
J. Appl. Prob. 42, 346–361 (2005)
Printed in Israel

© Applied Probability Trust 2005

HETEROGENEOUS POPULATION
DYNAMICAL MODEL:
A FILTERING PROBLEM
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Abstract

We consider a heterogeneous population of identical particles divided into a finite number
of classes according to their level of health. The partition can change over time, and
a suitable exchangeability assumption is made to allow for having identical items of
different types. The partition is not observed; we only observe the cardinality of a
particular class. We discuss the problem of finding the conditional distribution of particle
lifetimes, given such observations, using stochastic filtering techniques. In particular, a
discrete-time approximation is given.
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1. Introduction

Let us consider a population of identical particles {U1, . . . , UH } divided, at any time t ,
into different classes {C1(t), . . . , Cd(t)} according to their ‘health’ level. The partition of the
population can change, since the level of health of any single particle can increase, under some
kind of maintenance, or decrease as time passes. In every class, each particle can die. The
partition of the population cannot be observed; instead, the observation is just the number of
dead particles up to time t . If we introduce the class C0(t) of dead particles up to time t , the
observation coincides with the cardinality Y (t) of this class. Our aim is to find the joint law of
the lifetimes of any particle, given such observations.

In this paper, the model presented in [8] and [9] has been generalized. The main difference
is that there, the unobservable partition of the population was supposed to be constant in time
and the particles could only die. In [9], exchangeable random variables Z1, . . . , ZH were
introduced in order to define the partition, setting Zi = k if and only if Ui ∈ Ck . The law of the
lifetimes, given the variables Z1, . . . , ZH , was given as data and the lifetimes were assumed to
be independent, given the partition of the population.

In place of this, in this paper, in order to define the class of each particle at every time t ,
we introduce a stochastic process Z(t) = {Zi(t)}1≤i≤H such that Zi(t) = k if and only if
Ui ∈ Ck(t), i = 1, . . . , H , k = 0, 1, . . . , d. Furthermore, an exchangeability assumption
on the finite-dimensional distribution of Z(t) will be made, in order to take into account the
dynamics of the model and the fact that the particles are identical. The problem of constructing
a process Z(t) satisfying such an exchangeability assumption will be dealt with in Section 2,

Received 1 December 2003; revision received 10 November 2004.
∗ Postal address: Dipartimento di Ingegneria Elettrica, Facoltà di Ingegneria, Università dell’Aquila, Aquila, Italy.
∗∗ Email address: tardelli@ing.univaq.it

346

https://doi.org/10.1239/jap/1118777175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777175


Heterogeneous population dynamical model 347

where we assume that Z(t) is a Markov chain and where some general properties of the model
are discussed, both in the discrete- and continuous-time cases.

In order to find the law of the lifetimes given {Y (s), s ≤ t}, the number of particles belonging
to the class C0 up to time t , we first compute the law of the lifetimes given the variable Z(t),
and then find the filter of Z(t) given {Y (s), s ≤ t}. The continuous-time filtering problem is
studied in Section 4. Strong uniqueness of the filtering equation is demonstrated, a linearized
equation is introduced, and a useful representation of its solution is derived following a method
which is a modification of that proposed in [10] and in [5].

In [9], an explicit solution for the filtering equation was given. In our model, an elementary
recursive formula for the filter is set up, for the discrete-time model only, in Section 3. Then, in
the final sections, we construct an approximate discrete-time model following some ideas given
in [4]. Finally, we prove that the discrete-time model and its filter converge to the exact filter.
The convergence of the filters is proven by using a linearization technique for the discrete-time
filtering equation.

2. The model

Let us consider a finite or countable population P = {Uj }j≥1, where Uj are given particles,
and, for H a positive integer, let PH = {Uj }j=1,...,H be a finite subpopulation of P . Let
PH be heterogeneous in that its elements can be of d different types, labelled by the natural
numbers 1, . . . , d. Given t ∈ R

+, let Ck(t), k = 1, . . . , d, be the subset of all individuals
of type k at time t . Finally, let C0(t) denote the class of the particles dead by time t . Thus,
PH = ⋃

k=0,1,...,d Ck(t) and we are interested in the case in which events of the form {Ui ∈
Ck(t)}, for i = 1, . . . , H and for any t > 0, are measurable.

To this end, let us introduce the random variable Z(t) = {Zi(t)i=1,...,H } defining the type
of each particle:

for all t ∈ R
+ and k = 0, 1, . . . , d, Zi(t) = k ⇔ Ui ∈ Ck(t) for i = 1, . . . , H.

By definition, C0(t) is an absorbing class in the sense that if a particle Ui enters C0(t), it
can never leave. That is, for all i = 1, . . . , H , we assume that

Zi(s) = 0 ⇒ Zi(t) = 0 for all t ≥ s, almost surely. (2.1)

Then, for all t ∈ R
+, Zi(t) is a random variable taking values in {0, 1, . . . , d} and Z(t) =

(Z1(t), . . . , ZH (t)) takes values in H = {0, 1, . . . , d}H .
In the construction of the model, we have to take into account the fact that different particles

can have different labels even if they are considered indistinguishable. Thus, because we are
dealing with a dynamical model, we introduce an exchangeability property involving the finite-
dimensional distribution of the process Z(t). That is, for all n ≥ 1, all t1, . . . , tn ∈ R

+ with
t1 ≤ · · · ≤ tn, all permutations π of the set {1, . . . , H }, and all k(1), . . . , k(n) ∈ H ,

P(Z(t1) = k(1), . . . , Z(tn) = k(n)) = P(Z(t1) = πk(1), . . . , Z(tn) = πk(n)), (2.2)

where πk(i) = {k(i)
π1 , . . . , k

(i)
πH

}, i = 1, . . . , n, for k(i) = {k(i)
1 , . . . , k

(i)
H } ∈ H .

