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A PROBABILISTIC STUDY ON THE VALUE-DISTRIBUTION

OF DIRICHLET SERIES ATTACHED

TO CERTAIN CUSP FORMS

KOHJI MATSUMOTO

• 1. Introduction

The existence of the asymptotic probability measure of the Riemann

zeta-function was proved in Bohr-Jessen's classical paper [3] [4].

Let s = a + it be a complex variable, ζ(s) the Riemann zeta-function,

and R an arbitrary rectangle with the edges parallel to the axes. Then,

for any σ0 > 1/2 and T > 0, the set

{t e [0, T] I log ζ(σ0 + it) e R]

is Jordan measurable, and we denote the Jordan measure of this set by

V(T, R; ζ). Then, Bohr-Jessen's main result asserts the existence of the

limit

W(R; ζ) = lim V(T, R; ζ)/T}

which we call the asymptotic probability measure of logζ(s) on the line

σ = σ0.

Let N be a positive integer, θn e [0,1) (1 <̂  n <̂  N), and we define the

mapping 5^ from QN = [0, l)iV to the complex plane C by

(1.1) SN(ΘU , ΘN; 0 = - £ log (1 - p~σo exp (2πiθn)),

where pn is the n-th prime number. By WN(R; ζ) we mean the iV-dimen-

sional Jordan measure of the inverse image S^(R). Then, Bohr-Jessen

proved that when N tends to infinity, the limit lim WN(R; ζ) exists, which

just coincides our desired W(R; ζ).

Here we take notice of the property that in the right-hand side of

(1.1), each term log(l — p-σoe2πiβn) describes a closed convex curve, as θn
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moves from 0 to 1. Hence, SN(ΘU , ΘN) is a kind of "sum" of convex

curves. Bohr-Jessen's original proof of the existence of lim WN(R; ζ) is

based on a rather involved theory on the infinite sums of convex curves

[5]. Later, using Fourier transforms of probability measures, an alterna-

tive proof was given ([6] [13]), but it also treats the case of convex

curves only (see Theorem 13 of [13]).

For more general Euler products, however, the corresponding terms

do not always describe convex curves any more. Therefore, if we want

to generalize Bohr-Jessen's theory, it is indispensable to develop a method

which is independent of convexity. In the present paper, we will study

the value-distribution of Dirichlet series attached to cusp forms which

are simultaneous eigenfunctions of Hecke operators, as a simple example

of non-convex Euler products.

In the following sections, the rectangles we consider are closed and

have the edges parallel to the axes. For any zeC and subset X C C,

the set {w •— z \ w e X} we denote by X — z. Also, dist (z, X) means the

lower bound of {\z — w\ \ w e X}.

§ 2. Statement of results

As usual, we denote by SL(2, Z) the elliptic modular group. Let k,

M be posititive integers, X a Dirichlet character mod. M, and we define

the Hecke congruence subgroup of level M by

c ΞΞ 0 (mod. M)

By £fk(M9 X) we mean the space of cusp forms of weight k with respect

to Γ0(M) with character X. If a function f(w) is a non-zero element jo

S?k(M, X), then f(w) has the Fourier expansion

/(">) = Σ c(n)e2*inw

n=l

at the cusp oo. Hecke proved that the Dirichlet series

is convergent absolutely in the half-plane σ > (k + l)/2, and can be con-

tinued holomorphically to the whole plane. Furthermore, the functional

equation
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(2.1) Λ(8;f) = i*A(k-8;f)

is valid, where Λ(s;f) = (2π/VMysΓ(s)L(s;f) and f(w) = M-k/2w-kf(-l/Mw).

From (2.1) we see that the "critical strip" of L(s;f) is {s\(k - l)/2 <; σ

<Ξ (β + l)/2}, and the "critical line" is <7 = k/2. We consider the value-

distribution of L(s;f) in the half-plane σ > &/2.

