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Abstract

We study the type inference problem for a system with type classes as in the functional
programming language Haskell. Type classes are an extension of ML-style polymorphism with
overloading. We generalize Milner's work on polymorphism by introducing a separate context
constraining the type variables in a typing judgement. This leads to simple type inference
systems and algorithms which closely resemble those for ML. In particular, we present a new
unification algorithm which is an extension of syntactic unification with constraint solving.
The existence of principal types follows from an analysis of this unification algorithm.

Capsule Review

The Hindley/Milner style of parametric polymorphism, used as a foundation of the ML
type system, provides flexibility without requiring the programmer to supply explicit type
information. However, there are some standard examples that do not fit comfortably into this
scheme. For instance, giving the equality operator a fully polymorphic type would be unsound
because it is only defined on certain types (in particular, there is no computable equality for
function values). On the other hand, removing the polymorphism is overly restrictive - there
are many different types whose values can be compared for equality.

Type classes, introduced by Wadler and Blott 1989 and an important part of Haskell,
provide a solution to this problem that has attracted much attention in recent years. This
paper formalizes the notion of a type class as a set of types and extends Milner's algorithms
to describe type inference in a simple language with type classes. The biggest difference from
previous work is that unification, always a central component, is extended to return not just
a unifying substitution, but also a set of constraints.

Detailed proofs for the soundness and completeness properties of the extended type system,
with a careful formalization of the concept of 'new' variables, are included in the paper.

1 Introduction

The extension of Hindley/Damas/Milner polymorphism with the notion of type
classes in the functional programming language Haskell (HJW92) has attracted

1 This is an extended version of (NP93).
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much attention. Type classes permit the systematic overloading of function names
while retaining the advantages of the Hindley/Damas/Milner system: every typable
expression has a most general type which can be inferred automatically. Although
many extensions to Haskell's type system have already been proposed (and also
implemented), we believe that the essence of Haskell's type inference algorithm has
still not been presented in all its simplicity. The main purpose of this paper is to give
a particularly simple algorithm, a contribution for implementors. At the same time,
we present a correspondingly simple type inference system, a contribution aimed
at users of the language. Finally, we give rigorous proofs of the soundness and
completeness of the algorithm with respect to the inference system. Although both
the algorithm and the inference system resemble their ML-counterparts very closely,
the proofs are considerably more involved.

A type class in Haskell is essentially a set of types (which all happen to provide
a certain set of functions). The classical example is equality. In the pre-standard
versions of ML, the equality function = has the polymorphic type Va.oc ->a-» bool,
where the type variable a ranges over all types. However, = should not be applied to
arguments of function type. To fix this problem, Standard ML (MTH90) introduces
special type variables that range only over types where equality is denned. Equality
differs from other polymorphic functions not just because of its restricted domain,
but also because of its mixture of polymorphism and overloading: equality on lists
is implemented differently from equality on integers.

Type classes treat both issues in a systematic way: the type variable a is restricted
to elements of a certain type class, say Eq, the class of all 'equality types'. Then for
each type x where = should be defined, we have to declare that x is of class Eq by
providing an implementation of = of type t - » t - » bool.

To express the fact that a type T is in some class C we introduce the judgement
T : C.4 The idea of viewing Haskell as a three level system of expressions, types
and classes, where classes classify types, goes back to Nipkow and Snelting (NS91).
However, in their system it is impossible to express that a type belongs to more than
one class. To overcome this difficulty we introduce sorts as finite sets of classes. The
judgement x : {C\,..., Cn} is a compact form of the conjunction x : C\ A... A x : Cn.
Alternatively, we may think of {C\,...,Cn} as a notation for C | f l . . , nC B , the
intersection of the types belonging to the classes C\ to Cn. This leads to a simple type
inference system and algorithm. The former resembles that for Mini-ML (CDDK86),
the latter is very similar to algorithm J by Milner (Mil78). The main difference is
that in both cases we also compute a set of constraints of the form a : {C\,..., Cn}
where a is a type variable.

2 Mini-Haskell

Since the aim of this paper is simplicity, we treat only the most essential fea-
tures of Haskell relating to type classes. The resulting language is basically Mini-
ML (CDDK86) plus class and instance declarations, Mini-Haskell for short. Its

4 If classes are viewed as predicates on types, this leads to the Haskell notation C(x).
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syntax is shown in Fig. 1. Although the next paragraph provides a brief account of
type classes, the reader should consult the Haskell Report (HJW92) or the original
paper on type classes (WB89) for motivations and examples. Note that we do not
follow the concrete names of classes, etc. of Haskell in our examples.

Type classes
Sorts
Type variables
Type constructors
Types
Type schemes
Identifiers
Expressions

Declarations

Programs

C
S
a
t

X

a
X

e

d

P

= {Q,...,Cn}

= a | t ( T i , . . . , T B )

= x | VorS.ff

= • X

1 (eoei)
| Xx.e

\ let x = eo in e\
= class a. : C < S where x : a
| inst t : (Si,...,Sn)C where x = e

= d;p\e

Fig. 1. Syntax of Mini-Haskell types and expressions.

Mini-Haskell extends ML by a restricted form of overloading. Ignoring subclasses
for a moment, each class declaration introduces a new class C and a new overloaded
function name x. Semantically, C represents the set of all types which support a
function x. For instance

class a : Eq where eq : a —> a —» bool

introduces the class Eq of all those types x which provide a function eq : z —*
x —• bool. A class declaration is like a module interface: it separates declarations
from implementations. To 'prove' that a particular type, say int, is in Eq, a 'witness'
for the required function eq needs to be provided. This is the purpose of instance
declarations. To prove int : Eq we instantiate eq by eqJnt, some existing function of
type int —» int —* bool:

inst int : Eq where eq =

In general, we can instantiate classes not just by ground types but also by type
constructors. For example, we may wish to express that a type list(x) admits equality
provided x does:

inst list : (Eq)Eq where eq — ...

The declaration list : (Eq)Eq expresses that list maps types of class Eq to types of
class Eq. The implementation of eq on lists is intentionally left blank: due to the
absence of pattern matching and recursion in our language, the required code would
be a nest of conditionals wrapped up in a fixpoint combinator.

Classes can be arranged in hierarchies. The general class declaration

class a .: C < S where x : a
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introduces the new class C as a subclass of all classes in S, which must have been
defined already. Type a is in C only if it is in the intersection of all the classes in
S and provides a function x of type a. For example, the class Ord of ordered types
can be defined as a subclass of Eq which provides an additional function le:

class a : Ord < Eq where le : a —» a —»• bool

Subclasses are mere syntactic sugar (CHO92). In the above example, Ord could be
defined without reference to Eq as a completely separate class. The only difference
is that without subclasses the judgement z : Ord has to be expanded to become
T : Eq AT : Ord, i.e. T : {Eq, Ord}. However, it is almost easier to deal with subclasses
directly than to eliminate them, as done in (NP93). To demonstrate this, and because
subclasses are part of Haskell, we have included them in Mini-Haskell.

