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Abstract

The operators K, k, T and t are defined on the lattice V(S) of congruences on a Rees matrix
semigroup S as follows. For p € *#(£), pK and pk (pT and pt) are the greatest and the
least congruences with the same kernel (trace) as p, respectively. We determine the semigroup
generated by the operators K, k,T and t as they act on all completely simple semigroups. We
also determine the network of congruences associated with a congruence p e V(S) and the lattice
generated by it. The latter is then represented by generators and relations.

1991 Mathematics subject classification (Amer. Math. Soc): 20 M 10.

1. Introduction and summary

Completely simple semigroups, that is semigroups without proper ideals and
with a primitive idempotent, have their best representation as Rees matrix
semigroups, which we write as ^#(7, G, A; P). Congruences on a Rees matrix
semigroup have their best representation as triples (r, N,n) where r is a partition
of / , N is a normal subgroup of G and n is a partition of A satisfying a single
condition. The sandwich matrix P can always be normalized. This makes it
possible to replace that single condition by two simpler and more transparent
ones. If we wish to regard a congruence as being given by its kernel and its
trace, this means that in the triple representation (r, N,n) we must fuse the
partitions r and n into a single entity which can be thought of as a special type
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of partition of the Cartesian product / x A. This we call normal. In this way,
we represent a congruence on a Rees matrix semigroup by a pair (N, 9) where
N is a normal subgroup of G and 6 is a normal partition of / x A, connected
by two very simple conditions.

For any regular semigroup S, we have two relations of fundamental import-
ance on the congruence lattice ^(5) of 5. For any p e ^(5), the kernel of p is
the set of elements of 5 p-related to idempotents, the trace of p is the restriction
of p to the set of idempotents of S. We now denote by p K and pk (respectively
pT and pt) the greatest and the least congruences on 5 with the same kernel
(respectively trace) as p. This creates the set F = [K, k, T, t) of operators on

) . By iteration, we get the semigroup F + , or monoid F*, of operators on
) . In particular, we may fix a congruence p on 5 and consider F* acting on

p alone, which amounts to producing a network of congruences p, pK, pk,...
ordered by inclusion. The set F of operators may be enlarged by adding to it 7},
Tr, tt and tr pertaining to left and right traces of congruences.

Various aspects of the problem area indicated above can be found in the
literature. The sudy of networks of congruences was inaugurated (for inverse
semigroups) by Petrich and Reilly [7]. Networks on the lattice of varieties of
completely regular semigroups were considered by Pastijn and Trotter [3] and
Petrich and Reilly [8]. Different aspects of various networks were examined for
arbitrary regular semigroups by the author in [5] and [4].

For a Rees matrix semigroup 5 and for a fixed congruence p on 5, we study
the network of congruences pF* and construct the lattice Lp generated by it.
On the way, we determine the defining relations for the generators F as F + acts
on all completely simple semigroups. Our success is due primarily to the most
felicitous description of congruences on a Rees matrix semigroup in terms of
admissible pairs as indicated above. It would be definitely intriguing to see
whether our results can be extended to more general classes of semigroups.

In Section 2 we list a few preliminaries; for the remainder we refer to the
relevant literature. We treat the representation of congruences on a Rees matrix
semigroup in Section 3 in considerable detail as this is fundamental to the
remainder of the paper. In Section 4, we introduce the operators K, k, T and t,
as well as certain functions they induce on normal subgroups of G and normal
partitions of / x A. This section contains all the crucial lemmas needed for
the main results of the paper. We consider in Section 5 an example of a Rees
matrix semigroup which shows that all the important congruences we will have
encountered earlier are distinct. In Section 6, we determine the semigroup
generated by our operators on all completely simple semigroups. We determine
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in Section 7 the network of congruences associated with a congruence and in
Section 8 the lattice generated by it and represent it in terms of generators and
relations.

2. Preliminaries

Throughout the paper, let

S = JK{1, G, A; P)

be a Rees matrix semigroup over a group G and normalized sandwich matrix P.
Recall that S is defined on the set / x G x A and P : A x / - * G i s a mapping,
in notation P = (/?*,), with multiplication

(/, g, X)(j, h, ix) = (i, gpxjh, /x).

