Z->X be a semiconnected function from some 
space Z onto X=IlX a . Since 7ra is open, connected, and monotone, it is semi-
connected for all a by Remark 3.3. Clearly, the composition of semiconnected 
functions is semiconnected, so that 7ra of is semiconnected for all a. But then 
7ra o / i s continuous for all a since Xa is semilocally connected. It follows t h a t / i s 
continuous and therefore, by Lemma 3.3, X is semilocally connected. 

3.5 DEFINITION (Thomas [7]). A topology r on a set X will be said to be finer 
than a topology r± on X if rx ç r. If r^r we will say that r is strictly finer than 
rv A connected topology r will be said to be maximally connected if rx strictly 
finer than T implies TX is not connected. 

3.6 THEOREM. Let f be an open, connected, monotone function from (X, r^ , 
where rx is maximally connected, onto the Tx space (Y, y±). Then yx is maximally 
connected. 

Proof. ( Y, 7i) is connected since / is a connected function. Let y2 t>e a finer 

topology on Y and U0ey2—y1. Clearly f^iUo) $ r l5 so let r2 be the smallest 
topology generated by TX and/_ 1( t /0) . r2, being strictly finer than r l5 cannot be a 
connected topology. 

Consider / a s a function from (X, r2) onto (Y, y2) and relabel i t /* . We claim 
that/ j . is open and monotone. 

(1) Let W be T2-open. Then we may assume that W=Z U {V n/_1(C/0)) for 
some Z and F G TX since basic open sets are of this form and arbitrary unions do 
not change the form. Therefore, f*{W)=f(Z) U (f(V) n U0) which is y2-open 
since/is open, so /* is open. 

(2) Let y e Y. Consider the following two cases : 

Case 1. If y$ U0, then f~\y) n / ; 1 ( t / 0 ) = ^ . If f?{y) ^W1KJW2 where 
Wl9Wzer29 W1nW2nf~1(y)=cl>9 and Wi n f?(y)*<f> for f = l , 2 , then 
H ^ Z x u (V± r\f~\UQ)) and ^ 2 = Z 2 U (F2 n /"K^o)) for some F1? F2, Zx, 
Z2 G T l . We have / ^ ( j ) s= [Zx U (/"H^o) n Fi)] U [Z2 u (/•-*( C/o) n V2)] and 
Z i O Z g O f?(y)=<l>. We claim that / ^ ( j ) $ z i u ^2- If not, then since f^iy) 
is reconnected, e i t h e r / - 1 ^ ) C\ZX=§ ox f~\y) nZ2=<j>, s a y / - 1 ^ ) nZ1=c/>. 
But, / ? ( y ) n 0 ^ and / - i (y) nZ1==</> imply that f?(y) n fl\U^<h 
contradiction. So, there is some x ef^iy) — (Z± U Z2). However, then X G 
f~£(y) n /^({/^-contradiction. It follows t h a t / ^ ( j ) is connected. 

Case 2. If y e U0, then f^Xy) ^f?(Uo)- Now, by Remark 3 .3 , /^ (y) is r r 

connected and -^-closed, and so r2-closed (i.e.,/**(}>) is closed). We assume that 
f^(y) is not connected. L e t / ^ ( y ) = G U i/ , where G and / / are disjoint, non­
empty and closed in f~£(y) (and thus in (X, T2)). We may assume that G= 
[Zx U (/-H^o) n Fi)]' and tf=[Z2 u (f-KUo) n F2)]

c for some F1? Ka, Z l f 
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Z2 G T l . Then, G=Z[ n [(/"H Co))* u ^il ^ K f n Z Ï . I f * e G, * e G u / / = 
/ ^ ( y ) c f-\U0). On the other hand, x e G implies A:G [Zj n I/?] u [Zj n 
(J-HUo))0]. Therefore, xeZ\c\ V{ and G=F? r » 4 It follows that G, and 
similarly / / , is ^-closed. But this contradicts the ̂ -connectedness of / _ 1( j ) . There­
fore , /^ 1 ^) is connected. 

If (Y, y2) were connected, then by Corollary 2.5, (X, r2) would be connected, 
which cannot happen. Therefore, any topology strictly finer than y1 is not connected 
and so yx is maximally connected. 

3.7 COROLLARY. If (Xa, rj are 7\ spaces for all a and HXa is maximally con­
nected, then so is Xafor all a. 

The converse to the above corollary is not true. Let X be the real line and let 
F={F ç X | Fc is finite}. Then F is a filter and hence is contained in an ultra-
filter F*. Thomas [7] has shown that X with the topology induced by F* is 7\ and 
maximally connected. However, XxX with the product topology, rXxX, is not 
maximally connected. For, if G={F Ç I x X \ Fc is finite} then G c rXxX . r X x X 

is a filter base so r X x X is contained in an ultrafilter G*. Consider H=(X—{x0})x 
(X— {x0}) u {(x0, x0)}, where x0 is an arbitrary element of X. Clearly, He 
G*—TXXX. Since (XxX,G*) is maximally connected, it follows that (XxX, 
rXxX) is not maximally connected. 

Added in Proof. See M. R. Hagan, Conditions for continuity of certain open 
monotone functions, Proc. Amer. Math. Soc. 30 (1971), 175-178, for recent related 
results. 
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