2.1 Sorts and types

As motivated in the introduction, sorts are finite sets of classes. This representation
is a key ingredient for the concise treatment of type inference. Yet semantically
the sort {C\,...,Cn} should be understood as C\ n . . . n Cn. Thus {C} and C are
equivalent, and the empty set {} is the sort/set of all types. If Si is more specialized,
i.e. represents fewer types than S2, we write Si < S2. Given a partial order < on
classes, the induced quasi-order < on sorts is defined by

Si < S2 o VC2 €S2.3Ci eSi . Ci < C2.

It follows directly that Si 2 S2 implies Si < S2. In the context of a non-trivial
ordering < on classes, the reverse implication does not hold: for example {Ord} <
{Eq} although {Ord} ^ {Eq}. It is easy to see that any two sorts Si and S2 possess
an infimum whose representation is their union Si U S2.

Because < is in general only a quasi-order (i.e. it is not antisymmetric), it gives
rise to an equivalence

Si « S2 o Si < S2 A S2 < Si.

Sorts which are equivalent modulo «, for example {Ord} and {Ord,Eq}, represent
the same set of types. Although it would be mathematically more elegant to work
with equivalence classes [S]x, we prefer to stay closer to an implementation and work
with sorts directly. Nevertheless, it should be kept in mind that an implementation
is free to choose an arbitrary representative from an equivalence class [S]«, for
example the one with fewest elements.

Types in Mini-Haskell are simply terms over variables and constructors of fixed
arity. Note that —> is just another type constructor, i.e. TI —> T2 is short for —>(TI,T2).
The set of free variables in a type scheme is denoted by iF'f^). Bound variables
in type schemes range only over certain subsets of types: Va:S.(j abbreviates all
instances {a 1—»i}a where T : S, a judgment defined formally below.

In the sequel a list of syntactic objects s\,...,sn is abbreviated by ŝ . For in-
stance, Van:Sn.«r is equivalent to Vai:Si,...,an:Sn.(T. Orderings extend to lists in the
componentwise manner: Sn < Tn o V7. S, < Ti.

https://doi.org/10.1017/S0956796800001325 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001325


Type reconstruction for type classes 205

2.2 Declarations and programs

As shown in Fig. 1, expressions are A-terms extended with let-definitions. A program
is a sequence of declarations followed by an expression.

A Mini-Haskell class declaration class a : C < {C\,...,Cm} where x : a corre-
sponds to the Haskell declaration class (Cia,...,Cma) => Ca where x :: T, where T is
the body of a. Note that a must contain no free variables except a. The translation
in the opposite direction is more involved because a Haskell class can declare any
number of functions. This feature is clearly not essential and could, for instance, be
modelled by representing a set of functions by a single tuple of functions. Strictly
speaking, we could have dropped class names altogether, since there is a one to one
correspondence between class names and the single function declared in that class.
This would have lead us to the language of Stefan Kaes (Kae88), but would have
obscured the connection with Haskell.

A Mini-Haskell instance declaration inst t : (Si,...,Sn)C where x = e expresses
that t(x\,... xn) is in class C provided the T,- are of sort S,. It corresponds to the Haskell
declaration inst (con) => C(t<x\ ...<xn) where x = e where con is a list consisting of
assumptions C a,- with C e S, for all i = 1. . . n.

2.3 Classifying types

Before we embark on type inference, the simpler problem of sort inference has to be
settled. In ML and many other languages we have the judgement e : x, expressing
that e is of type x. Similarly, we classify types by sorts with the judgement x : S,
stating that type x is in sort S. This judgement depends on:

• the sorts of the type variables in x. This is recorded in a sort context F, which is
a total mapping from type variables to sorts such that S>om(T) = {a | Fa ^ {}}
is finite. Sort contexts can be written as [ai:Si,. . . ,an:Sn];

• the 'functionality' of the type constructors. The behaviour of type constructors
is specified by declarations of the form t : (Sn)C which are lifted directly from
instance declarations. In the sequel A always denotes a set of such declarations;

• the subclass ordering <.

The pair A, < is called a (type) signature and is denoted by Z, i.e. A, < and Z are
used interchangeably.

Given F and Z we can infer the sort of a type T using the judgement E,F h r : S .
The rules are shown in Fig. 2. Remember that the sort {C} and the class C
areequivalent.

The ordering < extends easily from sorts to contexts:

F < F' <» Va. Fa < F'a.

We say that F' is more general than F. It is easy to show that h is monotonic w.r.t.
this ordering: Z,F ' h x : S implies Z,F h x : S. In the sequel this fact is often used
implicitly.

Because every two sorts possess an infimum, every type x has a most specific
sort S, i.e. Z, F h x : S and if Z, F h x : S' then S < S'. The computation of this
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E , n - t : {

Z, r>T:{
z,ri- T : Ci

= S

cn} i=l...n

[ i = l . . . n ]

t :(Sn)C€A I , r i - T , :S,
E, T h t(r^) : C

E, r I- T : Ci Ci < C2

E.TI-T :C,

Fig. 2. The judgement £, I* h T : S

most specific sort is straightforward, and shall not concern us here because it is not
relevant for our purposes.

Having seen sort inference for Mini-Haskell types we are prepared for our main
goal, type inference and type reconstruction for Mini-Haskell programs.

3 Type inference systems

In this section we present two type inference systems for Mini-Haskell. We start
with a set of inference rules which define the types of Mini-Haskell programs and
expressions. Then we proceed to a more restricted, syntax-directed set of rules, which
will be the basis for the type inference algorithm.

As usual in type inference for ML-like languages, an environment is a finite
mapping E = [xi:o\,...,xn:on] from identifiers to types. The domain of E is
3>om(E) = {xi,...,xn}. E[x:a] is a new map which maps x to a and all other
x, to a,-. The free type variables in E are &r (E) = &r{E{x{)) U ... U &-r(E(xn)).
If V is a set of type variables the restriction of T to variables not in V is
r \ K = [«:Fa | a e @om(T) - V].

A substitution is a finite mapping from type variables to types, written as {cti H->
TI , . . . } . Substitutions are denoted by 6 and <5; {} is the empty substitution. Define
®om{Q) = (a | 0a + a}, Vod(9) = {jaeS>om(e) f*r{0(a)) and ^^{9) = 2)om{Q) U
<8od(6).

There are two judgements which are defined in Figs. 3 and 4: A, <, T, E h p : a
and A, <, T, E h e : a express that program p and expression e are of type a in the
context of A, <, T and E.