Now we assume f(w) is a primitive form of level M. Then, f(w) is a

simultaneous eigenfunction of Hecke operators T(ή), defined by

(f\T(n))(w) = n*-> Σ £Vo)<i-y((aio + 6)/d),
0<(f|w δ=0

and the corresponding eigenvalue is equal to the n-th Fourier coefficient

c(ή). The Euler product expansion

Us; /) = f[ (1 - <Pn)Pΰs +

holds for a >(k + l)/2. Hence L(s) ̂ fc 0 if σ > (k + l)/2, so we can define

(2.2) logL(β) = -f; log (1 - c(pn)p-s + Z(pn)p*->-!')

in this region. Here we comment the rigorous meaning of the right-hand

side of the above. If (pn, M) = 1, then it follows from Deligne [8] and

Deligne-Serre [9] that we can write

1 - c(pn)pzs + l(pn)pk

n-
ι-2s = (1 - anpz%l - βnpήs)

with |α n | ^ pi*-1)/2 and |j3«l ^ plfc-1)/2. So the principal value Log(1 - anpzs\

Log(l — βnp~s) is well-defined if σ> (k — l)/2, and we put

(2.3) log(l - c(pn)p-s + X(pn)pk

n-'-ls) = Log(l - α n pί ') + Log(l - βnpzs).

Next, if pn\M, then %(pn) = 0, and |c(pn)| ^ p ^ " 1 ) / 2 since f(w) is primitive.

Hence, (2.3) is valid with an = c(pn) and /3n = 0. Hence, each term in

the right-hand side of (2.2) is well-defined for a > (k — l)/2, and the sum

is convergent absolutely for σ > (k + ί)/2.

Next we define log L(s) in the strip k/2 < σ <£ (k + l)/2. There is a

possibility of the existence of zeros of L(s) in this region, so we restrict

our consideration to the set

G = {s\σ > k/2} - U {s = σ + it^k/2 <σ< σ3),
S + it
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where s/s (j = 1, 2, •) run through all possible zeros of L(s) in k/2 < σ

<̂  (k + l)/2. For any s0 = σ0 + ίt0 e G, we define logL(s0) by the analytic

continuation along the path {s = σ + itQ\σ ^> σ0}.

We fix a σ0 > A/2, and discuss the value-distribution of log L(s) on the

line σ = σo Let J? be an arbitrary rectangle, and T > 0. The set

{ί e [0, T] |(70 + it e G, logL((70 + Zί) e i?}

consists of several intervals, so it is obviously Jordan measurable, and

by V(T, R) — V(T, R; L) we denote the Jordan measure of this set. The

principal result of this paper is the following

THEOREM 1. Let L(s) be the Dirichlet series attached to a primitive

form of level M. Then, there exists the limit

W(R) = W(R; L) = lim V(T, R; L)jT
T-+o

for any σQ > k/2.

The following four sections are devoted mainly to the proof of

Theorem 1. In the proof we shall see that W is a probability measure.

The evaluation of W(E) for any measurable E is an interesting problem.

In this direction, as a generalization of Theorem 19 of Jessen-Wintner

[13], we have

THEOREM 2. Let α, λ be positive numbers. Then, for any W-measurable

set E included in {z\\z\ > 3α}, the inequality

W(E) ^ Ce~λa*

holds, where C is a positive constant depending only on λ, k and σ0.

§ 3. Application of the Kronecker-Weyl theorem

Let N be a positive integer, and put

LN(S) = Π (1 - C{Pn)PZS +
n=l

Then,

log LN(s) = - Σ logft - c(pn)p-s +
n=l

which is well-defined if a >(k - l)/2. Let VN(T, R) = VN(T, R; L) be the

Jordan measure of the set
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Next, let QN —- [0, 1)" be the JV-dimensional unit torus, and for any

(θu •• ,θN)e[0,l)N, we put

SN(Θ1, • • , ΘN) = -Σ log( l - c(pn)p-°* exv(2πiθn)

For any subset E c C, we denote the inverse image S^(E) by ΩN(E) =

ΩN(E; L). Then, log LN(σ, + it)eR if and only if

where the symbol {x} denotes the fractional part of x. Hence, if ΩN(R)

is Jordan measurable, then by using the Kronecker-Weyl theorem (see

Titchmarsh [19], § 11.7), we can conclude

(3.1) lim VN(T, R; L)\T = WN(R),

where WN(R) = WN(R;L) is the JV-dimensional Jordan measure of ΩN(R).

