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OF DIRICHLET SERIES ATTACHED
TO CERTAIN CUSP FORMS
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§1. Introduction

The existence of the asymptotic probability measure of the Riemann
zeta-function was proved in Bohr-Jessen’s classical paper [3] [4].

Let s = ¢ + it be a complex variable, {(s) the Riemann zeta-function,
and R an arbitrary rectangle with the edges parallel to the axes. Then,
for any ¢, > 1/2 and T > 0, the set

{te [0, T]|log L(a, + 1?) € R}

is Jordan measurable, and we denote the Jordan measure of this set by
V(T, R; ). Then, Bohr-Jessen’s main result asserts the existence of the
limit

W(EB; O = lim V(T, B; /T,

which we call the asymptotic probability measure of log {(s) on the line
¢ = 0y

Let N be a positive integer, 6, €[0,1) (1 < n < N), and we define the
mapping S, from @, = [0, 1) to the complex plane C by

L.1) Sy(@, -+, 05;0) = — 3 log (1 — pz® exp (2ri6,)) ,
n=1

where p, is the n-th prime number. By W, (R;{) we mean the N-dimen-
sional Jordan measure of the inverse image Sj;!(R). Then, Bohr-Jessen
proved that when N tends to infinity, the limit lim Wy(R; {) exists, which
just coincides our desired W(R; ().

Here we take notice of the property that in the right-hand side of
(1.1), each term log (1 — p;™e’’») describes a closed convex curve, as 6,
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moves from 0 to 1. Hence, Sy, ---,6,) is a kind of “sum” of convex
curves. Bohr-Jessen’s original proof of the existence of lim W (R; () is
based on a rather involved theory on the infinite sums of convex curves
[6]. Later, using Fourier transforms of probability measures, an alterna-
tive proof was given ([6] [13]), but it also treats the case of convex
curves only (see Theorem 13 of [13]).

For more general Euler products, however, the corresponding terms
do not always describe convex curves any more. Therefore, if we want
to generalize Bohr-Jessen’s theory, it is indispensable to develop a method
which is independent of convexity. In the present paper, we will study
the value-distribution of Dirichlet series attached to cusp forms which
are simultaneous eigenfunctions of Hecke operators, as a simple example
of non-convex Euler products.

In the following sections, the rectangles we consider are closed and
have the edges parallel to the axes. For any ze C and subset X C C,
the set {w — z|we X} we denote by X — 2. Also, dist (2, X) means the
lower bound of {|z — w||w e X}.

§2. Statement of results

As usual, we denote by SL(2, Z) the elliptic modular group. Let %,
M be posititive integers, ¥ a Dirichlet character mod. M, and we define
the Hecke congruence subgroup of level M by

(M) = {[Z S] e SL(, Z))c =0 (mod. M)} :

By %M, x) we mean the space of cusp forms of weight £ with respect
to I'(M) with character X. If a function f(w) is a non-zero element jo
FL(M, %), then f(w) has the Fourier expansion

flw) = glc(n)ezninw
at the cusp oo. Hecke proved that the Dirichlet series
L(s) = Lis; f) = 5 e(mn™*

is convergent absolutely in the half-plane ¢ > (k + 1)/2, and can be con-
tinued holomorphically to the whole plane. Furthermore, the functional
equation
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(6AY) A(s; f) = i* Ak — s; f)

is valid, where A(s; f) = (2z/vM)~*I'(s)L(s; ) and f(w) = M- *rw-*(—1/Mw).
From (2.1) we see that the “critical strip” of L(s;f) is {s|(k —1))2<Z ¢
< (k + 1)/2}, and the *‘critical line” is ¢ = k/2. We consider the value-
distribution of L(s;f) in the half-plane ¢ > &/2.

Now we assume f(w) is a primitive form of level M. Then, f(w) is a
simultaneous eigenfunction of Hecke operators 7T'(n), defined by

d-1

FIT)w) = n*~* 3 3, Ha)d"f((aw + b)/d),

0<dln b=
ad=n

and the corresponding eigenvalue is equal to the n-th Fourier coefficient
¢(n). The Euler product expansion

L(s; /) = fjl 1 — c(p)p;® + X p)pk-1-2)-1
holds for ¢ > (k + 1)/2. Hence L(s) # 0 if ¢ > (k + 1)/2, so we can define

(2.2) log L(s) = ——nZ::llog(l — c(p)P:® + XUp)pE-t-%)

in this region. Here we comment the rigorous meaning of the right-hand
side of the above. If (p,, M) =1, then it follows from Deligne [8] and
Deligne-Serre [9] that we can write

1 —c(ppi® + Up)Pi ' = (1 — a,07°)1 — B.P2")

with |a,| < p¥-2" and |8,| < p%¥-"2. So the principal value Log (1 — «,p;*),
Log (1 — B,p;*) is well-defined if ¢ > (k — 1)/2, and we put

(2.3) log(1 — c(pwpi® + Up)pE'*) = Log(1 — a,p;*) + Log (1 — B.p07%).