The rules for A,<,T,E \- p : a, when applied backwards, simply traverse the
declarations, building up A, < and E. Class declarations extend E and <, instance
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CLASS A ' ( ~ U { ( C ' D ) ' ° e s»'-r>£[*:Vg:C-g1 h P : "'
A,<,r ,£ h (class a : C < S where x : a\p) : a'

Au{t:(S~n)C},<,r,E\-p:<j'
£(x) = Va:C.cr r[an:Sn] ,A,<,£ h e : (a >-> r(o£)}

INST =
A, <, T, £ h (inst t : (Sn)C where x = e; p) : a'

Fig. 3. The judgement A, <, Y, E h p : CT.

declarations extend A. Notice that it is necessary to take the transitive closure
(< U {{C,D) | D e S})* of < and the new subclass relations in rule CLASS.

Rule INST also type-checks the instantiation of x by e, making sure that e is
of type {a i—»• t(oQ}<7, where a is the generic type of x and {a i-» £(oQ} is a type
substitution with new type variables â .

Note that there are two context conditions for declaration sequences we have
chosen not to formalize:

1. class a : C < S must be preceded by a declaration for each superclass in S,
but not by another declaration class a : C;

2. inst t : (Sn)C must be preceded, for each superclass D of C, by a declaration
inst t : (Tn)D such that Sn < Tn, but not by another declaration inst t(...)C.

These conditions are the result of translating the restrictions actually adopted in
Haskell (HJW92, 4.3.2) to Mini-Haskell. Enforcing them is simple enough, and has
thus been ignored in this paper. Nevertheless, we assume in the sequel that all
declarations, and hence A and <, meet the above conditions.

ASM

VE

WT

APP

A D O

T FT

z,r,£h

z,r,£h
E,I

S,r[a:S]

s,r,£h

x : £(x)

e : Va:'

\ £ h e

, £ h e

z,r
e\ : T 2 •

E,r,£

S,r,£[x:Ti] h

s,r,£h

z,r,£h

Ax.e : T

ei : O\

J.«T S , r h i : S
: {at—> z)a

:a a £ ̂ V{a) — J^(£)
, £ h e : Va:S.(7

->• xi E, F, £ h e2 : T2

h (ei e2) : Ti

e : t2

1 - » T 2

E, F, £[x:cri] h e2 : c2

S, F, £ h let x = ei in e2 : <r2

Fig. 4. The judgement Z, P, £ h e : a.

The rules for Z,F, £ h e : a extend the classical system of Damas and Mil-
ner (DM82) by the notion of sorts, which are represented via Z, T and restricted
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quantification in type schemes. The assumption a e ^y(a) in VI is not really es-
sential (for soundness). Its practical significance is discussed in section 8. In contrast
to the CLASS and INST rules, S remains fixed.

3.1 Syntax-directed type inference

The next step towards a type reconstruction algorithm is a more restricted set of
rules. The application of these rules is determined by the syntax of the expression
whose type is to be computed. To distinguish the syntax-directed system we use >
instead of I- and prime the names of its rules, e.g. ASM'.

Definition 3.1
The type scheme a' = Va'n :S'n.x' is a generic instance of a = Vam :Sm.x under E and F,
written S, F h a > a', iff there exists a substitution d such that

Ox = x',

\- 0a,- : S, [i = 1. . . m],

With this relation on types we can now define the most general or principal type
of an expression. We say E is closed if ^'V{E) = {}.

Definition 3.2
The type scheme a is a principal type of an expression e w.r.t. £ and a closed envi-
ronment E,ifL,\\,E\-e:o and for every a1 with Z, [],£ h e : a1, the type scheme a1

must be a generic instance of a, i.e. Z, \\ \- a >a'.

For the syntax-directed system, the rules APP and ABS remain unchanged, the
quantifier rules are incorporated into ASM and LET, as shown in Fig. 5.

ASM'

LET'

z,ri-
2,F,i

2,F[ai

where

E(x)>
: >x •.

:Sk],E
1

T

T

t> e\ : TI S,F,
> let x =
xi)-3FY

E[x-y<xk:Sk.T,]

e\ in ej '• T2

(E)

> e2 : T2

Fig. 5. The judgement Z, F, E > e : a.

There is a straightforward correspondence between the two systems. The syntax-
directed derivations are sound.

Theorem 3.3
, F , £ >e :z thenI.,r,E\-e :x,

and in a certain sense complete w.r.t. the original system:

Theorem 3.4
/ / I , r , £ h e : Van:Sn.T then I ,F[an:Sn],E >e:x.
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The proof of the last theorem is standard, as, for instance, in (CDDK86, App.
A.I). Theorem 3.4 clarifies in what sense > works differently from h: by applying
the primed rules backwards, the sort constraints for type variables are stored solely
in F, and not in the type scheme of e. For instance, the LET' rule explicitly extends
P. The > operation, used in the ASM' rule, may introduce new type variables, whose
sorts must be constrained in F.

The syntax-directed system already has a very operational flavour. To make the
transition from a type inference system to an algorithm we need one more ingredient:
unification.

4 Unification of types with sort constraints

This section deals with unification in the presence of sort constraints in the form
of contexts. This problem can in principle be reduced to order-sorted unification,
as done in (NS91) w.r.t. < However, we have refrained from doing so because it
is contrary to our quest for simplicity: involving order-sorted unification makes the
algorithm appear more complicated than it actually is. In addition, the standard
theory of order-sorted unification would need to be reformulated anyway: it assumes
that variables are tagged with their sort, rather than using contexts.

For the remainder of this paper we assume a fixed signature I = (A, <). This is
simply a notational device which avoids excessive parameterization.

Since sort information is maintained in contexts, we frequently work with pairs
of contexts and substitutions. A substitution 0 obeys the sort constraints of F in the
context of F', written F' h 0 : F, iff I , F' \- da. : Toe for all a. Because S, V \-6a : Fa
is trivially fulfilled if Fa = {} it suffices to require S, F' h 9a : Fa for all a e 3>om(T).
For instance, let Eq and list be defined as in the examples in section 2. Then we
have \fl:Eq] h {a>-* list(fi)} : [a:Eq].

We define an ordering on context-substitution pairs:

(F,0)>(F',0') o 3d. 66 = 6' A F'h(5 :F

where 56 is defined as the composition: (<50)(s) = S(6{s)).
The set of unifiers of TI and T2 w.r.t. F, written ^(F, 11=12), consists of the

following context-substitution pairs:

«(r,Ti=i2) = «r ' ,0) 1 0T, = 0T2 A r h 0 : r}

A unifier (Fo, 0O) € %{T, TI=T2) is most general if (F0) 0O) > (H, 0i) for all ( r b 0i) e
$f(r,Ti=T2). We say that unification modulo £ is unitary if for all F and TI=T2 the
set < (̂F, TI=T2) is empty or contains a most general unifier.