We suppose, as we may, that P is normalized at 1 e IDA, that is Pu = Pu — e,
the identity element of G, for all i e / and X e A. Note that

is the set of idempotents of S. We will identify e with the singleton set {e}.
For any set X, we denote by X* and X+ the free monoid and the free semigroup

on X, respectively. The elements of X+ are nonempty words over X under
concatenation and X* = X+U{1} where 1 denotes the empty word and acts on
X* as an identity element. If E is a set of relations among generators X, then
(X/E) denotes the corresponding quotient semigroup.

For any set X, we denote by e and &> the equality and the universal relations
on X, respectively.

3. Congruences on a Rees matrix semigroup

Congruences on 5 are described by the following device. Let r be a partition
of / , N be a normal subgroup of G and n be a partition of A satisfying

(1) if i r j or X 7i fi, then PuiP^PyP'j e N.
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In such a case, (r, N, TT) is an admissible triple for 5 and the relation p defined
on S by

(i,g,X) p (j,h,fx) •& i r j , gh~leN, X n fi

is a congruence on 5. Conversely, every congruence on 5 can be so represented
for a unique admissible triple. The inclusion and the meet and join operations
are naturally transferred to the set of admissible triples thereby producing the
following formulae:

(r, N, TT) < (/•', N', TT') <* r c r', N c AT, TT c TT',

(r, N, TT) A (/•', AT, ?r') = (r A /•', JVA AT, TT A jr'),

(r, N, TT) v (r', AT', JT') = (r v r', N v N', TT V n')

where the joins r v r' and TV v n' are of equivalence relations.
These results and the accompanying considerations can be found in ([ 1, III.4]).

We now modify the representation of congruences on 5 by admissible triples
by essentially fusing the partitions r and n together into a single entity 9 which
can be thought of as a partition of the set / x A .

For an admissible triple (r, N,n) for 5, since the matrix P is normalized, we
may replace condition (1) by the following two simpler conditions

(2) \ , _ . . _ _ ..-i
irj =>• pxiplj G N for all U A ,
A7Tjti =>• pup'? e Â  for all / € /.

Next we write 6 = (r, n) and call 9 a normal partition of / x A , and in (2)
write 6 instead of both r and Tt. We are thus led to the following concept.

DEFINITION. Let iV be a normal subgroup of G and let 9 be a normal partition
of / x A satisfying

i$j =>- pxiPx/ e N for all X e A,
X9fj, =» PxiP~l € N for all / e /.

Then (N, 9) is an admissible pair for 5. In such a case, define a relation p on S
by

(i,g,X) p(j,h,ii)&iOj, gh-'eN, X9^,

and write p ~ (N, 9) . Denote by srfS? the set of all admissible pairs for S and
by ^ the congruence lattice of 5.
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In view of the above discussion of admissible triples and their conversion
into admissible pairs, we conclude that p is a congruence and, conversely, that
every congruence on 5 admits a unique representation as an admissible pair. In
addition, for two such pairs, we get

(N, 9) < {N1, 9') o N c N', 9 c 9',
(N, 9) A (AT, 9') = (N A AT, 9 A 9'),
(N, 9) v (AT, 0') = (Nv N', 9v 9').

This makes si'& into a lattice isomorphic to c£. We continue with the lattice
notation: N A N' = N D N', N v N' = NN', 9 A 9' = 9 n 9', etcetera for the
sake of symmetry.

We will need the following special congruences on 5:

ix — Jif - the greatest idempotent separating congruence,

T - the greatest idempotent pure congruence,

o - the least group congruence.

4. Operators on the congruence lattice

This section contains the key lemmas to be used later for proving the main
results. These lemmas pertain mainly to the four operators defined below.

We specialize some concepts from general regular semigroups to completely
simple semigroups. For any /) e ^ , we define the kernel and the trace of p by

kerp = {a e S \ a p e for some e e E),

trp = p \E,

respectively. On the lattice ^ w e define the relations J^and

<$• kerA. = kerp, XTp o- trX = trp.

Then J^and & are the kernel and trace relations on c€, respectively.
For any p e ^ we will use the following notation:

p K- the greatest congruence on 5 with the same kernel as p,

pk- the least congruence on 5 with the same kernel as p,

pT- the greatest congruence on S with the same trace as p,

pt- the least congruence on S with the same trace as p.
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The existence of these congruences follows from Lemma 2 below in the
present case. For general regular semigroups, it was established in [2]. This
produces the set
(3) r = {K,k,T,t]

of operators on c€.
We can now transfer, in an obvious way, these four operators from ^"to si'&.