Therefore, to establish (3.1), it is suf&cient to prove the following

LEMMA 1. For any rectangle R, the set ΩN(R) is Jordan measurable.

Furthermore, for any positive ε, there exists a positive η, which is inde-

pendent of N, and for which WN(R) < ε holds for any R with the area

μ(R) < η.

This lemma was at first proved by Bohr-Courant [2] for the case of

ζ(s), and then, in § 11 of Bohr-Jessen [5] for general convex curves. Their

induction argument can be applied to our present case.

Let

zn = zn(θn) = - l o g ( l - c(pn)p-«exv(2πiθn) + %(pn)pr i-2^exp(4ττ^n)),

and ωn = {zn(θn) \ 0 ^ θn < 1}. We prove the lemma by induction.

The set Ω^R) is a union of several intervals, so it is clearly Jordan

measurable. To show the second assertion, we first note that if μ(R) < η,

then the length of at least one edge of R is smaller than V η , hence it

is included in an open strip of width V η , parallel to the real or imagi-

nary axis. We only treat the former; the argument in the latter case is

similar.
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For any real x, by an elementary calculation we can show that the

number of the roots Θx which satisfies Im zx(θx) = x is at most four. Let I

be an arbitrary line parallel to the real axis, and denote by Zι(θίv))

(1 <I v <I 4) the intersection points of I and ωx. Let A(l; η) be the open

strip of width ηy whose center line is I. For sufficiently small η, the

strip A(l; 2V η) includes only four disjoint pieces ωίv)(l) of ωx (1 ^ v <£ 4)

on which lies the point zx(θίv)), respectively. Furthermore, we can choose

η = η(ΐ) so small that the length of the set {θx \ zx{θx) e ω[v)(Γ)} is less than

ε/4. Hence we have that the Jordan measure of the set

Ωx(A(i;

is smaller than e. We define

Since ωx is compact, we can choose a finite number of the lines {15}9 which

gives a finite covering {ωλ{l)} of ωx. And we put

η = min

Then it is obvious that for any /, there exists a line lj9 for which

holds. This implies the second assertion for N = 1.

The following second step is the same as in the original proof of

Bohr-Courant, but we present the argument for the convenience of readers.

We now assume the lemma is valid for N. By the assumption,

WN(R — zN+ί) is a continuous function of zN+1, so is also a continuous

function of ΘN+1. Hence the integral

Jo

exists.

We denote the four vertices of R by Au + ίBv (u, v = 1, 2, Ax < A2,

BX<B2):

R = [z\ Ax £ Έίe(z) £ A29 Bx ^ Ίm(z) ^ B2}.

Let δ > 0, and we put
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Rt = Rao) = {z\ A, + δ ^Re(z) <L A2 - δ, B1 + δ ^ Ίm(z) ^ J32 - δ}

and

B v = By(3) = {z\ A, - δ ^ Re(z) ^ A2 + 3, Bt - 5 ^ Im(z) £ B2 + δ].

For any positive ε, by the assumption there exists a sufficiently small δ,

independent of N, for which the inequalities

(3.2) W^R ~ ZN+I) - e < WN(Ri - zN+ί) ,

(3.3) WN(Ry - zN+1) < WN(R - zN+x) + ε

hold for any zN+1 e coN+i.