Next, if p,| M, then X(p,) = 0, and |c(p,)| < p%¥-9” since f(w) is primitive.
Hence, (2.3) is valid with «, = c¢(p,) and B, = 0. Hence, each term in
the right-hand side of (2.2) is well-defined for ¢ > (¢ — 1)/2, and the sum
is convergent absolutely for ¢ > (k + 1)/2.

Next we define log L(s) in the strip k/2 <o < (k + 1)/2. There is a
possibility of the existence of zeros of L(s) in this region, so we restrict
our consideration to the set

G={sle>Fk2}— U {s=c+it|k2<c<Za},

Sj=aj+ilj

https://doi.org/10.1017/5S0027763000001720 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001720

126 KOHJI MATSUMOTO

where s;’s (j = 1,2, - --) run through all possible zeros of L(s) in k/2 <o
< (k 4+ 1)/2. For any s, = o, + it, € G, we define log L(s,) by the analytic
continuation along the path {s = ¢ + it)|c = o}

We fix a ¢, > k/2, and discuss the value-distribution of log L(s) on the
line ¢ = ¢, Let R be an arbitrary rectangle, and 77> 0. The set

(te[0, T1|a, + it e G, log L(, + it) € R}

consists of several intervals, so it is obviously Jordan measurable, and
by V(T, R) = V(T, R; L) we denote the Jordan measure of this set. The
principal result of this paper is the following

TuEOREM 1. Let L(s) be the Dirichlet series attached to a primitive
form of level M. Then, there exists the limit

W(R) = W(R; L) = lim V(T, R; L)]T
T—o
for any a, > k/2.

The following four sections are devoted mainly to the proof of
Theorem 1. In the proof we shall see that W is a probability measure.
The evaluation of W(E) for any measurable E is an interesting problem.
In this direction, as a generalization of Theorem 19 of Jessen-Wintner
[18], we have

TureorREM 2. Let a, A be positive numbers. Then, for any W-measurable
set E included in {z||z| > 3a}, the inequality

W(E) £ Ce ™

holds, where C is a positive constant depending only on 2, k and g,

§3. Application of the Kronecker-Weyl theorem
Let N be a positive integer, and put

N
LN(S) = n1_=[1(1 — C(p")p;s + X(p,,)pﬁ"““)* .
Then,
N
log Ly(s) = —Z}llog 1 — c(p)p:® + Up)pE %),

which is well-defined if ¢ > (2 — 1)/2. Let V (T, R) = V(T, R; L) be the
Jordan measure of the set
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{te[0, T]|log Ly(a, + it) e R} .

Next, let @, = [0,1)" be the N-dimensional unit torus, and for any
(017 R} 0N) € [09 1)Ns we put

N
Sy, -+, 0y) = —Zjl log (1 — c(p,)p; " exp (2xif,)
+ X(p,)pi~'-*" exp (4xif,)) .

For any subset E C C, we denote the inverse image S;(E) by QuWE) =
Qu(E; L). Then, log Ly(s, + it) € R if and only if :

<{~<10—2g;3’—)t}, ...... , {_ (%@)t}) c0.R),

where the symbol {x} denotes the fractional part of x. Hence, if 2y(R)
is Jordan measurable, then by using the Kronecker-Weyl theorem (see
Titchmarsh [19], § 11.7), we can conclude

(3.1) }im VAT, R; L)]T = Wy(R),

where Wy (R) = W,(R; L) is the N-dimensional Jordan measure of Q,(R).
Therefore, to establish (3.1), it is sufficient to prove the following

LemmA 1. For any rectangle R, the set Q,(R) is Jordan measurable.
Furthermore, for any positive e, there exists a positive 7, which is inde-
pendent of N, and for which Wy(R) < e holds for any R with the area
(R) <.