In particular, for any fixed t , (Z1(t), . . . , ZH (t)) is an exchangeable sequence; that is, for
all a1, . . . , aH ∈ H and all finite permutations π of the indices,

P(Z1(t) = a1, . . . , ZH (t) = aH ) = P(Z1(t) = aπ(1), . . . , ZH (t) = aπ(H)), (2.3)

which is a generalization of the exchangeability property given in [8] and [9].
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2.1. The lifetimes

Later, we will construct a process verifying that conditions (2.1) and (2.2) are satisfied. Now,
we are going to discuss some consequences of these conditions. The most important is related
to lifetimes.

Let Ti be the lifetime of Ui , i = 1, . . . , H , defined as Ti = inf{t ∈ R
+ : Zi(t) = 0}. Taking

into account the structural properties of the model, as in [8] and [9], the lifetimes are a sequence
of exchangeable random variables. The assumption (2.2), which is very natural in our context,
implies such a result, while (2.3) does not.

Theorem 2.1. Under the assumptions (2.1) and (2.2), {Ti}i≥1 is a family of exchangeable
random variables.

Proof. Let us compute P(T1 ≤ t1, . . . , TH ≤ tH ) for all t1, . . . , tH ∈ R
+. Without loss of

generality, we assume that t1 ≤ · · · ≤ tH . Otherwise, we consider a permutation of indices
such that t1′ ≤ · · · ≤ tH ′ , and note that {T1 ≤ t1, . . . , TH ≤ tH } = {T1′ ≤ t1′ , . . . , TH ′ ≤ tH ′ }.
Therefore, recalling (2.1), for all n = 1, . . . , H ,

P(T1 ≤ t1, . . . , Tn ≤ tn)

= P(Z1(t1) = 0, Z2(t2) = 0, . . . , Zn(tn) = 0)

= P(Z1(t1) = 0, Z1(t2) = 0, . . . , Z1(tn) = 0,

Z2(t2) = 0, . . . , Z2(tn) = 0,

. . .
...

Zn(tn) = 0)

=
∑

xi,j ;2≤i≤H ;1≤j≤i−1

P(Z(t1) = (0, x2,1, . . . , xn,1),

Z(t2) = (0, 0, x3,2, . . . , xn,2), . . . , Z(tn) = (0, . . . , 0))

=
∑

xi,j ;2≤i≤H ;1≤j≤i−1

P(Z(t1) = π(0, x2,1, . . . , xn,1),

Z(t2) = π(0, 0, x3,2, . . . , xn,2), . . . , Z(tn) = π(0, . . . , 0))

= P(Zπ−1(1)(t1) = 0, Zπ−1(2)(t2) = 0, . . . , Zπ−1(n)(tn) = 0)

= P(Tπ−1(1) ≤ t1, . . . , Tπ−1(n) ≤ tn).

In the sequel, we assume that Z(t) has the Markov property. Therefore, we have to solve
the problem of constructing the Markov process Z(t) satisfying the conditions (2.1) and (2.2).
As we pointed out in the introduction, we are going to study the properties of the Markov chain
Z(t), the partition of the subpopulation at time t , and find the law of the lifetimes, given Z(t).

The constructions of the discrete-time model Z(t) and of the continuous-time one ζ(t) are
fairly standard. For the sake of self-consistency, and since we will use some definitions in the
sequel, we are going to give a sketch of the construction.

2.2. The discrete-time model

In the discrete-time case (t ∈ N), the existence of a process satisfying the conditions (2.1)
and (2.2) is ensured by the Markov property. Let µ(a, b), a, b ∈ H , be a family of transition
probabilities and let ν0 be a probability measure on H . Let Z(t), t ∈ N, be the Markov chain
with initial distribution ν0 such that, for all t > 0 and all a = (a1, . . . , aH ), b = (b1, . . . , bH ) ∈
H , we have µ(a, b) = P(Z(t) = b | Z(t − 1) = a).
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We can easily verify that the following assumptions guarantee that the process Z(t) satisfies
(2.2) whenever Z(0) satisfies (2.3):

• there exists an i such that ai = 0 and bi �= 0 imply that µ(a, b) = 0; (2.4)

• for all a, b ∈ H and all finite permutations π of the indices, µ(a, b) = µ(π(a), π(b)).
(2.5)

2.3. The continuous-time model

We now introduce the continuous-time model by defining a continuous-time Markov process
ζ(t) with generator L given, for real-valued, bounded measureable functions f on H , by

Lf (z) = l(z)
∑
z′∈H

[f (z′) − f (z)]p(z, z′), (2.6)

where {p(z, z′)} is a family of transition probabilities satisfying (2.4) and (2.5), and l(z) =
l(π(z)) is a positive function. Since H is a finite set, there exist l, l̄ ∈ R

+ such that 0 < l ≤
l(z) ≤ l̄ for all z ∈ H .

By construction, L is clearly a bounded operator. Hence, for all ν0 ∈ �(H) (where �(H)

is the space of probability measures on H ), there exists a unique Markov process ζ(t) with
ν0 as initial condition, L as generator, and sample paths in DH [0, ∞), the space of H -valued
càdlàg functions defined on [0, ∞).