This means that

(N, 9)y = (N1, 9') if py = p' where p ~ (N, 0) and p' ~ (Nr, 9'),

for / e r .
In order to describe the value of (N, 9)y, we will need the following con-

structions. For a normal subgroup N of G, let N be the normal partition of
/ x A defined by

iNj O PuPl} eiV for all A e A,
XNix <$• pxtP^l e Â  for all / e /.

For a normal partition 9 of / x A, let 9 be the normal subgroup of G generated
by the set

{ p k i p ~ l | i 9 n , X € A } U { p u p - J \ i € l , X 9 f i } .

In terms of the above notation, we have the following simple characterization
of an admissible pair.

LEMMA 1. Let N be a normal subgroup ofG and 9 be a normal partition of
I x A. Then (N, 9) e &?'&> if and only if 9 C Jj.

PROOF. Indeed, (N, 9) e £?& if and only if

i 9 j =• PxiPx/ € N for all X € A ,
X9 fi =• pxtp~] e N for all / e /

which is equivalent to

/ 9 j => i~Nj, X9 n=> X~Nfx

that is, 9 c Jj.
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The next lemma, of fundamental importance to our condsiderations, will be
used throughout the paper without express reference.

LEMMA 2. For (N,9) e srfg?, we have

(N,d)K = (N,~N), (N,0)T = (G,0),
(N,9)k = (N,€), (N,9)t = (9,9).

PROOF. Straightforward.

Basic properties of the bar functions are the subject of the next result.

LEMMA 3. The following statements hold.

(i) G = (o.

(ii) ? = e.

(Hi) For N, N' normal subgroups of G, N c N' implies N C N'.

(iv) For 9, 9' normal partitions of I x A, 0 c 0' implies 9 C 9'.

(v) For any normal subgroup NofG, we have N c N and N — N.

(vi) For any normal partition 9 of I x A, we have 9 2 9 and 9 — 9.

PROOF. The proofs of items (i) - (iv) are straightforward and are omitted,
(v) Let /V be a normal subgroup of G. Then (N, e) € srfS? so let p ~ (N,e).

Hence

(4) pK~(N,~N), pKt~(N,~N), pKtK ~(N,7t).

Since pKt c pK, it follows that N c N which by part (iii) gives N C N. On

the other hand, pKt c pKtK so that N c N and equality holds.
(vi) Let 9 be a normal partition of / x A. Then (G, 9) e srfS* so let

p ~ (G,0). Hence

(5) pt~(9,6), $H

Since pt c p ^ , it follows that 9 c 0 which by part (iv) gives 6> c 9. On the

other hand, pt Kt c. ptK so that 9 c.9 and equality holds.
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Note that by Lemma 2 and Lemma 3(iii) and (iv), all the operators K, k, T
and t are order preserving. We are interested in the form of (N,6)w where
w G F*. To this end, we start with the following special cases for w. Note that
fi = eT, x = (K and a = cot.

LEMMA 4. For any p etf ,we have

(i) pTK — co ~ (G,co),

(ii) pTKt — a ~ (co, co),

(iii) pkT = pTk = ii~(G,e),

(iv) pTKtk = a A /x ~ (~co, e).

(v) pkt — e ~ (e, €).

(vi) pktK = x ~ (e,e),

(vii) pktKT = xV[A,~(G,e).

PROOF.

(i) pTK~(N,6)TK

(ii) pTKT — cot — a

(iii) pA:7 ~ (tf,

p r * ~ (Af,

(iv) pTKtk ~ (

w, <u),

= (N, € ) r = (G, e) ~ /

= (G, 0)ifc = (G, e) ~ i

(w, e) ~ a A /x,

(v) pkt ~ (N, 6>)>t/ = (N, €)t = (?, e) = (e,

(vi) pktK = eK = x ~ (e,?),

(vii)pktKT ~ (e,e)T = (G,e) ~ x V /A.

by Lemma 3(i),

by Lemma 3(ii),

In view of Lemma 4 we will use the notation

e = kt, x = ktK, xVfj. = ktKT,

= TK, a = TKt, a A \i = TKtk,co /x

= kT,
= TK.

Observe that To is the normal subgroup of G generated by entries of P and that
e identifies identical rows and identical columns.

It follows easily from Lemma 4 that

Let
A =

v / i ) A < 7 = ( ( 7 A / i ) v r ~ (co, e).

, r , a A /x, a, fi, x V \x, (x V /x) A cr,
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Letting p e "^and taking into account Lemma 4, we may represent A as the
lattice with vertices labelled in relation to p; see the diagram in [6].