This lemma was at first proved by Bohr-Courant [2] for the case of
Z(s), and then, in § 11 of Bohr-Jessen [5] for general convex curves. Their

induction argument can be applied to our present case.
Let

z, = 2,(0,) = —log(1 — c(p,)p; " exp (2x16,) + X(p.)p; ' ~** exp (4xib,)),

and o, = {2,(60,)|0 < 6, < 1}. We prove the lemma by induction.

The set 2,(R) is a union of several intervals, so it is clearly Jordan
measurable. To show the second assertion, we first note that if p(R) <7,
then the length of at least one edge of R is smaller than +/7 , hence it
is included in an open strip of width 4/ 7, parallel to the real or imagi-
nary axis. We only treat the former; the argument in the latter case is
similar.
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For any real x, by an elementary calculation we can show that the
number of the roots §, which satisfies Im 2,(6,) = x is at most four. Let /
be an arbitrary line parallel to the real axis, and denote by z,(6)
(1 < v £ 4) the intersection points of / and w,. Let A(l; ») be the open
strip of width 7, whose center line is I For sufficiently small 5, the
strip A(/; 2v/ %) includes only four disjoint pieces w{(l) of w, (1 < v < 4)
on which lies the point z,(6{), respectively. Furthermore, we can choose
» = 7(l) so small that the length of the set {6,|2,(6,) € ©® ()} is less than
¢/4. Hence we have that the Jordan measure of the set

Q(AU; 24/7())

is smaller than ¢. We define
4 —_—
o0 = (U o' ®) N G ¥5)

Since o, is compact, we can choose a finite number of the lines {/,}, which
gives a finite covering {o(/,)} of »,. And we put

n= mjin {n(@p}.
Then it is obvious that for any [/, there exists a line /,, for which

o, NAI; V7)) C Al 2V7(0))

holds. This implies the second assertion for N = 1.
The following second step is the same as in the original proof of
Bohr-Courant, but we present the argument for the convenience of readers.
We now assume the lemma is valid for N. By the assumption,
Wy(R — zy,,) is a continuous function of z,,, so is also a continuous
function of @,,,, Hence the integral

IR) = [ CWAR — 2,08y,

exists.

We denote the four vertices of R by A, +iB, (v,v=1, 2, A, < A,,
B, < B,):

R ={z]A, <Re(2) < 4, B, <Im(2) < B}.

Let 6 > 0, and we put
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R,=R((0) ={21Ai+3=Re(® < A; -4, Bi+6=Im(2) £ B, — 4}
and
R,=R/0) ={2|A, —d<Re(2) £ A, +3, B— 3 <Im(2) < B, + 4}.

For any positive ¢, by the assumption there exists a sufficiently small g,
independent of N, for which the inequalities

(3.2) Wu(R — Zy) — e < Wy(R; — 2zy.,4),
(3.3) WN(Ry — 2y) < Wy(R — 2y.,4) + ¢

hold for any zy,; € @y.1.
Let us take a sequence 0 = 4%, < 6%, < --- < 6§, <o+ =1, and
define

I™(R) = 3 WR — 2000450 — 6.,
where z{), = 2,.,,(0%),). Under a suitable choice of {6§),}, we have
(3.4) [ I(R) — I™(R)| <e,
and
R,—2z¥,CcR—2y,,CR,— 2§,

for any p and any zy,; = 2y,(0y.,) with 6%, < 0y, < 6%iP. Hence,

Qu(R; — 2% X [0, 0410) € 2, C Qx(R, — 2§ X [0%, 0817),
where 2, = {6, - - -, 0y.1) € 2y (R) |08, < Oy, < 041}, So it follows that
Wu(R: — 22 )08 — 6052) < m(Q,) < m(Q,) < Wy(R, — 2l )(0%1 — 6%,

where m(X) (resp. m(X)) denotes the Jordan inner (resp. outer) volume
of X, hence the inequality

I™(R) < m(Q2y.(R)) < M(2y..(R)) = I™(R)
follows. Combining this result with (3.2), (3.3) and (3.4), we have
I(R) — 2¢ £ m(Qy.(R)) = M(2y.(R) £ I(R) + 2e,

which implies 2,.,(R) is Jordan measurable, and

1
(3.5) Wy(R) = ,[o Wy (R — 2y,1)d0y.1-
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The second assertion of the lemma is a direct consequence of the expres-
sion (3.5).