Following a classical construction (see, for instance, [7]), we are going to provide a particular
representation for ζ(t) that we will use to obtain the approximating model in Section 5. Given
a probability space (�, F , P), let {Z(n)}n≥0 be a Markov chain with initial distribution ν0 and
transition probabilities p(z, z′). Let {Vi}i≥1 be a sequence of independent random variables
exponentially distributed with parameter 1 and independent of {Z(n)}n≥0. Finally, let

τ0 = 0, τn =
n∑

i=1

Vi

l(Z(i − 1))
for n > 0, ζ(t) =

∑
n≥0

Z(n) 1{τn≤t<τn+1}, (2.7)

and Ft = σ {ζ(s), s ≤ t}. Hence, on the space (�, F , {Ft }t≥0, P), ζ(t) is a continuous-time
pure-jump Markov process with generator L satisfying (2.1), and {τi}i≥1 is the sequence of
its jump times. By using this particular construction, we can easily see that the process ζ(t)

satisfies (2.2) whenever ζ(0) satisfies (2.3).

3. Conditional laws

In this section, we will obtain the conditional law of the lifetimes, given the history of the
process Y (t) (which is the cardinality of the class C0(t)). To this end, as already observed,
we first compute the law of the lifetimes, given Z(t) (or ζ(t) in the continuous-time case),
and then we set up a filtering problem to obtain the distribution of Z(t) (or ζ(t)), given the
history of the process Y (t). Setting �(z) = ∑H

i=1 1{zi=0} for all z ∈ H , we find that, for the
discrete-time model, Y (t) = �(Z(t)) and, for the continuous-time model, Y (t) = �(ζ(t)).
The distribution of the lifetimes, given the partition of the population at time t , can be easily
computed. If we again assume that t1 ≤ · · · ≤ tH for the discrete-time model then, if t is such
that t1 ≤ t2 ≤ · · · ≤ tm ≤ t ≤ tm+1 ≤ · · · ≤ tH , for P(Z(t) = k) �= 0, k ∈ H , we obtain

P(T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH | Z(t) = k)

= P(Z1(t1) = 0, . . . , Zm(tm) = 0, Z(t) = k, Zm+1(tm+1) = 0, . . . , ZH (tH ) = 0)

P(Z(t) = k)
.

A similar formula can be written down for the continuous-time model.
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Here, the important point is that this distribution can be evaluated explicitly as a function of
k ∈ H . This is important because, in order to find the law of the lifetimes given the observed
failures, only the law of Z(t) (or ζ(t)) given {Y (s), s ≤ t} is needed. In the next section, we
will discuss the filtering problem in the continuous-time case. The last part of this section is
devoted to the filtering problem for the discrete-time model.

We set πt (z) = P(Z(t) = z | F Y
t ), where F Y

t = σ {Y (s), s ≤ t}. Now, since Z(t) is a
Markov chain and Y = �(Z), the pair (Z, Y ) is still Markov and πt (z), the filter, can be
written using a Bayes formula as

πt (z) =
∑

z′∈H P(Z(t) = z, Y (t) | Z(t − 1) = z′, Y (t − 1))πt−1(z
′)∑

z′′,z′′′∈H P(Z(t) = z′′′, Y (t) | Z(t − 1) = z′′, Y (t − 1))πt−1(z′′)
,

where the law of Z(0) is known. Therefore,

πt (z) ∝
∑
zt−1

1{Y (t−1)=�(zt−1)} 1{Y (t)=�(z)} P(Z(t) = z | Z(t − 1) = zt−1)πt−1(zt−1)

= 1{Y (t)=�(z)}
∑

zt−1∈�−1(Y (t−1))

µ(zt−1, z)πt−1(zt−1). (3.1)

By induction, we find that

πt (z) ∝ 1{Y (t)=�(z)}
∑

zt−1∈�−1(Y (t−1)),...,z0∈�−1(0)

µ(z0, z1)µ(z1, z2) · · · µ(zt−1, z) P(Z(0) = z0),

which could be also conjectured intuitively.

Remark 3.1. Summing up, we explicitly write

P(T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH | F Y
t )

=
∑
z∈H

P(T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH | Z(t) = z)πt (z).

An analogous result can be reached in the continuous-time model once πt (z) is computed,
which will be done in the next section.

4. Filtering in the continuous-time case

Let us recall that the filter πt (f ) = E[f (ζ(t)) | F Y
t ] satisfies a stochastic differential

equation known as the Kushner–Stratonovich equation.

4.1. Filtering equation

In this subsection, we write down the Kushner–Stratonovich equation and, in the next one,
we discuss uniqueness of its solutions.

Since, in general, Y (t) is not a counting process, following an idea presented in [5] we
introduce the multivariate point processes U(t) = (U1(t), . . . , UH (t)), defined as

Uj(t) :=
H∑

i=1

1{T(i)≤t} 1{Y (T(i))=j}, j = 1, . . . , H,
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where T(1), . . . , T(H), the order statistics of the lifetimes, give us the jump times of Y . The
process Uj(t) counts the number of jumps bringing Y (t) to j , and

Nt =
H∑

j=1

Uj(t) =
H∑

i=1

1{T(i)≤t} (4.1)

counts all the jumps of Y , up to time t . Since, by definition, Y (t) is a nondecreasing process,
Uj(t) is {0, 1}-valued for all j . Furthermore, the relation

Y (t) = Y (0) +
∫ t

0

H∑
j=1

[j − Y (s−)] dUj(s)

implies that F Y
t = F U

t , where, as usual,

F Y
t = σ {Y (s), s ≤ t} and F U

t = σ {U1(s), . . . , UH (s), s ≤ t}.
Therefore, our problem reduces to finding the filter that is the conditional law of ζ(t) given
F U

t .