A signature Z is called coregular if for all type constructors t and all classes C the
set

D(t,C) = {S~n\3D<C. (t : (S~n)D) € A}

is either empty or contains a greatest element w.r.t. <. If £ is coregular let @>om(t, C)
return the greatest element of D(t,C) or fail if D(t,C) is empty. For instance,
9om{list, Eq) = Eq but 2>om(list, Ord) fails.
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Sorted unification can be expressed as unsorted unification plus constraint solving.
Given a coregular signature E, this has the following simple form:

unify{T,xi=x2) =
let 9 = mgu(x\—Z2)

Tc = Constraint, F)
\n(rcu(r\2)om(6)),0)

where:

• mgu computes an unsorted mgu (in particular, we assume that 9 is idempotent
and that 3>om{9) U c€od{9) £ ^•f{x\=x2)) or fails if none exists;

• the union of two sort contexts is defined by

Yx U F2 = [a : Tia U F2a | a S ^om{Ti) U 2>om(T2)]

Constraint, F) computes the most general context Fc such that Tc h 6 : T:

Constraint, f) = [ J constrain(6a, Fee)

• constraint, S) computes the most general context T such that S, T \- x : S:

constrain(a, S) = [a :S]

constrain(t(x^), S) = [J constrains^, 3>om(t, C))

ces

constrains{x^, Sn) = I ) constraint t,S,)
i=l...n

Thus unify fails if mgu fails or if some 3>om(t, C) used in Constrain does not exist.
By induction on the first argument of constrain it can be shown that

constrain(t(x^),S) = constrains^, [ J @>om(t,C))
ces

which provides an alternative definition of constrain which is also useful in the proofs
below. To see how constrain works, assume Eq and list again as in the examples in
section 2. Then constrain(list(P),Eq) = constrains(f},3!om{list,Eq)) = [fi:Eq].

Soundness and completeness of Constrain are captured by the following lemmas
which assume coregularity of £ and are proved by induction on the structure of x:

Lemma 4.1
If constraint, S) is defined then Z, constraint, S) \- x : S.

Lemma 4.2
If constrain(0x,S) is defined then constraint, S) is defined as well and, furthermore,
constrain(6x, S)\- 9 : constraint, S) holds.

Lemma 4.3

IfH,T\-x : S then constraint, S) is defined and more general than F.

Finally, the main theorems:

Theorem 4.4
If £ is coregular, unify computes a most general unifier.
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Proof
To show soundness, let unify{T,x\=xi) terminate with result (Fo,0o)- It follows
directly that Ooxi = 8oT2- It remains to be seen that To I- OQOC : Fa for all a.
If a £ 2>om(do), then Fa £ Foa and the claim follows trivially. If a e 2>om(G0)
then To < Fc = Constraint,F) < constrain(6oa,T<x) and the claim follows from
Lemma 4.1.

To show completeness let (Fi,0i) € <^(F,TI=T2), i.e. 0iTi = 0]T2 and Fi h 0i : F.
Since x\ and x2 have an unsorted unifier 6\, mgu(x\=X2) is defined and yields a substi-
tution 0o such that d\ = S9Q for some 5. Definedness of unify(T,TI=T2) also requires
definedness of constrain(6ooc, Fa): since Fi h 0i<x : Fa, Lemma 4.3 implies definedness
of constrain(6ioc,r<x) and Lemma 4.2 yields definedness of constrain{Qo<x,Ta). Thus
uni/y(r,Ti=T2) terminates with a result (Fo, 0o)-

It remains to be shown that Fi I- 5 : Fo. If fi € @om{6o) then Foi? = {} and hence
Fi h <5y? : F0j8 holds trivially. Now assume P £ 2>om{60). Thus FojS = Fc/?uFj3. From
Fi h 0i : F it follows that Fi h <5j3 : F^S. Proving Fi h <5 : Fc is more involved. From
Lemma 4.2 it follows that constrain(6\a.,Ta) \- 5 : constrain(do<x,Fa) for any a. Since
Fi I- Oia. : Fa, Lemma 4.3 implies Fi < constraint\OL,Ta) and thus by monotonicity
Fi h d : constrain(6o<x,r<x). This in turn easily yields Fi h S : Constrain(6o,T), i.e.
Fj h ^ : Fc. •

Theorem 4.5
Unification modulo E is unitary iff 2, is coregular.

Proof
The 'if direction is a consequence of Theorem 4.4. For the 'only if direction let £
not be coregular. Thus there are classes C,D < E and declarations t : (Sn)C and
t : (Tn)D, ~S~n£Tn, and ~Tn ^ S ,̂ such that there is no third declaration t : (JTn)E',
E' < E, and Sn,Tn < Un. Hence the unification problem ([/?:£],t(oQ=/?) does not
have a most general unifier. Two maximal ones are ([ocn:Sn],0) and ([an\Tn],6) where
e = {p -1(«^)}. n

Thus we have a precise characterization of those signatures where principal types
exist.

It remains to be seen if Mini-Haskell's CLASS and INST declarations yield
coregular signatures. In fact they do if restricted by the unformalized context
conditions set out in section 3. The latter context conditions imply that every A
and < derived from valid class and instance declarations has the following strong
property: D(t,C) is either the singleton {£„}, where t(Sn)C is the unique declaration
for t with result C, or empty, if there is no such declaration. Therefore 3>om{t, C) can
be computed using A alone, without reference to <. This leads to the observation
that type unification, and hence, as we shall see in the next section, type inference,
can ignore the subclass hierarchy completely.

It should be pointed out that ignoring the subclass hierarchy means giving up a
degree of freedom afforded by the equivalence » on sorts defined in section 2. For
example, unify([a : {Eq},P : {Ord}],a. = P) returns ([a : {Eq, Ord}], {P •-» a}). Taking
w into account, we could just as well return ([a : {Ord}], {/? •-» a}). To show that
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the subsequent developments do not depend on which of these unifiers is computed,
we assume in the sequel that unify is an arbitrary function which, provided Z is
coregular, returns a most general unifier: if < (̂F, TI=T2) ^ {} then:

i=T2) and

• (r,0) < uni/Hr,TI=T2) for all (r,0) e *(r,Ti=t2).

This implies a number of simple properties:

Fact 4.6
Ifunify{T,xl=x2) = (F',0) then

• 0 is a most general unifier of i\ and T2>
• ^om(F')
• 9om{T'

The second fact states that unify does not introduce new variables, and the last
expresses that V does not constrain variables instantiated by 0. It is easy to see that
the F' is determined only up to «. Hence the unification algorithm could always
ensure that F' is 'minimized' by removing redundant elements from each sort.