§4. An evaluation of the probability measure W,

Let E a subset of C, for which Qy(E) is Lebesgue measurable. We
denote the N-dimensional Lebesgue measure of Q,(E) by W,(E). Then
W, is clearly a probability measure over C, and, due to Lemma 2.4.3 of
It6 [12], it is regular. The purpose of this section is to prove the following

LEMmMA 2. Let 2 be an arbitrary positive number. Then, there exists a
positive constant a, = a4, k, a,), for which the inequality

W(E) < Ce™*

holds for any a > a,, any Borel set E C {z||z| > 2a} and any sufficiently
large positive integer N, with a positive constant C = C(4, k, a,).

The basic idea of the following proof is due to Jessen-Wintner [13]
(see also Borchsenius-Jessen [6]), though their argument depends on the
existence of the density function of W,.

Let r be a positive integer, N > r, and put

N
ST,N(0T+1’ Y 01\{) = - :Z+1].Og (1 - c(pn)p'r:ao exp (27ri0n)
+ X(p.)pi 7' exp (47i6,)) .

For any Borel set E, the inverse image 2, ((E) = S;(E) is Lebesbue meas-
urable, so we can define a probability measure W, ,(E), which is equal to
the (IN — r)-dimensional Lebesgue measure of 2, ,(E). By Fubini’s theorem
we have

(4'1) WN(E) = Wr(E - Sr,N(‘9T+1y ] 6N))dm(67'+1, R} 0N)

QN-~r

- f  WAE — 2)dW, (2,

where m is the (IN — r)-dimensional Lebesgue measure.
The set

>, ={8, -,0)10.€[0,1) A< n<r)

is bounded; there exists a positive number a, = a(r, &, ¢,) for which >, C
{z]l2] £ a,} holds. Let a > a, and E an arbitrary Borel set included in
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{212 > 2a}. If |2|< @, then (E — 2N >, = @, which yields W(E — 2)
= 0. Therefore, from (4.1), we have

(4.2) WN(E) = W;«(E _ Z)dWT’N(z)
lzI>a
<[ dW.s@) = W.alizllz] > ap.
To evaluate the right-hand side of the above, we prepare the fol-

lowing

LEmMMA 3. Let 2> 0, b >0, and B a bounded set which satisfies
B c {z||z| £ b}. Then, under a suitable choice of r =r(2, k, a,), there
exists a positive constant C, = C\(4, k, a,), for which

W, iz — B) < Cexp (—44|z[)
holds for any z, € {z||z| > 2b}.

Proof. At first we note that if 4 = (4,,,, -- -, 0y) € 2, 5(2, — B), then
|S,. @] > |2|/2. Hence,
43 exp@ila)Wosz— B = [ exp(azDdm(0)

= | exp (162]S,,,(6) dm(6)
2r,n(20—B)
= | . exp (162(S,,,(O)F)dm(0) .
Next, since ¢, > k/2, we have

|tu P77 exp (2mif,)| < pfF-/iro < 260 L 1YV2 <1,

and the same estimate holds for B,p; exp (2rif,). There is an absolute
constant C,, for which

|—log(1 — 2) — 2| < Cy|2f
holds for any ze{|2| < 1/4/2}. Hence, if we put
N
Stn0) = 23 (an + B)pi exp (2xif,) ,

then

1S,.40) — SEMOI S G 3 (alt + [8a[)pa < 26.Ci,
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where

C, = Ci(k, a) = 3, pi=".
n=1
In general, if |u — v| < w, then |u]? < 2(JvP + w?). Therefore,
[, expsus,.ondm®
QN—7

<[, exp(322S2.0)F + 4CIC)Am(O)

= exp2sciei) 53 V[ sz, @) pam) .
Jj=0 J: QN-r
By using Parseval’s equation, we have

| Ry sy

[ issopamo = x|
Qn-r Jra1s "']

Jraassc+in=j

=3l 33 @ + 8p3 1)
Now we choose r = r(3, k, g,) so large that
d=1-322 3 | + gIPi"F = 1/2
holds. Then we have

f exp (164]S,,,(6) )dm(6)
QN-r
< exp (128C3C) > (1 — d)’ < 2-exp (128C2C2A) .
=0

This inequality with (4.3) leads to the assertion of Lemma 3.