Proposition 4.1. For the continuous-time model presented in this paper, the equation for the
filter, for any real-valued function f (z), z ∈ H , can be written as

πt (f ) = ν0(f ) +
∫ t

0
{πs(Gf ) − πs(mf ) + πs(m)πs(f )} ds

+
H∑

j=1

∫ t

0
(πs−(mj ))

+{πs−(mjf ) − πs−(mj )πs−(f ) + πs−(Rjf )} dU
j
s , (4.2)

where a+ = (1/a) 1{a>0} as usual in filtering theory, and where

Gf (z) = l(z)
∑
z′

[f (z′) − f (z)] 1{�(z′)=�(z)} p(z, z′),

Rjf (z) = l(z)
∑
z′

[f (z′) − f (z)] 1{�(z′)�=�(z)} 1{�(z′)=j} p(z, z′),

mj (z) = l(z)
∑
z′

1{�(z′)�=�(z)} 1{�(z′)=j} p(z, z′),

m(z) =
H∑

j=1

mj(z) = l(z)
∑
z′

1{�(z′)�=�(z)} p(z, z′).

Proof. The classical innovation method allows us to write down an equation for the filter.
In particular, our model is such that the results obtained in [2] apply and we refer to them for
the consistency of our proof. Let us observe that the process (ζ, Y, U) is still Markov and that
its joint generator is, for z ∈ H , u ∈ {0, 1}H , and y ∈ {0, 1, . . . , H },

Lf (z, y, u) = L0f (z, y, u) +
H∑

j=1

L
j
1f (z, y, u),
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where

L0f (z, y, u) = l(z)
∑
z′∈H

[f (z′, y, u) − f (z, y, u)] 1{�(z′)=�(z)} p(z, z′),

L
j
1f (z, y, u) = l(z)

∑
z′∈H

[f (z′, y + �(z′) − �(z), u + ej ) − f (z, y, u)]
× 1{�(z′)�=�(z)} 1{y+�(z′)−�(z)=j} p(z, z′),

and ej is the vector such that e
j
i = δ

j
i , i = 1, . . . , H . The generator L, when restricted to the

function depending only on the first variable z, coincides with the operator L given in (2.6).
Moreover, the (P, Ft )-intensity of Uj is given in terms of the process m̃j (ζ(t), Y (t)), where

m̃j (z, y) = l(z)
∑
z′∈H

[uj + e
j
j − uj ] 1{�(z′)�=�(z)} 1{y+�(z′)−�(z)=j} p(z, z′)

= l(z)
∑
z′∈H

1{�(z′)�=�(z)} 1{y+�(z′)−�(z)=j} p(z, z′).

More precisely, the (P, F U
t )-intensity of Uj is given by πt (m̃j ) = E[m̃j (Y (t), ζ(t)) | F Y

t ] =
πt (mj ). The latter equality holds since, by definition, Y (t) = �(ζ(t)) for all t and, so,

m̃j (ζ(t), Y (t)) = l(ζ(t))
∑
z′∈H

1{�(z′)�=�(ζ(t))} 1{Y (t)+�(z′)−�(ζ(t))=j} p(ζ(t), z′)

= l(ζ(t))
∑
z′∈H

1{�(z′)�=�(ζ(t))} 1{�(z′)=j} p(ζ(t), z′)

= mj(ζ(t)).

Let us define

M(t) := f (ζ(t)) − f (ζ(0)) −
∫ t

0
Lf (ζ(s)) ds,

which is a zero-mean (P, Ft )-martingale. First, using [2, Theorem T1, Chapter IV, p. 87], we
are able to write

πt (f ) = ν0(f ) +
∫ t

0
πs(Lf ) ds + M̂t ,

where M̂t is a zero-mean (P, F Y
t )-martingale. By the representation theorem [2, Theorem T17,

Chapter III, p. 76], this can be written in turn as

M̂t =
H∑

j=1

∫ t

0
Ks(j)(dU

j
s − πs−(mj ) ds),

where {Ks(j)} is a suitable sequence of (P, F Y
t )-predictable processes. Finally (see [2,

Theorem T2, Chapter IV, p. 91]), the equation for the filter is then given by

πt (f )

= ν0(f ) +
∫ t

0
πs(Lf ) ds

+
H∑

j=1

∫ t

0
πs−(mj )

+{πs−(mjf ) − πs−(mj )πs−(f ) + πs−(Rjf )}(dU
j
s − πs−(mj ) ds)

(4.3)
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for any function f (z), z ∈ H . In order to compute Rjf and Gf , let us recall that

M(t) := f (ζ(t)) − f (ζ(0)) −
∫ t

0
Lf (ζ(s)) ds and Mj(t) := Uj(t) −

∫ t

0
mj(ζ(s)) ds

are (P, Ft )-martingales, and that 〈M, Mj 〉t = ∫ t

0 Rjf (ζ(s)) ds. By standard stochastic calcu-
lus, we find that

Rjf (z) = l(z)
∑
z′

[f (z′) − f (z)] 1{�(z′)�=�(z)} 1{�(z′)=j} p(z, z′).

Finally, we complete the proof by substituting

Gf (z) = Lf (z) −
H∑

j=1

Rjf (z) = l(z)
∑
z′

[f (z′) − f (z)] 1{�(z′)=�(z)} p(z, z′)

into (4.3).

Remark 4.1. Let us remark that (4.2) depends only on the joint dynamics of the process (ζ, U).
This is in some sense intuitive, since Y (t) = �(ζ(t)) and �(·) is a deterministic function.

4.2. Uniqueness

In general, (4.2) does not have a unique solution. Thus, in order to deduce the properties of
the filter using (4.2), we need to find some kind of uniqueness property for it. Weak uniqueness
could be obtained, as in [4], [6], [10], [11], and [12], by using the filtering martingale problem
approach and, in particular, taking into account Proposition 2.4 of [6]. On the other hand, since
this model has a finite state space, a stronger kind of uniqueness can be obtained. In fact, we
are going to prove that there is pathwise uniqueness for the solutions of the filtering equation.
The procedure used here has some similarities with that used in [1].

We note that in this procedure we do not require πt (mj ) > 0.