The next lemma shows the invariance of A under F.

LEMMA 5. We have A F C A ^ t o the relations in E.

PROOF. Using Lemmas 3 and 4, we obtain the desired results which we
present as the following table:

€

X

CT A IX

M
X V 11

CT

CO

(X V/x) ACT

T

T

CT

ft)

ft)

CT

CO

CT

e
e

a A ix

CT A IX

IX

O A IX

T

x v ix

T V/X

ft)

CO

X V/X

T

T

CT

CT

T

We now consider some relations valid for our operators.

LEMMA 6. Operators F satisfy the following relations

= { (i) K2 = kK = K, k2 = Kk = k (ii) KTK = TKT = TK,
t1 = Tt = t, T2 = tT = T, tkt = ktk = kt,

(iii) KtK = /Q ,
= f AT, (iv) kT = Tk

PROOF, (i) This follows directly from the definition of the operators K,k,T
and?.

(ii) By Lemma 4(i), we have pTK = co for any p e c£. In particular
(pK)TK = co and thus KTK = TK. Since coT = co, it follows that pTKT =
co for all p e "if and thus TKT = TK.

By Lemma 4(v), we have pkt = e for any p e c€. In particular (pO£' = e
and thus /&? = kt. Since e& = e, it follows that pktk = e for all p e ^and
thus ktk — kt.

(iii) The first relation follows from Lemma 3(v) and (4); the second from
Lemma 3(vi) and (5).

(iv) This was proved in Lemma 4(iii).
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Observe that the second line in each of the items (i), (ii) and (iii) can be
obtained from the first line by the transformation

K <-*. t T +± l-

Item (iv) is invariant under this transformation.
In view of Lemma 6, we can now give a system of representatives of the

corresponding congruence.

LEMMA 7. The set

(6)
= { K, T, KT, Kt, kt, Ktk, ktK, ktKT,

kT, t, k, tk, tK, TK, tKT, TKt, TKtk}

is a system of representatives of the congruence on F+ generated by the rela-
tions E.

PROOF. We consider the following clusters of words:

tK'

KtK

tKT

= co-

TKt = o

TKtk = a A

kT = ktKT = x v

ktK =

-kt = €-
For each word w we consider four words wK, wk, wT, wt. If the last letter

of w is K or k, because of K2 = kK = K and k2 = Kk = k, wK and wk have
representatives of the same length as w, so it suffices to consider the words wT
and wt. Symmetrically for the case when the last letter of w is either T or t.
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In the remaining cases we search among the relations £ whether the resulting
word can be replaced by a shorter one and replace Tk by kT. If in this process
we reach an element 8 of A, we may refer to Lemma 5 for values of SK, SKT,
etcetera. In this way we obtain the above clusters of words as the only possible
ones. That no two distinct elements of £2 are related by the congruence generated
by £ will follow from the example in Section 5.

In the arrangement of elements of Q in Lemma 7, each word in the second
line can be obtained from the word above it by the transformation

Moreover, this transformation maps kT onto Tk (where kT = Tk is one of
relations in £) .

Using the notation introduced afer Lemma 4, we can write the elements of Q
as:

K,T,KT,Kt,€,Ktk,x,xv \i,

li, t, k, tk, tK, co, tKT, a, a A \x.

For a given (N, 9) 6 srfP , the elements of Q U {1} applied to (N,9), in the
above arrangement give

i(N,9) (N,77) (G,0) (G.AO (^,7V) (e,e) (^, c) (e,e) (G,e)

\(G,€) (9,6) (N,e) (0,6) (flj) (G, to) (G J ) (co, co) (co, e)

LEMMA 8. The lattices generated by the projections of the set in (7) into the
lattice of normal subgroups of G and the lattice of normal partitions of I x A
form the lattices Lk and L, in Diagram 1.