Finally, one may wonder if the fact that coregularity is strictly weaker than
Haskell's context conditions means the latter could be relaxed. We believe that there
are no non-trivial relaxations, but do not want to enlarge on this subject because it
requires going beyond the type system to take semantics and pragmatics into account.

5 Algorithm W

The syntax-directed rule system in Fig. 5 is non-deterministic, since rule ASM' can
choose any instance of the type of x. To obtain a deterministic algorithm, we refine
the syntax directed system such that it keeps types as general as possible. The result
is algorithm "W in Fig. 6. In this section we assume that Z is coregular - otherwise
unify is not well-defined.

Algorithm W follows the same pattern as Milner's original algorithm of the same
name (Mil78): the type of an expression e is computed by traversing e in a top-down
manner. if(V,F,E,e) returns a quadruple (V,F', 0,T), where 0T is the type of e in
the context of F' and 6E. The top level call is W({\, \\,E,e), where E is closed.
Observe the different let-constructs: the one on the left-hand side is in the object
language, the ones on the right are part of the type inference algorithm.

The parameter V contains all 'used' variables, i.e. variables that occur in F or in
E. Thus a type variable a £ V is a 'new' variable. For our algorithm to be truly
functional, a linear ordering on variables may be used, such that the 'next' new
variable a £ V can be computed deterministically. We will assume in general that
•W is invoked with V,T and E such that &-V{E) U ^om(F) z V.

Algorithm "W is not meant to be implemented directly but merely serves as a
mathematically tractable stepping stone towards an efficient implementation. Its
principal weakness is the fact that substitutions are computed from scratch and
composed later on. This problem is addressed and solved with algorithm J in the
next section. In contrast to substitutions, contexts are computed incrementally, i.e.
the result context F' is an extension of the input context F.
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X =>

Xx.e =>

(ei e2) =>

let x = e\ in e2 =>

)f
letVan:Sn.T

A

let

let (FI.TI.^I

(r
in(F2u{«},
let(Fi,ri,0i

(F2,r2>02

in(F2)r2,02<

a ^

x —• T)

, T l )

a

F,0'020

,T2)

£(x)
F [ i = l...n]

V

^ F2

= unify(T2,020it! = 02t2 - • a)

I J-|[K1!r1
1\{5jir(0l£)

(0,£)[x:Van:rian.0,Ti],e2)

Fig. 6. Algorithm W.

A formal analysis of iV requires some more notation. For an environment E and
a substitution 9, define 9E = [x : 6(E(x)) | x e !3om(E)]. Two substitutions are equal
on a set of variables W, written as 9 =w 9', if 9a = 9'a for all a € W. The restriction
of a substitution to a set of variables W is denned as 9\wa. = 9<x if a € W and
9\w& = a otherwise. Given a list of syntactic objects Cn we write J ^ f (Cn) instead

We first show that the algorithm is invariant under a-conversion. The free variables
of an expression e, i.e. SF'Vie), and the application of a substitution to e are defined
as usually in /l-calculus.

Lemma 5.1
If W(V,r,E[x:%],e) = (K'.r.fl'.T7) and y (£. 2>om{E) then W{V,T,E\y:x],{x H->
y}e) = (V',r,9',T').

Proof

By induction on e. D

With this lemma, we can easily show the desired theorem for a-conversion.

Theorem 5.2

Let e be Xx.e2 or let x = e\ in e2- If i^"(^,r ,£ ,e) is defined, y <£ 3)om{E\ and
y <£ F-r{e\ then iV(V,T,E,e') = iT{V,T,E,e), where e' is ly.{x i-» y}e2 or let y =
ei in {x I—> _y}e2 respectively.

Proof
By induction, using Lemma 5.1. •

The following correctness and completeness results for W do not depend on the
particular unification algorithm, as discussed towards the end of section 4.
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Theorem 5.3 (Correctness of
If HT{y,T,E,e) = (V,r, 9,x) then I , V,9E > e : Ox.

Before we can prove the correctness theorem, we need to supply a series of
lemmas. The following lemma shows the basic relations between the variables of the
objects used by iV. The first item states that all used variables are recorded in V.
Next, all new variables occuring in the computed objects are in V but not in V, i.e.
there is no 'reuse' of names. The third item states that if some type variables of the
computed type are not new, they must have been in the environment E. The last
item requires the computed context to be free of assumptions about old variables
(which are in 3>om(9')), i.e. no 'litter'.

Lemma 5.4

Assume iV{V, Y, E, e) = (V, V, 6', x) and &Y{E) U 9om(T) £ V. Then

1. V £ V and @om{T') U ^y{ff,E,x) £ V
2. {3)om{T') U P-TiO', x)) - (2>om(T) U
3. 3Fr(&,x) n V £ 3?V{E)
4. ®<m(r) n 3>om(6') = {}

Proof
The first claim follows easily since all new variables are recorded in V and since
the unification algorithm does not introduce new variables (see Fact 4.6). For the
same reason, and since all variables in ^om(r') U IFV^Q', x) are either new or in
S>om(T) U &-f{E\ we obtain the second claim from ^^(E) U 9om{T) £ V.

The remaining two items are shown by induction on the term structure:

x : trivial since all /?,- are new variables, i.e. Pi £ V.
Xx.e : by induction hypothesis and since a is a new variable.
(ei ei) : We first show

' U {«}) Pi V £

Since the unification algorithm does not introduce new variables, it follows
that &V(d') £ &ir{Q20u'i\,i2) U {a}. Because a £ V, it suffices to show

^(fl^j^OnFc^E). (l)

The induction hypothesis for e2 yields ^•V(e2,x2) n Vx £ ^^(OiE). Using
P-riQiE) £ &r{E,0{) and V £ Vx we obtain &-r(02,x2)n V £ &Y(E,6{).
By induction hypothesis for e\, i.e. ^i^(6i,xi)nV £ ^i^(E), we easily get (1).
Next we show that 3>om(T') n 2)om{Q'Q2Qx) = {}. We obtain 2om(Ti) n
3>om{Q{) = {} from the induction hypothesis. Then from <2>om{9{) £ V\ and
Siomidi)nSF'T'iOiE) = {} (idempotence of 00 we obtain @om(r2)n9om(8i) =
{}, as &>om(r2) - {3>om{Ti) U &"T(diE)) £ V2 - Vi (item 2 of Lemma
5.4). Next, from S>om(T2) n 3>om{Q{) = {} (induction hypothesis) and since
3>om{e2di) = 2>om(0x) U &)om(62), 3som{T2) n 2)om{Q1Ql) = {} follows. Then
@om(T') n 2)om(d'62Q{) — {} follows from the properties of the unification
algorithm, i.e. it may not constrain variables from 3>om(6') (see Fact 4.6).
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let x = e\ in e2: We first show

&rY~{026ux-1) n V £

The induction hypothesis for e2 yields

Since &'T{Vu.n:Tla.n.6lxi) £ &Y~(QXE\ we get

T2) n 7i £

Then the rest of the proof proceeds as for (e\ e2).
The proof of ®om(F2)n®om(020i) = {} also works as in the (ei e2) case; the
only difference (apart from the additional 0') is that we have S>om{r2)C\{o^} =
{}, which only simplifies the proof.