Theorem 4.1. Let π ′
t be an F U

t -adapted, probability-measure-valued process with càdlàg
trajectories, satisfying (4.2) driven by the process U(t). Then π ′

t coincides pathwise with the
filter.

Proof. The filter πt satisfies (4.2). Thus, taking into account the fact that

|πs−(mj )
+ − π ′

s−(mj )
+| · |π ′

s−(Rjf + mjf ) − π ′
s−(mj )π

′
s−(f )|

= |πs−(mj ) − π ′
s−(mj )|πs−(mj )

+π ′
s−(mj )

+|π ′
s−(Rjf + mjf ) − π ′

s−(mj )π
′
s−(f )|

≤ |πs−(mj ) − π ′
s−(mj )|πs−(mj )

+2‖f ‖l̄,

for a suitable positive constant C we have

|πt (f ) − π ′
t (f )| ≤ C‖f ‖l̄

{∫ t

0
‖πs − π ′

s‖ ds +
H∑

j=1

∫ t

0
‖πs− − π ′

s−‖(πs−(mj ))
+ dU

j
s

}
,
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where ‖π − π ′‖ := supf ∈B(H) |πt (f ) − π ′
t (f )|/‖f ‖, B(H) denotes the space of real-valued,

bounded measurable functions on H , and ‖f ‖ := supz∈H |f (z)|. Since πs−(mj ) is the
predictable (P, F U

t )-intensity of U
j
s , we obtain

E

[∫ t

0
‖πs− − π ′

s−‖(πs−(mj ))
+ dU

j
s

]
= E

[∫ t

0
‖πs − π ′

s‖(πs(mj ))
+πs(mj ) ds

]

≤ E

[∫ t

0
‖πs − π ′

s‖ ds

]
.

Thus, for another suitable constant C′, we have

E ‖πt − π ′
t‖ ≤ C′ l̄

∫ t

0
E ‖πs − π ′

s‖ ds

and, so, E ‖πt −π ′
t‖ = 0. This, in turn, implies that P(‖πt −π ′

t‖ > 0) = 0 for all t > 0. Since
‖πt − π ′

t‖ has càdlàg trajectories,

P
(

sup
0≤t≤T

‖πt − π ′
t‖ > 0

)
= P

(
sup
T

‖πt − π ′
t‖ > 0

)
≤

∑
t∈T

P(‖πt − π ′
t‖ > 0) = 0

for any countable dense subset T in (0, T ). Therefore, each solution to the filtering equation
coincides pathwise with the filter.

Let us recall that the transition probabilities p(z, z′) have to satisfy conditions (2.4) and
(2.5). From now on, we need the further assumption that,

for all z, z′ ∈ H , if both zi = 0 and z′
i = 0 for some i, then p(z, z′) > 0. (4.4)

Roughly speaking, this means that any transition must be possible, provided that none of the
dead particles have been brought back to life.

This assumption allows us to define the positive quantity

p := min{p(z, z′) : z, z′ ∈ H satisfy (4.4)}.
Remark 4.2. As a consequence of the last assumption, we find that, if j > �(z) (with j =
1, . . . , H ) and z ∈ H , then

mj(z) ≥ l
∑
z′∈H

1{�(z′)>�(z)} 1{�(z′)=j} p(z, z′) ≥ lp.

4.3. A representation for the filter

Explicit expressions for the solutions to (4.2) are not available although, in the discrete-time
model, a simple recursive formula is given by (3.1). For this reason, in the next section we will
construct an approximate discrete-time model and, in the last section, prove that the filter of
the approximate discrete-time model converges to the exact one.

To achieve this goal, it is useful to introduce a linearized equation, using a method that is a
modification of that proposed in [10]. The linearized equation

ρt (f ) = ν0(f )+
∫ t

0
{ρs(Gf )−ρs(mf )} ds +

H∑
j=0

∫ t

0
{ρs−(mjf )−ρs−(f )+ρs−(Rjf )} dU

j
s

(4.5)
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is a modification of (4.2). With classical arguments, we can prove that (4.5) not only admits
a unique solution in the weak sense but, moreover, by Lipschitz arguments, that it admits a
unique strong solution that is necessarily F U

t -adapted. However, we restrict our attention to
the results that we need in the sequel, which are given by the following proposition.

Proposition 4.2. Equation (4.5) admits at least one F U
t -adapted solution. Such a solution

ρt (f ), for any t , has the following properties:

(i) ρt (f ) is a finite positive measure;

(ii) e−t l (1 ∧ lp) < ρt (1) ≤ l̄ ∨ 1; and

(iii) πt (f ) = ρt (f )/ρt (1).

Proof. First we claim that, for any solution ρt to (4.5), ρt (f )/ρt (1) provides a solution of
(4.2) and coincides with the filter up to time t0 = inf{t ≥ 0 : ρt (1) = 0}. Then we construct a
solution of (4.5) that has the required properties and such that ρt (1) > 0 for any t .