L e t u s t a k e a s e q u e n c e 0 = 0#>+1 < θ%\, <•-.-< θ^x < θtfj? = 1, a n d

define

m

I^(R) = Σ WN(R - zXUWJΐ? ~ θ&d,
μ = l

where z^\x = zN+ί(θi^l1). Under a suitable choice of {0#ίi}, we have

(3.4)

and

Rt - z<fU aR- zN+ί <zRy- zjfU

for any μ and any zN+1 = zN+1(θN+1) with ^ ^ <LΘN+ι< 6%+?. Hence,

where β^ = {(θu , ̂ + 1 ) e β^+1(i?) | β^\x ^ ^ + 1 < θ%ίϊ>}. So it follows that

WN(Ri - ztiliWSXΪ - θtiU) £ m(Ωμ) £ m(Ωμ) < WN(Ry - ^ l i X ^ ί ? - 0#ίi),

where m(X) (resp. m(X)) denotes the Jordan inner (resp. outer) volume
of X, hence the inequality

^ m(ΩN+1(R)) ^ I{m)(Rv)

follows. Combining this result with (3.2), (3.3) and (3.4), we have

I(R) -2ε£ m(ΩN+ί(R)) £ m(ΩN+ί(R)) £ I(R) + 2ε,

which implies ΩN+1(R) is Jordan measurable, and

(3.5) WN+ί(R) = f WN(R - zN+1)dθN+1.
Jo
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The second assertion of the lemma is a direct consequence of the expres-

sion (3.5).

§ 4. An evaluation of the probability measure WN

Let E a subset of C, for which ΩN{E) is Lebesgue measurable. We

denote the JV-dimensional Lebesgue measure of ΩN(E) by WN(E). Then

WN is clearly a probability measure over C, and, due to Lemma 2.4.3 of

Itό [12], it is regular. The purpose of this section is to prove the following

LEMMA 2. Let λ be an arbitrary positive number. Then, there exists a

positive constant aQ = aQ(λ, k, σ0), for which the inequality

WN(E) £ Ce-^

holds for any a > α0, any Borel set E C {z\\z\ > 2a} and any sufficiently

large positive integer N, with a positive constant C — C(λ, k, σ0).

The basic idea of the following proof is due to Jessen-Wintner [13]

(see also Borchsenius-Jessen [6]), though their argument depends on the

existence of the density function of WN.

Let r be a positive integer, N> r, and put

J - c(pn)p-^ exp (2πίθn)

For any Borel set E, the inverse image ΩTtN{E) = S~^N{E) is Lebesbue meas-

urable, so we can define a probability measure Wr>N(E), which is equal to

the (N — r)-dimensional Lebesgue measure of ΩrιN(E). By Fubini's theorem

we have

(4.1) WN{E) = ί Wr(E - S r , N ( θ r + 1 , •••, θ N ) ) d m ( θ r + ι , •••,ΘN)
J QN-r

= f Wr(E - z)dWrtN{z),
Jc

where m is the (N — r)-dimensional Lebesgue measure.

The set

Σr = {Sr(θl9 * * , θr) \θn 6 [0, 1) (1 £ n £ Γ»

is bounded; there exists a positive number α0 = aQ(r, k, σ0) for which J^r ^

{2:||^|^α0} holds. Let a> a0 and E an arbitrary Borel set included in
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{z\\z\ > 2a}. If \z\ < a, then (E - z) Π Σ r = 0> which yields Wr(E - z)

— 0. Therefore, from (4.1), we have

(4.2) WN{E) = f Wr(E - z)dWr,N{z)
J \z\>a

M= Wr,N{{z\\z\> a}) •

To evaluate the right-hand side of the above, we prepare the fol-

lowing

LEMMA 3. Let λ > 0, b > 0, and B a bounded set which satisfies

B C {z\\z\ ̂  6}. Then, under a suitable choice of r = r(Λ, £, <70),

ists α positive constant Cx — d{λ, k, σ0), for which

Wr,N(z0 - B) £ d

holds for any zQ e {z\\z\ > 26}.