D

The next lemma shows that the relation r I- 0 : F ' enjoys a kind of transitivity
property w.r.t. substitutions.

Lemma 5.5
7 / r 2 h 02 : H and Fi I- 0i : T tfcen T2 h 020i : T

Froo/
We have to show Va G 2om{T)T2 I- 020i« : Fa. Consider the derivation of Ti h
0ia : Fa (by premise). It is easy to construct a derivation of 1^ 1- 020i<* : Fa, since
V^ G J2r-r(01a).F2 h 02y3 : Fi/S and Fi h J? : F/3 (as 0i)S = J? follows from the
idempotence of 0i). •

The fact that IV specializes contexts is shown in the next result.

Lemma 5.6
IfiT(V,r,E,e) = (V',r',0',x) then V h 0' : F.

Proof
By induction on the structure of e:

x: r[pn:Sn]\-{} :T trivial.
Ax.e: Since the induction hypothesis holds for any E, including E[x:oc], F ' I- 0' : T

follows directly.
(ei ei): By induction hypothesis we get T\ V- 6\ : F and f̂  h- 02 : Fi and by

transitivity (Lemma 5.5) and by correctness of the unification algorithm we
get r 1- 0'020i : F.

let x = e\ in e2: By induction hypothesis we get

Fi I- 0, : T (2)

F2 h 0 2 : r , \ { a n } (3)

Now we show

F,\{an} h 0, : F (4)
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That is, we have to show Fi\{o£} I- Orf : F/S for all J? e S>om(T). First
we prove J5''^"(0i(®om(r))) n {<x̂} = {}. From Lemma 5.4, item 3, it follows
that P-rtfi-ci) n 3>om(T) £ &*K{E). Idempotence of 6X yields &*r{6ixi) n
SF-r{0i{2>om(T))) s FViPiE). Simple set theory yields ^-r(8i(S>om(r)))
n (^-r(6izi) - &-r{0iE)) = {} as claimed above. Now (4) follows.
Combining (4) and (3) by transitivity (Lemma 5.5) yields F21- d2di : F D

The next lemma states that > is preserved under instantiation assuming a context
that obeys the constraints.

Lemma 5.7
IfL,T,E >e:xandT'Y-& :T, then I , r ' ,0 '£ >e : Q'x.

Proof
Simple, by adding proofs of the form V \- 9'a. : Fa in the proof tree of X, F, E >e :x
to obtain a proof of E, F', 6'E > e : Q'x. D

At last we are able to prove the correctness theorem:

Proof of Theorem 5.3 by induction on the structure of e
We have the following cases:

x: Correctness follows easily from

I.,r\fcSJ,E >x : {«„ •-> fin}x

Xx.e: By induction hypothesis we get E,F', (9'E)[x:d'ix] >e :dx. Then ABS applies:

A B S £,F,(g'£)[x:^] >e:e'x'
Z,F,0'£ >Xx.e :6'(x^ex'

(ei ei): We get

from the induction hypotheses for e\ and e2. The correctness of the unification
algorithm yields F' h 8' : F2 and then with F2 h 6i : Fi (from Lemma'5.6)
and Lemma 5.5 we obtain F' h 6'Qi : Fi.
From Lemma 5.7 we now get the two premises for the APP rule, since
O'QiQixx — Q'Qixi —* 8'a. Furthermore, 6281a. = a, since a is a new variable (i.e.
a g V2 and S>om(82) U @om{8\) s V2 by Lemma 5.4).

I.,r,8'828iE >ei :d'828ixl !L,r,8'62exE > e2 :8'81x1
APP

:ffa

let x = ci in e2 : Using F'j = Fi\{a^}, Sn = Fian, and E' = E[x : Van:Sn.0iTi] the
induction hypotheses are

(5)

(6)
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Notice that &-V{Q\E') n {o^} = {}. To apply LET', we show

(7)

As we get F2 \~ 92 : F', from Lemma 5.6 and 3?-r{Qi) n {<} = {} from
Lemma 5.4 (recall that {ô } <=, Vx and {ĉ } n J ^ f ^ i £') = {}), we obtain

r2[a,,:SB] I-02 : r ; [«„:$„].

Then (7) follows from Lemma 5.7 and (5).
As 3>om{Q\)C\!F't~(x2) = {} is a consequence of Lemma 5.4 (as above, S>om{Q\)
s Vi and ®om(0i)n.^'ir(01£') = {} as 6\ is idempotent), we obtain

(8)

Now LET' applies to

(7) (8) {a;}=

r2,2,020i£ > let x = ei in e2 : 020IT2

D

The following lemma is crucial for establishing the principal type theorem:

Lemma 5.8 (Completeness of W)

If Z,F*,0*£ > e : T*, ^om(F) U ̂ iT(£) £ 7, and P I- 0* : T t/ien there exists a
substitution d such that

6'E =

T* = <50iTi,

r h <5: r,.

Proo/
By induction on the structure of e. We assume w.l.o.g. a derivation for "L,T',0'E >e
i* that has no variable overlap with the new variables V\ — V used by algorithm W

x: We have
,r* I-0*£(X)>;T*

ASM'
>x :T*

Observe that we can write 0£(x) = 0*Voen:Sn.T as Van:5n.0*T, where 0* =
0*lsom(0*)-{e£}. possibly by renaming some a .̂ Assuming X,F* I- d'E(x) > x*,
let 0 be the corresponding substitution as in Definition 3.1 with @>om(0) £
{a^}, and T* = 00*T. Let S = 0* U {/?„ i—> 0an}. As /?„ are new variables,

O'E = (5£ holds. Next, T* = 5({an i-f ^n}t) = 00*T follows easily. Finally,
T' t-5 : r[pn:Sn] follows from F* h 0* : F (by premise) and from Z,F* h 0'a,- :
S,, [i = l, . . . ,n] (see Definition 3.1).