PROOF. The projection into the lattice of normal subgroups of G equals

{e, 0, ~N, N, To, G). By Lemma 1, we have 9 c 77 and hence 9 c 77 by

Lemma 3(iv). Also N c N by Lemma 3(v). Finally N Q co which by

Lemma 3(iii) implies that N c aj . This establishes the order in the set

{e,9, N, N,co,G} which in turn produces the lattice Lk in Diagram 1.

https://doi.org/10.1017/S1446788700034868 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034868


254 Mario Petrich [12]

U: L,:
• CO

N A co

N

eve

..0

DIAGRAM 1

The discussion for L, runs analogously. The projection into / x A equals
{e, 0, e, 0,77, co}. First e C ^ b y Lemma 3(iv) since e c 0. Also 0 c 0 by

Lemma 3(vi). Finally 0 c. N implies 0 c. N = N by Lemma 3(iii) - (v).
This establishes the order in the set {e, 0, e, 0, N, co} which in turn produces the
lattice L, in Diagram 1.
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5. An example

The purpose of the example below is to exhibit an instance of a completely
simple semigroup S and a congruence p on S for which the values of p and
pw, as w runs over the set Q in Lemma 7, and their joins and meets, are all
distinct. This statement will be used later several times in crucial situations.
The example represents an expansion of ([4, Example 5.4]).

EXAMPLE. Let S = J?(I, G, A; P) where

/ = {0, 1,2, 3,4}, G = Z x Z 4 , A = {0,1,2,3},

/ (0, 0) (0, 0) (0, 0) (0, 0) (0,0) \
(0,0) (0,0) (0,0) (0,0) (0,0)
(0,0) (0,0) (1,0) (9,0) (25,0)
(0,0) (0,0) (17,0) (25,0) (41,0) /

P =

For N - {(2, 2)>, we obtain

N = ({{0,1}, {2, 3,4}}, {{0, 1}, {2, 3}}), V = <(8, 0)),

and for 9 = (e, {{0, 1}, {2, 3}}), we get

9 = {(16, 0)), cJ = ({{0, 1}, {2}, {3,4}}, {{0, 1}, {2, 3}}).

It follows that (N, 9) is an admissible pair for 5.

6. The semigroup generated by the operators

Relations E in Lemma 6 are valid for the operators in F on the congruence
lattice of any completely simple semigroup. The set £2 in Lemma 7 is a subset
of F + , the free semigroup on F, which serves as a set of representatives for the
congruence on F + induced by the relations in E.

We now provide the set Q with the multiplication of representatives thereby
obtaining Table 1. In it we use the symbolism introduced after Lemma 4 using
the notation of elements of A for the words kt,ktK, etcetera. We note that these
elements, considered as operators on the congruence lattice, are constants and
thus act in the semigroup £2 as right zeros. Hence there is no need for displaying
them in the table.
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K
k
T
t

KT
Kt
Ktk
tKT
tK
tk

€

X

a A ix

T V /X

a
CO

K
K
K
CO

tK
CO

Kt
Kt
CO

tK
tK

X

X

a
CO

CO

a
CO

k
k
k

tk

Ktk
Ktk

tk
tk
€

O A IX

a A ix

T
KT

T
T

KT
KT

tKT
tKT

T V IX

r v ix
CO

CO

t
Kt
€

t

t
Kt
Kt
€

tK
tK

€

€

X

e
€

X

a
a

KT
KT
KT

CO

tKT
CO

KT
KT

CO

tKT
tKT

x V ix

x v/x
CO

CO

CO

CO

CO

Kt

Kt
Kt
o

tK
a

Kt
Kt
a

tK
tK

X

X

a
a

a
a
a

Ktk
Ktk
Ktk

o A ix
tk

O A IX
Ktk
Ktk

a A ix
tk
tk
€

e
a A ix
a A /x
o A /x
a A /x
O A IX

tKT
KT

x v/x
tKT
tKT
KT
KT

T V IX

tKT
tKT

X V IX

x v/x
x V ix

X

X V/X

CO

CO

tK

Kt
X

tK
tK
Kt
Kt
X

tK
tK
€

X

X

X

X

X

a
CT

tk

Ktk
€

tk
tk

Ktk
Ktk

€

tk
tk
€

€

€

€

a A ix
CT A H

TABLE 1

We are now ready for the first principal result of the paper. Recall the
notation (6) for elements of E, the notation A after Lemma 4, F in (3) and S in
Lemma 6.

THEOREM 1. The set £2 given the multiplication in Table 1 and in which
elements of A act as right zeros is a semigroup isomorphic to (F/ E).

PROOF. By Lemma 7, fi serves as a set of representatives for the congruence
on F + induced by the relations E. A direct but long verification shows that the
system of representatives £2 admits products as indicated in Table 1; we omit
the details. It is obvious that elements of A act as right zeros for Q.

The following statement is a consequence of several earlier results.