Proo/. At first we note that if θ = (θr+ί, , ΘN) e βr>iV(^o — -B)?

|SΓf*(0)l>|*o|/2. Hence,

(4.3) exp (4λ\zof)Wr,Azo - B) = f exp
Jβr,iv(zo-β)

^ f exp
jΛr,ΛΓ(20-JS)

exp (16^|Sr,N(θ)f)dm(θ).
QN-T

Next, since σ0 > k/2, we have

|α n p; t f 0 exp (2πiθn)\ ̂  p£-

and the same estimate holds for βnpΰao exp (2πiθn). There is an absolute

constant C2, for which

holds for any 2e{|2| ^ lj*J~2}. Hence, if we put

N

then

\sr,M - s*M\ ^ c2 Σ d^.i2 + |j3n|
2)Pίf'° ^ 2C2c3,
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where

In general, if \u - v\ <; w, then \uf £ 2(\v\2 + w2). Therefore,

ί exp(16^ |S r ,^) | 2 )dm(^)
J QN-r

^ ί exp (32^(|S*N(Θ)|2 + 4Cld))dm(θ)
J QN-r

= exp Q3&C\C\λ) Σ ^~- f I SIM fsdm{θ).
J=0 j\ JQN-T

By using ParsevaΓs equation, we have

f \S*MΓdm{β)= Σ . ,jl . , Π ((«. + βJ ,-σo\Jn

Σ

Now we choose r — r(Z, k, σ0) so large that

oo

d = 1 — 32λ Σ l(«n + βn)Pnσ°\2 ^ 1/2

holds. Then we have

f exp (16*| Sr,N(θ)\2)dm(θ)
JQN-r

< exp (128CICIX) Σ (1 - d)j £ 2 exp
j=Q

This inequality with (4.3) leads to the assertion of Lemma 3.
Now we complete the proof of Lemma 2. Let

Δ = J(μ, v) = {z\μ(a,l2<f2) ^ Re(z) ^(μ + l)(αo/2/2),

v(aj2f2) ^ Im(^) ̂  (v + l)(ao/2/2")}

for any integers μ and y. Then it is obvious that

(4-4) Wr,A{z 11*1 > <*}) ̂  Σ
Δ

where the sum runs through all Δ which satisfies the condition Δ Π
{z I \z\ > a} Φ 0 . Let zΔ be the vertex of Δ which is the most distant from
the origin. Then we can write Δ = zΔ — ΔQ, where Δo is one of the squares
J ( - l , -1), J ( - l , 0), J(0, -1) and J(0, 0). Since \z4\ > a and
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Jo C {z\\z\ ̂  f2(aol2f2) = αo/2},

we can apply Lemma 3 with z0 = zj9 B = Jo and b — aJ2. The result is

that

The inequality \z\ ̂  | ^ | holds for any zeΔ, so we have

exp {-U\zΔf) ^ (α o /2/¥)- 2 f exp (~4λ\z\2)dz .

Substituting these results in (4.4), we have

Wr,N{{z\\z\ > a}) ^ SC.ao2 ί exp (-Aλ\zf)dz
J |z|^α/2

The result of the lemma follows from this inequality and (4.2).

§ 5. The existence of the asymptotic probability measure

Borchsenius-Jessen's proof [6] of the existence of lim WN(R; ζ) is

based on Levy's convergence theorem, and their argument can be gener-

alized to our present case. However, by using the result of Lemma 2,

we can give a very simple proof of this fact.

Let Pu P2 be two regular probability measures over C, and ε12 be the

lower bound of those e, for which

Pλ(F) < P2({z|dist(z, F) < ε}) + ε

holds for any closed subset F. Similarly we define the number ε21, and

put

p(P19 P2) == max {ε12, ε21} .

It can be shown that p is a distance function, which we call Prokhorov's

distance. Prokhorov [16] proved that with this metric, the space 2 of

all regular probability measures over C is a complete separable metric

space. The convergence with respect to this metric is equivalent to the

weak convergence.