Now we complete the proof of Lemma 2. Let

4= Mp,v) = (2| (a,/24/2) < Re(2) < (1 + 1N(@/2v' 2),
w(@:/2/2) £ Im(2) < (v + 1)(a:/2v 2)}

for any integers g and v. Then it is obvious that

(44) W.({zllzl > ah) = 21 W, x(4),

where the sum runs through all 4 which satisfies the condition 4 N
{zll2|> a} + @. Let z, be the vertex of 4 which is the most distant from
the origin. Then we can write 4 = z, — 4,, where 4, is one of the squares
A(—1, —1), 4(—1,0), 40, —1) and 4(0,0). Since |z,|> a and
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4, C {z|]2] £ V2 (af24/ 2) = a/2},

we can apply Lemma 3 with 2, = z,, B = 4, and b = q,/2. The result is
that

WT,N(A) < Cyexp (—42|z, lz) .

The inequality |z| < |z,] holds for any ze 4, so we have
exp (—41|z,) < (Go/2~/7)’2f exp (—41|zP)dz .
4
Substituting these results in (4.4), we have

W,(zlle > a)) < 8Car* [ exp(—41jzP)dz
lzl2za/2
= (2C,r/Aa?) exp (— Ad%) .

The result of the lemma follows from this inequality and (4.2).

§5. The existence of the asymptotic probability measure

Borchsenius-Jessen’s proof [6] of the existence of lim W(R;{) is
based on Lévy’s convergence theorem, and their argument can be gener-
alized to our present case. However, by using the result of Lemma 2,
we can give a very simple proof of this fact.

Let P,, P, be two regular probability measures over C, and ¢, be the
lower bound of those ¢, for which

P(F) < P{z|dist (2, F) <¢&}) + ¢

holds for any closed subset F. Similarly we define the number ¢,;, and
put

p(P,, P,) = max {ewzs €21} -

It can be shown that p is a distance function, which we call Prokhorov’s
distance. Prokhorov [16] proved that with this metric, the space 2 of
all regular probability measures over C is a complete separable metric
space. The convergence with respect to this metric is equivalent to the
weak convergence.

Let {P,}.c, be a subset of 9. We call {P,} is tight if for any positive
¢, there exists a compact set K = K(¢) C C, for which the inequality

P(C—-K)<e
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holds for any e e 4. Now we quote the following

LemMa 4 (Prokhorov [16]). In order for {P,} to be tight it is necessary
and sufficient that {P,} is totally bounded with respect to the Prokhorov
metric.

If g, > (k + 1)/2, then S,(6,, - --, 0y) is uniformly bounded for any N,
so it is obvious that {W,} is a tight subset. Lemma 2 implies that the
tightness is valid for any ¢, > k/2. Hence, from Lemma 4, there exists a
subsequence {Wy,}7-,, which is convergent weakly to a measure We 2.
In the next section we will prove that this W is just the desired limit
in Theorem 1.

Here we note that Theorem 2 is now a immediate consequence of
Lemma 2 and the above claim. In fact, let ¢ > a,, and E be an W-
measurable set included in {z||z| > 3a}. We can assume E is compact,
because W is K-regular. Let G, be an open set which satisfies

E C Gy C {z||2| > 24} .

Then, there exists a continuous function g, which is equal to 1 on E,
equal to 0 on G4, and satisfies 0 < g,(2) < 1 if ze Gy — E. Then it fol-
lows that

WE) < [ £:@dWE) = lim [_g:(@)dWy (@) < liminf Wy,

Lemma 2 shows Wy ,(Gg) £ Ce ", hence W(E) < Ce™*’. To verify The-
orem 2 in case a < a,, it is enough to change the value of C, if necessary.

§6. Completion of the proof of Theorem 1

Let ¢ be an arbitrary positive number. The second assertion of
Lemma 1 (and its proof) implies that there exists a § > 0, for which

Wi(R,(20) — R(20)) < ¢/2
holds for any rectangle R and any N. We define a continuous function

gr by

1 if z is included in the closure of R, (5) — R.(5),
gx(2) =

0 if z is not included in the open kernel of
R,(25) — R(20),

and 0 < gx(2) < 1 if z ¢ (R(3) — R(28)) U(R,(25) — R,(5)). Then,
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WE,0) — BO) = [ e@dWE) = lim | g@)dW,(2)

< liminf Wy ,(R,(20) — R(25)),
which yields
(6.1) |[W(R) — WR.G)| <ef2, [W(ER) — W(R,0)] <ef2.