.e: The derivation ends with

Z , F - , ( 0 ' £ ) [ X : T ; ] >e:x\
ABS

Z,F*,0*£ >kx.e :x:
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As the algorithm is invariant under a-conversion (Lemma 5.2), we can safely
assume that x £ @)om(E). To apply the induction hypotheses, we define
0O = e* U {a H-> TJ}. Then E, F \ 0O(£ [x :a]) > e : x\ and F* I- 0O : F are easy to
verify. By induction hypothesis there exists (5i such that

f(Cu{a},r,£[x4e) = {V'X,9',x'), (9)

{90E)[x:x\] = dl9'E[x:a], (10)

x\ = «5i0Y, (11)

F* h <5j : F' (12)

and hence W{V,Y,E,lx.e) = (F' ,F' ,0 ' ,a ^ z'). Now 0o£ = ^i0'£ follows
from (10). Furthermore, from (10) we obtain x\ = d\Q'a and hence x\ —>• x\ =

^2): We assume

Applying the induction hypothesis to e\ yields 5\ such that

fr(v,r,E,ei) = (Ki.ri.fli.TO, (13)

(14)

(15)

r h 5, :rx. (16)

The induction hypothesis with ei with P i , where F* h b\ :T\, and 0 i£ yields
82 such that

z) = (V2,T2,e2,z2), (17)

0*£ = 52626iE, (18)

T5 = 5 2 0 2 T 2 , (19)

r* h 5 2 : F 2 . (20)

Let 8" be defined as

otherwise

We show that 3' is a unifier of 020iT! = 0 2 T 2 -» a. Notice that JirT«/'(02,T2) n
^-^"(01X1) £ Jz r^(0i£) follows from Lemma 5.4 and that the two substitutions
<5202 and £1 coincide on J5"T^"(0I£): combining (14) with (18) yields

<5202 =^r(BiE) &\ (21)

This overlap simplifies the following proofs by case analysis, in which the case
P = a is immaterial. First, to show <5*02T2 = S292i2 = *\, assume P G !FY{x2).
Then in case p £ F"K(02), S'x2 = <52T2 follows from (21) if P e &V(B\x{) as
^ ^ ( 0 2 , T 2 ) n J ^ - T ^ T i ) s ^1^(0!£), and is trivial otherwise. If p e
then <5*02T2 = <5202T2 is trivial.
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To show (5*020iTi = <5i0iTi, assume P e $F-T{Qxxx\ If J? € @om(92), (21) gives
the desired result as @om(02) n &-r{exxx) £ ^rir(6xE). In case £ £ ®om(02),
^ '^j t ! = <5iTi follows easily. Hence S* is the desired unifier:

5*d26lTl = x\ -> x\ = 8'{Q2x2 -* <*)•

We obtain V \- 8' : T2 from (16) and (20) by case analysis: we have to
show Z,F* I- S'P : T2p for all J? e ^om(F2). First, recall that S>om(T2) n
S>om(02) = {} by Lemma 5.4. If j8 e #"TT(0ITI) - <gW(02), then we have
another case distinction: if /? € @>om{Q2), then F2j3 = {}, otherwise 02/? = /?
and from F2 I- 02 : Pi (Lemma 5.6), we have Fij8 £ T2fi and the claim follows
from (16). The case /? = a is trivial because F2a = {}. The remaining case,
Z, r* h 5202jS : F2j3, follows easily from (20) since ^ow(F2) n @om(62) = {}.
Then by completeness of unification, 0' is a most general unifier computed in
unify, and there exists 8' such that (5* = <5'0'. Hence we get

= {V2Ua,r',0'G2eu<x),

6'E = <5'0'020i£,

T* = ^ ' 0 ' 0 2 T 2 ,

r 1- 8': r,

where the last statement follows from the completeness of unification.
let x = e\ in e2: We assume F* h 0* : F and, by LET',

: T 2

Z, F*. d'E > let x = ei in e2 : T2

where {a[} = ^ T T ( T J ) - J5riT(0*£). As the algorithm is invariant under a-
conversion (Lemma 5.2), we can safely assume that x £ 3>om(E).
As {ajj} n 3?y{d*E) = {} we can w.l.o.g. rename a.*k in the premises of the
above rule (not in F') in order to assume that {<x'k} n®om(F*) = {}. Formally,
this can be done by Lemma 5.5. Then we can apply the induction hypothesis
to e\ with F*[ajJ:Sfe*] 1- 0* : F and obtain 8\ such that

,e i) = (VuTu0u*i), (22)

O'E = SiBiE, (23)

(24)

pf] 1- 5i:r,isnsa, (25)
where F', = Fi\{an} and Sn = Fian.
From {o£} = &-r{Qxix) - &-T{6xE) we infer
&r{8xQxE) = {«[}. Hence F* I- 8X : F', follows from (25). Notice that
<5iVan:Sn.0iTi = Van:Sn.3i0iti, where %\ = <5i|@om(5,)-{s;}, follows from the as-
sumption that new variables used by "W do not occur in the chosen derivation,
i.e. in <$od(8x). Then we obtain Z, F* h ^iVan:Sn.0!Ti > Vâ :Sfc*.T* by using 8x\{^}
as the substitution in Definition 3.1 and because Z,F*[aj:S£] h ^ia,- : 5,, [i =
! . . .«] follows from (25).
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Now the problem is that the induction hypothesis cannot be applied directly
to e2 with r* h d{ : T[ and 0i£[...], since in general (0*£)[X:V«J;:S;.TJ] ±

]. Thus we have to find a different basis in order to
apply the induction hypothesis for e2.
From

Z,r(0gE)[x:Vo{:S;.T;] > e2 : x'2 (26)

we can infer

e2 :t*2,

since at each application of ASM' to x in the proof of (26), we can use the
more general [x:5\ian:Sn.Qix{\ instead of [X:VO£:S^.TJ].

Then the induction hypothesis applies to e2 with T" h <5i : F'j and the
environment 0i£[x:Van:Sn.0iTi]. We get d2 such that

= (v2,r2,e2,x2), (27)
= 52e2(6iE[x->/an:Sn.6lxi\), (28)

= hOni, (29)

\- 52: T 2 . (30)

Hence W{V,r,E,let x = ey in e2) = C/2,r2,^2,t2). We obtain x\ =
from x\ = 5292z2 and 3>om(6i) n ^ ^ ( r a ) = {} (as in Theorem 5.3). It only
remains to show 6'E = 8i629\E, which is a consequence of (28), as x ^
3>om(E). a

Now we can finally show the desired principal type theorem.

Theorem 5.9

If e has type GQ under a closed environment E, i.e. Z, Q,£ h e : Co aid tF"V(E) c
TT(Ko, D,{},£,e) = (K,r,0,T) and Van :ran.0T is a principal type of e w.r.t. I

£ ,

Proof
Assume some typing Z, Q,£ h e : V<4 :S^.r'. We infer S, [a^:S^,],£ h c : x1 by V£
and then obtain a syntax-directed derivation Z, [x'^.S'^E > e : T' by Theorem 3.4.
Then Lemma 5.8 applies with T' = [a'm :S'J and 0* = {}. We thus get 8 such that

E = <5£,

r h ^: r.