COROLLARY 1. Let S be a completely simple semigroup. The semigroup
Q (5) generated by the operators K,k,T and t on the congruence lattice ofS is
a homomorphic image of £2. For the semigroup S in the example in Section 5,
wehaveSl(S) = fi.
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PROOF. The first assertion follows from Theorem 1 in view of Lemmas 6
and 7. The second assertion is a consequence of Lemma 8 and the fact that all
the projections of pQ into G and / x F are distinct in the cited example.

In view of the above theorem and its corollary, we can say that the relations E
are the denning relations for the semigroup generated by the operators K,k,T
and t on congruence lattices of all completely simple semigroups. For the
relations E are valid in the semigroup generated by these operators on the
congruence lattice of any completely simple semigroup and, in general, no
relation can be added unless it follows from those already in E.

The next two propositions contain a few interesting properties of the semi-
group Q..

PROPOSITION 1. The ^-structure ofQ is of the form

K k T t

KT

tKT

Kt

tK

Ktk

tk

The principal factor of KT is isomorphic to the Rees matrix semigroup

where

P =

PROOF. The standard analysis of the multiplication table shows that the above
diagram indeed describes the ^-structure of Q. The same goes for the structure
of the principal factor of the element KT. For the latter it only suffices to
observe that the above diagram of that ^-class is its egg-box picture, namely
that the rows represent ^-classes and the columns ^f-classes and that the squares
of all its elements remain in the ^-class except for (KT)2 and (tk)2 which fall
into A.
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PROPOSITION 2. For every w e Q, w ^ fi, let w be the element of Q.
obtained from w by the transformation

(8) K ++t, T *> k,

and letJL — /z . Then the mapping w —>• w is an automorphism ofQ.

PROOF. The proof follows immediately from the presentation of Q and is
omitted. The assertion of the proposition can also be proved directly by analyz-
ing the multiplication table for Q.

7. A network associated with a congruence

To every congruence p on a regular semigroup we may associate the network
of congruences

Pp = {pw\ w€T*}

partially ordered by inclusion. For a Rees matrix semigroup 5, it is more
convenient to consider admissible pairs rather than congruences. We thus arrive
at the second principal result of this paper.

THEOREM 2. Let (N, 6) be an admissible pair for S. The lattice L(NM) gen-
erated by the set

is depicted in Diagram 2 wih some possible coincidence of vertices. The labels
on the sides of this diagram represent the <%- and ^-classes of the congruences
in P(N,e)- For the semigroup S in the example in Section 5, all the vertices in
Diagram 2 are distinct. Moreover,

Lk x L,).

PROOF. According to Lemma 7, we have

P(N,e) = i(N, 9)w | w = 1 or w e

We have seen in Lemma 8 that P(N.e) is contained in the Cartesian product of
the lattices Lk and L, in Diagram 1. Now drawing the vertices corresponding to
elements of P(N,$) in Lk x Lt, we easily obtain part of Diagram 2. The second
assertion of the theorem now clearly holds.
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Let w € T+. Trivially (N, 9)w € srf&. In view of Lemma 7, we may
suppose that w e Q which by the above gives that (N,6)w e LkxL,. Therefore
LlN.B) Q */& n (Lk x L,).

Conversely, we may represent each element of srfS? (1 (Lk x Lt) by means
of an expression in terms of meets and joins of elements of P(N,e)- These
expressions can be extracted from Diagram 2. The long verification of this
assertion is omitted.

This establishes the last assertion of the theorem. Now plotting the elements
of &/& fl (Lk x L,) into the diagram started above, we easily obtain Diagram 2.
In view of Lemma 8 and the fact that all vertices in the example in Section 5 are
distinct, all the vertices of L(Nt8) within Lk x L, are also distinct, as asserted.

pKT

ptKT,

DIAGRAM 2
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o) = pTK - pKT = ptKT = r v

PT

= pkT < X/° )• a = r = Kt = lK

pk

e = pkt = ptk = pKtk = a A \x

DIAGRAM 3

Recall that a rectangular group is a completely simple semigroup 5 in
which idempotents form a subsemigroup. In a Rees matrix semigroup 5 =
JZ(1, G, A; P) with /* normalized, this condition is equivalent to all entries
of P being equal to the identity of G. It is then clear that in such a case, any
pair (N, 9), where N is a normal subgroup of G and 9 is a normal partition of
/ x A, is admissible. Now letting p ~ (Af, 9) , ([4, Proposition 5.5]) asserts
that Diagram 3 represents Pp for any congruence p on a rectangular group S.