Let X(t) be a process with initial condition (s, x), s ≥ 0, x ∈ H , and generator G. Let Ps,x

be its law on DH [s, T ]. Then, by the Feynman–Kac formula, for all t ∈ [0, T(1)),

ρt (f ) =
∑
x∈H

EP0,x

[
f (Xt ) exp

{
−

∫ t

0
m(Xu) du

}]
ν0({x}),

ρt (1) =
∑
x∈H

EP0,x

[
exp

{
−

∫ t

0
m(Xu) du

}]
ν0({x}) ≥ e−t l̄ > 0,

and, for t = T(1),
ρT(1)

(f ) = ρT(1)−(mjf ) + ρT(1)−(Rjf )|j=YT(1)
,

ρT(1)
(1) = ρT(1)−(mj )|j=YT(1)

≥ lpρT(1)−(1),

where the last inequality is a consequence of Remark 4.2. The statement of the proposition
then follows by induction. In fact, for all t ∈ [T(i), T(i+1)),

ρt (f ) =
∑
x∈H

EPs,x

[
f (Xt ) exp

{
−

∫ t

s

m(Xu) du

}]∣∣∣∣
s=T(i)

ρT(i)
({x})

ρT(i)
(1)

,

ρt (1) =
∑
x∈H

EPs,x

[
exp

{
−

∫ t

s

m(Xu) du

}]∣∣∣∣
s=T(i)

ρT(i)
({x})

ρT(i)
(1)

≥ e−(t−T(i))l̄ > 0,

and, for t = T(i+1),
ρT(i+1)

(f ) = ρT(i+1)−(mjf ) + ρT(i+1)−(Rjf )|j=YT(i+1)
,

ρT(i+1)
(1) = ρT(i+1)−(mj )|j=YT(i+1)

≥ lpρT(i+1)−(1).

Finally, observe that ρt (1) ≤ 1 for t ∈ [T(i), T(i+1)) and, for t = T(i+1), that

ρT(i+1)
(1) = ρT(i+1)−(mj )|j=YT(i+1)

≤ l̄ρT(i+1)−(1) ≤ l̄.

This result will provide a central tool for the comparison between the approximate and the
original filter, performed in the next sections.

https://doi.org/10.1239/jap/1118777175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777175


356 A. GERARDI AND P. TARDELLI

5. The approximate model

The construction of the approximate process follows the same lines as in [4] and is related
to the construction in Section 2. Let h > 0 be fixed and let

θh
0 := 0, θh

i :=
[

Vi

hl(Z(i − 1))

]
+ 1 for i > 0,

τh
0 = 0, τh

n = h

n∑
i=1

θh
i for n > 0.

Then, on a finite time horizon [0, T ] with T > 0, for t = kh, k = 0, 1, . . . , such that kh ≤ T ,
the approximate process is defined as

ζ h(t) =
∑
n≥0

Z(n) 1{τh
n ≤t<τh

n+1},

where Z(n) is the Markov chain defined in (2.7). Hence, on the space (�, F , {Ft }t≥0, P), ζ h(t)

is a discrete-time Markov chain and {τh
i }i≥1 is the sequence of its jump times. The following

result is given in [4].

Proposition 5.1. The process ζ h(t) is a discrete-time Markov chain with transition probabili-
ties given by

µh(z, z′) = P(ζ h((n+1)h) = z′ | ζ h(nh) = z) = δ{z,z′}e−hl(z) +p(z, z′)(1−e−hl(z)). (5.1)

We now introduce the discrete-time observations process, setting

Yh(t) = �(ζh(t)), U
jh
t =

H∑
k=1

1{T h
k ≤t} 1{Yh(T h

k )=j} and Nh
t =

H∑
j=0

U
jh
t =

H∑
k=1

1{T h
k ≤t},

where {T h
k } is the sequence of jump times of Yh(t).

As in the continuous-time case, we can prove that F Yh

t = F Uh

t , with Uh = {Ujh}j=0,1,...,H .
Hence, we have to solve a filtering problem in order to find the conditional law of ζ h(t) given
F Uh

t . We know that πh
t = L(ζ h(t) | F Uh

t ) satisfies the equation

πh
nh(f )

= ν0(f ) +
n∑

k=1

(1 − πh
(k−1)h(m

h))+

× [πh
(k−1)h(G

hf ) + πh
(k−1)h(m

h)πh
(k−1)h(f ) − πh

(k−1)h(m
hf )](1 − �Nh

kh)

+
H∑

j=0

n∑
k=1

πh
(k−1)h(m

h
j )

+

× [πh
(k−1)h(m

h
j f ) − πh

(k−1)h(m
h
j )π

h
(k−1)h(f ) + πh

(k−1)h(R
h
j f )]�U

jh
kh , (5.2)
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where

�Nh
kh = Nh

kh − Nh
(k−1)h,

�U
jh
kh = U

jh
kh − U

jh

(k−1)h,

Ghf (z) =
∑
z′

[f (z′) − f (z)] 1{�(z′)=�(z)} µh(z, z′),

Rhf (z) =
H∑

j=1

Rh
j f (z) =

H∑
j=1

∑
z′

[f (z′) − f (z)] 1{�(z′)�=�(z)} 1{�(z′)=j} µh(z, z′),

mh
j (z) =

∑
z′

1{�(z′)�=�(z)} 1{�(z′)=j} µh(z, z′),

mh(z) =
H∑

j=1

mh
j (z) =

∑
z′

1{�(z′)�=�(z)} µh(z, z′).

Equation (5.2) has a unique solution as a consequence of its recursive structure, taking into
account (5.1) and the inequality

mh
j (z) ≤ mh(z) ≤ 1 − e−hl̄ < 1, j = 1, . . . , H. (5.3)

Such a solution can be explicitly written down but, instead of doing so, we are going to provide
a linearized version of (5.2) as a useful tool to prove the convergence of the discrete-time model
to the continuous-time one.

Proposition 5.2. The equation

ρh
nh(f )

= ν0(f ) +
n∑

k=1

{ρh
(k−1)h(G

hf ) − ρh
(k−1)h(m

hf )}(1 − �Nh
kh)

+
H∑

j=1

n∑
k=1

(1 − e−h)+{ρh
(k−1)h(m

h
j f ) − (1 − e−h)ρh

(k−1)h(f ) + ρh
(k−1)h(R

h
j f )}�U

jh
kh

(5.4)

admits a unique F Uh

t -adapted solution. Such a solution ρh
t (f ), for any t = nh, has the

following properties:

(i) ρh
t (f ) is a finite positive measure;

(ii) 0 < ρh
t (1) ≤ (2l̄)N

h
t ∨ 1 for all h such that h(l ∨ 1) < log 2; and

(iii) πh
t (f ) = ρh

t (f )/ρh
t (1).