Then Van:ran.0T is a principal type of e w.r.t. £, since Va.nTan.6x > V<x!m:S'm.T' follows
from T' = S0T, {o^} = ^-T{Qx), and r h (5 : r . D
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6 Algorithm J

As in the original work by Milner (Mil78), we now present a more efficient refinment
of algorithm "W. Compared to "W, algorithm i/5 takes an extra argument, the
substitution computed so far. This substitution is extended incrementally instead of
computing new subtitutions and composing them later.

letx

r,0,

(

E,e) =
X

Xx.e

ei e2)

in e2

-- case e of
=> letVan:Sn.T

Pi
in (Fu {pn},

=> let

=> let(Fi,r,,0i

(r
in {V2 u {a},

=> let(Fi,r1;0,

in^(F1(ri\

. T l )

a

f',0'02

l^},0

£(x)
F [ i = l . . . w ]

"i

=

,a)

F

unijy(l 2,02T1 — ^2^2

c : Van:rian.0iTi],e2)

- a )

Fig. 7. Algorithm ^ .

The equivalence of "W and J is an easy matter. A renaming is an injective
substitution that maps variables to variables only.

Theorem 6.1 (Equivalence of iV and J)
Assume 6Q is an idempotent substitution such that OoEo = E. If iP~(y,T,E,e) —
(V',r',9',T') then J(V,T,eo,EQ,e) = {V",T",6",x") and there exists a renaming a
such that V" = aV, VaT"a = r'(ffa), 6"T" = aO'i' and 9"E = a&E.

Proof
By simple induction on the structure of e. •

7 Related work

The structure of algorithms "W and J is very close to that of Milner's algorithms
of the same name (Mil78). Apart from the fact that our version of £ is purely
applicative (hence we carry the substitution and the set of used variables around
explicitly), the main difference is that we also have to maintain a set of constraints
T. In fact, this is the only real difference to Milner's algorithms.

5 Although the typography in (Mil78) is ambiguous, Milner has confirmed by email that
he intended it to be J, not J?: it is an imperative implementation of iT. Milner's J is
imperative because he maintains a single global copy of 0 which is updated by side-effects.
In a purely functional style this requires an additional argument and result.
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Probably the first combination of ML-style polymorphism and parametric over-
loading (as opposed to finite overloading as in Hope (BMS80)) was presented by
Kaes (Kae88). His language is in fact very close to our Mini-Haskell, except that he
does not introduce classes explicitly. More importantly, he does not use contexts to
record information about type variables but tags type variables directly.

The original version of type classes as presented by Wadler and Blott (WB89)
was significantly more powerful than what went into Haskell, the reason being that
the original system was undecidable, as shown later by Volpano and Smith (VS91).
The relationship to Haskell proper is discussed in section 2.

Nipkow and Snelting (NS91) realized that type inference for type classes can be
formulated as an extension of ordinary ML-style type inference with order-sorted
unification, i.e. simply by changing the algebra of types and the corresponding
unification algorithm. Although this was an interesting theoretical insight, it only
lead to a simple algorithm for a restricted version of Haskell where each type
variable is constrained by exactly one class. In addition, it was not possible to
identify ambiguous typings like Z, [ct:C],E \- e : int because there was no notion of
contexts and type variables were tagged with their sort. Both problems have been
eliminated in the present paper.

An interesting extension of Haskell using the notion of 'qualified types' was
designed and implemented by Mark Jones (Jon92b). The main difference is that he
allows arbitrary predicates P(ii,...,xn) over types as opposed to our membership
constraints a : S. On the other hand, he does not solve constraints of the form T : S
to obtain atomic constraints of the form a : S' as is done in our function constrain.
Instead, he accumulates the unsolved constraints.

Independently of our own work, Chen et al. (CHO92) developed an extension of
type classes using similar techniques and arriving at a similar type reconstruction
algorithm. Since their type system is more general, they use different and more
involved formalisms, in particular for unification. In contrast, we reduce unification
to its essence by splitting it into standard unification plus constraint solving. This
enables us to give a sufficient and necessary criterion for unitary unification, which
is required for principal types. As discussed in section 4, the restrictions in Haskell
guarantee unitary unification.

Kaes (Kae92) presents an extension of Hindley/Milner polymorphism with over-
loading, subtypes and recursive types. Due to the overall complexity of the resulting
system, the simplicity of the pure system for overloading is lost.

The pragmatics of implementing type classes are discussed by Peterson and
Jones (PJ83). In particular, they give hints on how to implement a truly imperative
version of algorithm J using mutable variables. This is of significant importance
because a naive functional implementation of algorithm ./, in particular one repre-
senting substitutions as association lists, performs quite poorly.

8 Ambiguity

We would like to conclude this paper with a discussion of the ambiguity problem
which affects most type systems with overloading. It is caused by the fact that
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although a program may have a unique type, its semantics is not well-defined.
According to our rules, the program

class a : C where / : a —> inr;
class a : D where c : a;
(fc)

has type int in any context containing an assumption a : {C,D}. Yet the program
has no semantics because there are no instances of / and c at all. If there were
multiple instances of both C and D, it would be impossible to determine which one
to use in the expression (/ c).

Motivated by such examples, a typing H,T,E \- e : a is usually defined to be
ambiguous if there is a type variable in F which does not occur free in a or E.

Ideally, one would like to have that every well-typed expression has a well-defined
semantics. However, ambiguous terms may have more than one semantics, as the
above example suggests. Fortunately, Blott (Blo92) and Jones (Jon92a) have shown
that in type systems closely related to the one studied in this paper, the semantics
of unambiguous terms is indeed well-defined.

As we have not provided a semantics for our language, we have not introduced
ambiguity formally. Nevertheless, there is one place in our inference system where
we anticipate a particular treatment of ambiguity. In rule VI, the proviso a G JJ"^(CT)

is intended to propagate ambiguity problems: with this restriction, the expression
let x = (/ c) in 5 (preceded by classes C and D as declared above) has type int only
in a context containing an assumption a : {C,D}. If the proviso is dropped, the
expression also has type int in the empty context, thus disguising the local ambiguity.
The reason is that x can be given the ambiguous type Va:{C,D}.in(, but since x
does not occur in 5, this does not matter. Although in a lazy language x need not
be evaluated, and hence the semantics of the whole let is indeed unambiguous, we
would argue that for pragmatic reasons it is advisable to flag ambiguities whenever
they arise.

From this discussion it is obvious that a semantics and a coherence proof for the
type system w.r.t. a semantics are urgently needed.
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