If for u, v € F* , we have pu = pv for all congruences p on a completely
simple semigroup S, we say that the congruence lattice of S agrees with the
identity u = v .

The next result indicates how close-knit the semigroup (T+/ £) with regard to
relations E is. For adding one more relation to E may result in much collapsing
as we will now see.

PROPOSITION 3. The following statements are equivalent for any completely
simple semigroup S.

(i) S is a rectangular group.
(ii) The congruence p, has a complement in c€.
(iii) ^ agrees with any single identity u — v in Diagram 3 which is not

in S.
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PROOF, (i) implies (ii). By the remarks preceding the proposition, (e, a>) is
an admissible pair for S. But fi ~ (G, e) and trivially (e, co) is a complement
of (G, e) in the lattice .

(ii) implies (i). Let (N, 0) be a complement of (G, e) in J ^ ^ 1 . It follows at
once that N — e and 9 — co so that (e, w) is an admissible pair. But this means
that PxiPxj — e for all i, y e / and U A , and for j — 1, we get pXt — e and S
is a rectangular group.

(i) implies (iii). By ([4, Proposition 5.5]), for any p e% Pp is as in Diagram 6.
Now it is easy to see that all the equalities as indicated at the vertices of the
diagram hold.

(iii) implies (i). There are 18 equalities with the property indicated. For
example, it is well known that a = x implies that 5 is a rectangular group. As
a sample, we prove that Ktk — e implies that 5 is a rectangular group. For any
(N, 6) e srf£?, by hypothesis we have (N, 0)Ktk — (e, e) which gives N = e.
Since this holds for all normal subgroups Af of G, we may let N = G getting
G = e. By Lemma 3(v), we obtain G = e so by Lemma 3(i), co = e. It follows
that puPxl = e f°r aU l'> j e I an^ A e A. Now letting j — 1, we get pu — e
for all i s / and A 6 A and 5 is a rectangular group. The remaining cases are
treated similarly.

The lattice L(NM) has 54 elements and is a subdirect product of the distributive
lattices Lk and L, and is thus distributive. For any congruence p on a regular
semigroup, we have pK ApT = p = pkvpt so that our Lp satisfies the relation

(9) K AT = kvt = l.

It is easy to verify that

(10) <7V/A = O), TAfJ, — €.

Hence in the set f2U{l} of generators of L(W^) we may drop l,cr Afi,co, rv n,e,
so L(Ne) is generated by the remaining 13 elements and satisfies relations (9)
and (10).

The invariance of the lattice L(AW under the set of operators F* is the content
of the next result.

COROLLARY 2. We have L(A,,e)r* c L(Af>w

PROOF. Clearly L(Nt9)r c si'@> and thus L(Nfi)Y* c $?£?. According to
Theorem 3, it remains to prove that L(N6)r* c Lk x L, and for this, it suffices
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to show that L(Nifl)F c Lk x L,. The latter further reduces to verifying that the
bar functions map Lk into L, and L, into Lk. We shall use Lemma 3 freely.

It follows easily that a> = co = G. Since w c W v w c G, by monotonicity,

we get co c N v co c G and thus N v co = to. We also have N — N. Since

N Q N A co c. N, by monotonicity, we have N c. N ACO c. N and hence

N Aco — N. In addition, 0 ande are in L,. Therefore Lk c. L,.
We proceed similarly with L,. It follows easily that ? = e = e. Since

€ c 0 A e c e, by monotonicity, we get ? C 0 A e c g and thus 0 A e — e. We

also have 9 = 9. Since 9 c.9ve c. 9,by monotonicity, we have 9 c.9v e C9

and hence 9 ve = 9. In addition, Af and co are in Lk. Therefore L, c. Lk.

We shall now represent the lattice L(N<e) depicted in Diagram 2 in terms of
generators and relations. By ^Q!££(a, b,...) we denote the free distributive
lattice on the generators a, b,.... If {pa}aeA is a family of relations on L =
& $ J£ (a, b,...), we denote the quotient lattice L divided by the congruence
generated by {pa}aeA by (&9>££(a, b,...), {pa}a€A)-

THEOREM 3. The lattice L(/v,6>) depicted in Diagram 2 is isomorphic to the
lattice
(11) <J^_£f(r, /x, a, pt, ptK, pKt, pK), 3Z)

where

g$ — (ptK A n < pt < ptK < pKt < pK < pKt V fx, x < ptK, pKt < a)

and none of these relations may be omitted.