In particular, any rectangle is a continuity set with respect to W. Hence,
there exists a sufficiently large positive J;, for which

(6.2) [Wrn(R) — W(R)| <el2,  |Wyy(R) — W(R)| <e/2
holds for any j = ..
Now we assume g, > (k¢ + 1)/2. Then we have

63) [logLloy + it) — 10g Lyoes + i) £ C 31 (aupi’| +1Bupi’) <0

n=N(j)

for any real ¢t and any j = J, with a sufficiently large J, = Jy(, &, oy)
and an absolute constant C, Hence,

Vo (T, Ri(9) < V(T, R) < Vi, (T, R,9)),
and so, from (3.1), we have

Wy (R) < liminf V(T, R)/T < limsup V(T, R)/T < Wy,(R,) .

T—o T -

Hence, with (6.1) and (6.2),

W(R) — ¢ < liminf V(T, R)|T < limsup V(T, R)/T < W(R) + ¢,
T T —o

which leads to the assertion of Theorem 1 in the domain of absolute
convergence.

Next we proceed to the case k/2 <o, < (k + 1)/2. By Ei(T) we denote
the measure of the set

Ki(T) ={tel0, Tl|a, + ite G, |log L(g, + it) — log Ly(a, + it)| = 6} .
Then it follows that
(6.4)  Vy(T, R() — ki o(T) = V(T, R) £ Vy (T, B,(9) + Ey;(T)
for any j. Let ¢, be a real number, £/2 < a, < 0y,
Ht)={s=0+itjlo> ay, t, — <t <t + 3}
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and
0 if H(t,) C G, and if |log L(s) — log Ly(s)| < &
() = for any se H(t,),
1 otherwise .

Then it is obvious that

() = [ bt
Hence we have
Wy (R) — Oy < H}i’inf V(T, R)|T
< limsup V(T, R)/T < Wy (R,) + Py,

T—oo

from (6.4), where
T
@, = limsup T*’I S(t)dts .
T'— 0

Therefore, if we can show

(6.5)  lim®, =0,

N—oo

then, by a way similar to the case of ¢, > (k + 1)/2, we can complete the
proof of Theorem 1 in the critical strip.

In the case of the Riemann zeta-function, the result corresponding
to (6.5) is Hilfssatz 5 of Bohr [1]. Bohr’s proof of Hilfssatz 5 is based
on Hilfssatz 2 in the same paper. The analogue of Hilfssatz 2 in our
case can be stated as follows:

LEmMA 5. Let k)2 < g, < g,, and ¢ be an arbitrary positive number.
Then there exists a positive N, = Ny, g, ¢), for which the inequality

f j _ K)/Ly(s) — 1fdodt < eT

o< a2
0st=sT

holds for any N = N, and any T = T,, with a positive T, = T(N).

As we have already mentioned in [14], we can skip Bohr’s technical
argument in the proof of Hilfssatz 2, by using a general mean-value
theorem of Carlson.

By virtue of Hecke’s estimate (Satz 7 of [11]), we can apply Potter’s
general result (Theorem 3 of [15]) to our case, and the result is the
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asymptotic formula
T oo
6.6) [ Lo + inrde = T 33 emn= + o(T)

which is valid for ¢, > £/2. It can be easily shown that
lLN(O'o + it)l“ < exp (C4N(k+r,/z_,,0) ,

so from (6.6) we see
T JT |L(ay + it)/Ly{a, + it) — 1dt
0

is also bounded. Hence, by using Carlson’s theorem [7] (see also § 9.51
of Titchmarsh [18]), we have

©7) LT [ |L + /Ly, + i) = 1pdr = 3 fe(m)Pm

(m, p1p2---px) =1
m#1
for any ¢, > k/2, because the Dirichlet series expansion

L(s)[Ly(s) = 2. cmm=*

(m,p1pe-+-py) =1

holds. From the well-known result

2o le(m)fP = Cx* 4+ O(x" %)

mIr

(C; being a constant depending on k, M and f) in Rankin’s classical work
[17], it follows immediately that the right-hand side of (6.7) can be
estimated by O(INV*-*°) (cf. Lemma 5 of Good [10]). This completes the
proof of the lemma.

The method of the deduction of (6.5) from Lemma 5 is quite the same
as the original proof of Bohr [1], so we omit the details. Consequently,
our Theorem 1 is now proved.

Note added in proof.

The results in the present papsr are now generalized to the case
of more general Euler products. A generalization of Theorem 1, with
a simplified proof, is written in the author’s paper entitled “Value-
distribution of zeta-functions”, which will be published in “The Pro-
ceedings for the Japanese-French Symposium on Analytic Number Theory”,
ed. by E. Fouvry and K. Nagasaka, a volume in Lecture Notes in Math.
Ser., Springer-Verlag.
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