Let {Pa}aGΛ be a subset of 2. We call {Pa} is tight if for any positive

ε, there exists a compact set K — K(ε) C C, for which the inequality

Pa(C -K)<ε
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holds for any ae Λ. Now we quote the following

LEMMA 4 (Prokhorov [16]). In order for {Pa} to be tight it is necessary

and sufficient that {Pa} is totally bounded with respect to the Prokhorov

metric.

If σ0 > (k + l)/2, then SN(ΘU , ΘN) is uniformly bounded for any N,

so it is obvious that {WN} is a tight subset. Lemma 2 implies that the

tightness is valid for any σ0 > k\2. Hence, from Lemma 4, there exists a

subsequence {WN(j)}°f=1, which is convergent weakly to a measure We@.

In the next section we will prove that this W is just the desired limit

in Theorem 1.

Here we note that Theorem 2 is now a immediate consequence of

Lemma 2 and the above claim. In fact, let a > α0, and E be an Im-

measurable set included in {2 | | z |> 3a}. We can assume E is compact,

because W is If-regular. Let GE be an open set which satisfies

E dGE c { s | | * |> 2a}.

Then, there exists a continuous function gE which is equal to 1 on E,

equal to 0 on G^, and satisfies 0 <L gE(z) <I 1 if z e GE — E. Then it fol-

lows that

W(E) £ f gE{z)dW(z) = lim f gE(z)dWNU)(z) <ί liminf WNU)(Gε).

Lemma 2 shows WN(j)(GE) £ Ce'Xa\ hence W(J?) ^ GrA α 2. To verify The-

orem 2 in case α ^ α0, it is enough to change the value of C, if necessary.

§ 6. Completion of the proof of Theorem 1

Let ε be an arbitrary positive number. The second assertion of

Lemma 1 (and its proof) implies that there exists a δ > 0, for which

WN(Ry(2δ) - JB^ί)) < ε/2

holds for any rectangle R and any N. We define a continuous function

gn by

fl if z is included in the closure of Ry(δ) — -Rt (<5),

[0 if z is not included in the open kernel of

Ry(2δ) - R12S),

and 0 ^ &(«) ^ 1 if * e (Λf(3) - £,(23)) U (Λtf(2ί) - Λy(a)). Then,
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W(Bv(δ) - Rt(δ)) £ ί gn(z)dW(z) = lim f gB(z)dWNϋ)(z)
JC j^™ JC

^ liminf WN(j)(Ry(2d) - R

which yields

(6.1) I W(R) - WiRMl < e/2, I W(R) - W(Ry(δ))\ < ε/2.

In particular, any rectangle is a continuity set with respect to W. Hence,

there exists a sufficiently large positive Ju for which

(6.2) I WKiJ)(Rd - W(Rd\ < ε/2, | Wκίi,{Rv) - W(RV)\ < e/2

holds for any j ^ J^

Now we assume σ0 > (k + l)/2. Then we have

(6.3) |logL(σ0 + it) - logLN{j)(σ, + it)\ ̂  C4 f ] (\anpzs\ + \βnpΰs\) < δ

for any real t and any j ^ J2, with a sufficiently large J2 = J2(δ, k, σ0)

and an absolute constant C4. Hence,

VNij)(T, RXδ)) ^ V(T, R) £ VN(j)(T, Ry(δ)),

and so, from (3.1), we have

WNU)(Rd ^ liminf V(T, R)jT ^ limsup V(T9 R)jT £ WN(j)(Rv).

Hence, with (6.1) and (6.2),

W(R) - ε ̂  liminf V(T, R)jT ^ limsup V(T, R)/T ̂  W(i?) + a,
T

which leads to the assertion of Theorem 1 in the domain of absolute

convergence.