PROOF. TO facilitate the writing, we introduce the notation

(12) a = pt, b = ptK, c = pKt, d = pK.

1. We verify first that L(N<e) is generated by the set

(13) x,n,o,a,b,c,d.

Recall that L(Nfi) is the lattice generated by the partially ordered set P(N,ey
According to Theorem 2, the former is depicted in Diagram 2. It follows easily
from Lemma 2 that

kk = kAii, XT = Xv ii, (X € <*f).

https://doi.org/10.1017/S1446788700034868 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034868


[21] Congruence networks for completely simple semigroups 263

Using this and notation (12), we obtain

pk = d A //,, ptk — b A pKtk — cA/x,
ptKT = bVfx,pT = aVfx, pKT = cV/x,

and using simple arguments, we get

€ = r A fi, co = aVfi, p = pK A pT — d A(av fi).

It follows that the set (13) generates the partially ordered set P(N,ey and thus also
the lattice L(Ni6)

2. A simple inspection of Diagram 2 shows that all the relations in & are
satisfied in the lattice L and therefore hold in L(JVi9). In the notation introduced
in (12), these relations take on the form

(14) bAn<a<b<c<d<cVfi, c < a

which can be represented as the partially ordered set in Diagram 4.
3. It follows from Theorem 2 that the lattice L is a subdirect product of

the distributive lattices Lk and L, and is thus itself distributive. Therefore, by
the above, L is a homomorphic image of the lattice D in (11).

4. By simple counting of elements of the lattice L in Diagram 2 or from
Theorem 2, we get that L has 54 elements. To prove the first assertion of the
theorem, it now suffices to show that D has exactly 54 elements.
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5. The lattice D in (11) is distributive and is generated by the seven
elements in (13). Hence we may consider it as a subdirect product of the lattice
Y, where Y = {0, 1} is the nontrivial subdirectly irreducible distributive lattice.
We thus must find all septuples of elements of Y which satisfy relations (14).

It follows from relations (14) that r A /x is the least element of the lattice D in
(11), and hence we may require that r A /x = 0. Similarly, we may postulate that
a v ix — 1. With these restrictions and the given r < a, we have the following
choices for T, /X and a:

A
B
C
D

T

0
1
0
0

0
0
1
1

a
1
1
0
1

Relations (14) now simplify to

(15) a <b <c <d, x <b,

With these restrictions, we get the following cases:

c < a.

(16)
A, D

B
C

a <b <c <d,
a <b-c-d =

We can now write all septuples of 0's and l's according to the above table and
satisfying the restrictions (16).

In Table 2, the second row violates the condition d < c v /x and the thirteenth
row violates the condition b A it < a, and so they must be omitted. The
remaining rows satisfy these two conditions. We have thus arrived at the
following representation of the generators by means of 12-tuples:

T = (0000 1100 0000)

ix = (0000 0011 1111),

a = (1111 11001111),

a = (0001 0100 0001),

b = (0011 1100 0001),

c = (0111 1100 0011),

J = (0111 11010111).
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A:

B:

C:

D:

T

0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
1
1
1
1
1

a
1
1
1
1
1
1
1
0
0
1
1
1
1
1

a
0
0
0
0
1
0
1
0
0
0
0
0
0
1

b
0
0
0
1
1
1
1
0
0
0
0
0
1
1

c
0
0
1
1
1
1
1
0
0
0
0
1
1
1

d
0
1
1
1
1
1
1
0
1
0
1
1
1
1

TABLE 2

With these data, Barry Wolk of the University of Manitoba computed on a
machine that the lattice generated by the above 12-tuples x, (j,,a,a,b,c,d has
54 elements. Therefore the lattices L and D are isomorphic which establishes
the first assertion of the theorem.

In order to prove the second assertion of the theorem, that is that the relations
& are independent, we construct in Table 3 for each relation r in M, a septuple
which satisfies all the relations in & except r.

b

d

A

a
b
c
<
X

c

IJL <a

<b
< c
<d
c v/x
<b
< o

X

0
1
1
1
0
1
1

1
0
1
1
0
0
1

a
1
1
1
1
1
0
0

a
0
1
1
1
0
0
1

b
1
0
1
1
0
0
1

c
1
1
0
1
0
0
1

d
1
1
1
0
1
0
1

TABLE 3
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