Proof. Here, we use the same argument as in Proposition 4.2. Then we only have to prove that
ρh

t (1) cannot vanish for t ∈ [T h
i , T h

i+1). For t = nh, with T h
i /h ≤ n < T h

i+1/h, by recalling
(5.3) we obtain

ρh
nh(1) = ρh

(n−1)h(1) − ρh
(n−1)h(m

h) = ρh
(n−1)h(1 − mh) ≥ e−hl̄ρh

(n−1)h(1),
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which, by induction, implies that ρh
t (1) ≥ e−T l̄ . At a jump time T h

i = kh, we have �Nh
kh = 1

and, since mh
j (z) = mj(z)(1 − e−hl(z)), we have

ρh
kh(1) = (1 − e−h)+ρh

(k−1)h(m
h
j )|j=Yh

nh
≥ lp

1 − e−hl

1 − e−h
ρh

(k−1)h(1) ≥ ( 1
2 l2p)N

h
kh .

Moreover, for �Nh
kh = 0, we have ρh

kh(1) ≤ ρh
(k−1)h(1) and, for �Nh

kh = 1, we have

ρh
kh(1) ≤ ρh

(k−1)h(m
h)

1 − e−h
≤ 1 − e−l̄h

1 − e−h
ρh

(k−1)h(1).

6. Convergence

From now on, let Sh := (ζ h, Y h, Uh, Nh, πh) denote the piecewise-constant, càdlàg, con-
tinuous-time interpolation of the processes introduced in the previous section. Moreover, we
set S := (ζ, Y, U, N, π) and

S = H × {0, 1, . . . , H } × {0, 1}H × N × �(H).

In this section, we prove the following theorem.

Theorem 6.1. As h → 0, the process Sh converges to the process S almost surely, with respect
to the Skorokhod topology on the space DS[0, T ].

Throughout this section, we provide results that are true for almost all fixed ω. More
precisely, let us observe that, in the model presented in this paper, τNT

is a continuous random
variable and P(τNT

= T ) = 0 (recalling the definition of Nt given in (4.1)). We will prove that
the convergence of Sh to S claimed in Theorem 6.1 holds for any ω ∈ {τNT

< T }. The proof
of this theorem is a consequence of the next results. The first one follows from an argument
similar to that in Section 4 of [3], but we give it for sake of completeness.

Proposition 6.1. For h < (T − τNT
)/NT , we have τh

NT
≤ T , which in turn implies that

NT = Nh
T almost surely.

Proof. For any ω ∈ {τNT
< T }, we can choose h such that 0 < h ≤ (T − τNT

)/NT . By
definition, τh

k ≤ τk + kh for all k; hence,

τh
NT

≤ τNT
+ NT h ≤ T .

Moreover, since τk ≤ τh
k for all k, we have NT ≥ Nh

T , which means that

τh
NT

≥ τh

Nh
T

.

However, observing that τh

Nh
T

is the last jump time before T , we also have

τh

Nh
T

≤ T ≤ τh
NT

.

The combination of this last inequality with T ≥ τh
NT

gives τh

Nh
T

= τh
NT

, i.e. NT = Nh
T (recalling

that {τh
k }k≥0 is a strictly monotone sequence).

In the event {NT = Nh
T }, a function αh(·) of [0, T ] into itself can be defined such that

(i) αh(·) is a piecewise-linear map and transforms the interval [τh
k , τh

k+1) into [τk, τk+1) for
all k < NT , and transforms [τh

NT
, T ) into [τNT

, T );

https://doi.org/10.1239/jap/1118777175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777175


Heterogeneous population dynamical model 359

(ii) supt∈[0,T ] |αh(t) − t | = maxk≤NT
|τk − τh

k | ≤ maxk≤NT
kh = NT h; and

(iii) |ζ(αh(t)) − ζ h(t)| = |Y (αh(t)) − Yh(t)| = |U(αh(t)) − Ujh(t)| = |Nαh(t) − Nh
t | = 0.

Thus, the convergence of the filters suffices to establish the result claimed in Theorem 6.1.
Therefore, by definition of the Skorokhod topology, Theorem 6.1 is a consequence of Theo-
rem 6.2.

Theorem 6.2. Under the assumptions prevailing in this paper (in particular assumption (4.4)),
for a suitable quantity C we have ‖παh(t) − πh

t ‖ ≤ Ch.

Recalling part (ii) of Proposition 4.2, the proof of Theorem 6.2 follows from Lemma 6.1
and Proposition 6.2.

Lemma 6.1. The following inequality holds:

‖παh(t) − πh
t ‖ ≤ 2eT l̄

1 ∨ lp
‖ραh(t) − ρh

t ‖.

Proof. The result follows by noting that

‖παh(t) − πh
t ‖ = 1

ραh(t)(1)
‖ραh(t) − ρh

t ‖ +
∥∥∥∥ ρh

t

ραh(t)(1)ρh
t (1)

(ραh(t)(1) − ρh
t (1))

∥∥∥∥
≤ 2

ραh(t)(1)
‖ραh(t) − ρh

t ‖

and recalling Proposition 4.2(ii).

Proposition 6.2. For a suitable quantity C ≡ C(T , NT , l̄) > 0, we obtain

‖ραh(t) − ρh
t ‖ ≤ (1 + 2l̄)Nt e2t l̄Ch.