Next we proceed to the case k/2 < σQ ̂  (k + l)/2. By kδ

N(T) we denote

the measure of the set

Kδ

N{T) = {te [0, T] \σ0 + it e G, |logL(σ0 + it) -

Then it follows that

(6.4) VNij)(T, Rt(δ)) - k%(j)(T) £ V(T, R) £ VNiJ)(T, Rv(δ))

for any j . Let t0 be a real number, kj2 < α0 < σ0,

= {s = σ + it\σ > α,, t, - J < ί < ί0 +
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and

[Ό if H{Q c G, and if |logL(s) - \ogLN(s)\ < δ

ΨN(Q = j for any s e H(t0),

(l otherwise.

Then it is obvious that

kδ

N(T) £ Γ φδ

N(Qdt0 .
Jo

Hence we have

WN{j)(Rd - ΦN{j) < liminf V(T9 R)/T
T—»oo

<^ limsup T/(Γ, i?)/T < WNij)(Ry) + Φ^( i )

from (6.4), where

ΦN = limsup 77-1 ψδ

N(Qdt,.

Therefore, if we can show

(6.5) lim ΦN = 0 ,

then, by a way similar to the case of σ0 > (& + l)/2, we can complete the

proof of Theorem 1 in the critical strip.

In the case of the Riemann zeta-function, the result corresponding

to (6.5) is Hilfssatz 5 of Bohr [1], Bohr's proof of Hilfssatz 5 is based

on Hilfssatz 2 in the same paper. The analogue of Hilfssatz 2 in our

case can be stated as follows:

LEMMA 5. Let k/2 < σx < σ2, and ε be an arbitrary positive number.

Then there exists a positive NQ = iV0(̂ i, ^ ε)> for which the inequality

ίi. \L(s)ILN(s) - Ifdσdt < εT

holds for any N^ No and any T Ξ> To, with a positive TQ = TQ(N).

As we have already mentioned in [14], we can skip Bohr's technical

argument in the proof of Hilfssatz 2, by using a general mean-value

theorem of Carlson.

By virtue of Hecke's estimate (Satz 7 of [11]), we can apply Potter's

general result (Theorem 3 of [15]) to our case, and the result is the
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asymptotic formula

(6.6) Γ |L(σ0 + ίt)fdt = TΣ \c(n)fn-2°« + o(T)
J 0 71 = 1

which is valid for σ0 > k/2. It can be easily shown that

\LN(σ0 + it)]-1 ̂  exp(CJV(fc + 1>'2-"),

so from (6.6) we see

T 1 Γ \L(σQ + it)/LN{σ, + it) - l\2dt
Jo

is also bounded. Hence, by using Carlson's theorem [7] (see also § 9.51

of Titchmarsh [18]), we have

(6.7) lim Γ-1 Γ \L(σQ + ίt)ILN(σQ + it) - Ifdt - Σ |c(m)|2/τr2-
Γ-oo Jo (m,p1p-2- piχ)=lPiί. -

mφl

for any σύ > k/2, because the Dirichlet series expansion

L(s)/LN(s) - Σ <™)™-s

(m,pip2 "PN) =1

holds. From the well-known result

Σ |c(m)ί2 - C5x
fc + O(x f c-2 / 5)

(C5 being a constant depending on k, M and /) in Rankin's classical work

[17], it follows immediately that the right-hand side of (6.7) can be

estimated by O(Nk~2σ°) (cf. Lemma 5 of Good [10]). This completes the

proof of the lemma.

The method of the deduction of (6.5) from Lemma 5 is quite the same

as the original proof of Bohr [1], so we omit the details. Consequently,

our Theorem 1 is now proved.

Note added in proof.

The results in the present paper are now generalized to the case

of more general Euler products. A generalization of Theorem 1, with

a simplified proof, is written in the author's paper entitled "Value-

distribution of zeta-functions", which will be published in "The Pro-

ceedings for the Japanese-French Symposium on Analytic Number Theory",

ed. by E. Fouvry and K. Nagasaka, a volume in Lecture Notes in Math.

Ser., Springer-Verlag.
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