Proof. By (4.5), since the first derivative α′
h(t) of αh(t) exists for any t ∈ [0, T ] other than

a finite number of points, and since αh(T(i)) = T(i) for all i, we write

ραh(t)(f ) = ν0(f ) +
∫ t

0
{ραh(s)(Gf ) − ραh(s)(mf )}α′

h(s) ds

+
H∑

j=0

∫ t

0
{ραh(s)−(mjf ) − ραh(s)−(f ) + ραh(s)−(Rjf )} dU

jh
s .

Moreover, by (5.4),

ρh
t (f ) = ν0(f ) +

∫ t

0

1

h
{ρh

s (Ghf ) − ρh
s (mhf )} ds +

∫ t

0
{ρh

s−(mhf ) − ρh
s−(Ghf )} dNh

s

+
H∑

j=0

∫ t

0
(1 − e−h)+{ρh

s−(mh
j f ) − (1 − e−h)ρh

s−(f ) + ρh
s−(Rh

j f )} dU
jh
s
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and, by standard computations, we successively obtain

∣∣∣∣
∫ t

0
(α′

h(s) − 1) ds

∣∣∣∣ ≤ 2NT h,

|Ghf (x) − mh(x)f (x)| ≤ 2‖f ‖l̄h,

∣∣∣∣
∫ t

0
{ρh

s−(mhf ) − ρh
s−(Ghf )} dNYh

s

∣∣∣∣ ≤ 2NT ‖f ‖l̄h,

∣∣∣∣
∫ t

0
{ραh(s)(Gf ) − ραh(s)(mf )}α′

h(s) ds −
∫ t

0

1

h
{ρh

s (Ghf ) − ρh
s (mhf )} ds

∣∣∣∣
≤ 4‖f ‖l̄NT h sup

s∈[0,t]
ρs(1) + ‖f ‖l̄2T h sup

s∈[0,t]
ρs(1) + 2‖f ‖l̄

∫ t

0
‖ραh(s) − ρh

s ‖ ds.

Moreover,

∣∣∣∣
H∑

j=0

∫ t

0
{ραh(s)−(mjf ) − ραh(s)−(f ) + ραh(s)−(Rjf )} dU

jh
s

−
H∑

j=0

∫ t

0
(1 − e−h)+{ρh

s−(mh
j f ) − (1 − e−h)ρh

s−(f ) + ρh
s−(Rh

j f )} dU
jh
s

∣∣∣∣

≤ 2l̄‖f ‖
∫ t

0
‖ραh(s)− − ρh

s−‖ dNh(s) + l̄‖f ‖Nh
T l̄h sup

s∈[0,T ]
ρh

s (1).

Finally,

‖ραh(t) − ρh
t ‖ ≤ 2hl̄NT + 4l̄NT h sup

s∈[0,t]
ρs(1) + l̄2T h sup

s∈[0,t]
ρs(1) + 2l̄

∫ t

0
‖ραh(s) − ρh

s ‖ ds

+ 2l̄

∫ t

0
‖ραh(s)− − ρh

s−‖ dNh
s + l̄2Nh

T h sup
s∈[0,T ]

ρh
s (1).

Then, a suitable quantity A ≡ A(T , NT , l̄) can be found such that

‖ραh(t) − ρh
t ‖ ≤ Ah + 2l̄

∫ t

0
‖ραh(s) − ρh

s ‖ ds + 2l̄

∫ t

0
‖ραh(s)− − ρh

s−‖ dNs.

By using Gronwall’s lemma for t ∈ [T(i), T(i+1)) for all i, and taking into account the update
at the jump times, the proof is complete.

Acknowledgements

The authors are very grateful to Professor Fabio Spizzichino for suggesting the model and,
along with Dr Barbara Torti, for many helpful discussions. We also thank the unknown referee,
whose comments allowed us to improve the paper a great deal.

https://doi.org/10.1239/jap/1118777175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777175


Heterogeneous population dynamical model 361

References

[1] Arjas, E., Haara, P. and Norros, I. (1992). Filtering the histories of a partially observed marked point process.
Stoch. Process. Appl. 40, 225–250.

[2] Brémaud, P. (1980). Point Processes and Queues. Springer, New York.
[3] Calzolari, A. and Nappo, G. (1996). A filtering problem with counting observations: approximations with

error bounds. Stoch. Stoch. Reports 57, 71–87.
[4] Calzolari, A. and Nappo, G. (1997). A filtering problem with counting observations: error bounds due to the

uncertainty on the infinitesimal parameters. Stoch. Stoch. Reports 61, 1–19.
[5] Calzolari, A. and Nappo, G. (2001). The filtering problem in a model with grouped data and counting

observation times. Preprint. Available at http://www.mat.uniroma1.it/people/nappo/nappo.html.
[6] Ceci, C. and Gerardi, A. (2001). Nonlinear filtering equation of a jump process with counting observation.

Acta Appl. Math. 66, 139–154.
[7] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley,

New York.
[8] Gerardi, A., Spizzichino, F. and Torti, B. (2000). Exchangeable mixture models for lifetimes: the role of

occupation number. Statist. Prob. Lett. 49, 365–375.
[9] Gerardi, A., Spizzichino, F. and Torti, B. (2000). Filtering equations for the conditional law of residual

lifetimes from a heterogeneous population. J. Appl. Prob. 37, 823–834.
[10] Kliemann, W., Koch, G. and Marchetti, F. (1990). On the unnormalized solution of the filtering problem

with counting process observations. IEEE Trans. Inf. Theory 36, 1415–1425.
[11] Kurtz, T. G. (1998). Martingale problems for conditional distribution of Markov processes. Electron. J. Prob. 3,

29pp.
[12] Kurtz, T. G. and Ocone, D. (1988). Unique characterization of conditional distributions in nonlinear filtering.

Ann. Prob. 16, 80–107.

https://doi.org/10.1239/jap/1118777175 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777175

