
HOLOMORPHIC FUNCTIONS WITH
SPIRAL ASYMPTOTIC PATHS

W. SEIDEL'

1. Let f(z) be a holomorphic and unbounded function in \z\ < 1, with the

property that it remains bounded on some spiral S in \z\ < 1 which approaches

I z I = 1 asymptotically. The existence of such functions was first established

by G. Valiron.1} Accordingly, we shall refer to such functions as functions of

class (V) relative to S. More recently, F. Bagemihl and W. Seidel obtained

examples of functions holomorphic and unbounded in \z\ < 1 which approach

prescribed finite or infinite values as \z\ -> 1 on any given enumerable set of

disjunct spirals which approach \z\ = 1 asymptotically,2) as well as on certain

sets of such spirals having the power of the continuum.3'

In his 1936 paper, Valiron established various properties of functions of

class (V) relative to a spiral S, of which we mention, for future reference, the

following:

1. If f(z) is of class (V) relative to a spiral S, there exists a spiral path on

which fiz) tends to infinity.

In this paper, we continue the study of functions with spiral asymptotic

paths, and shall derive some further properties of such functions.

2. In the sequel, we shall use the term "spiral" in the following sense.

Let ζ(t) be a continuous, complex-valued function for 0 £ t< °° with the pro-

perties :
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160 W. SEIDEL

11) 0 < | C ( f ) l < 1 , l im|CU) | = l, lim argC(ί)= oo,

and let the equation z = C(t) define a simple curve. For any value of t, start-

ing with the point C(t) on the curve, describe the curve in the sense of in-

creasing t and let V denote the first value of t for which arg ζ(t') = a r g ζ(t) 4-

2π. We shall denote by ρ(ζ(t), C(t')) the non-Euclidean15 (hyperbolic) distance

between these two points:

CU)-C(ί') I
(2) p{C{t),C(t))=± log

l - C U ) C ( f )

We shall also find it convenient to introduce the following measures for

the "tightness" of a spiral S whose equation is z = ζ(t):

(3) MS)=Mmp(c(ί) f C(f')), j5(S)=ίίmp(ί(f), C(*')).

In order to simplify the formulation of theorems, we shall also introduce

certain terms and notations which have become familiar in recent years.5)

(a) Given a point τ on \z\ = 1, the set of all points z in \z\ < 1 for which

\BTg(l-τz)\ έ & U - r | < e ,

where 0 < 0 < ~ and ε is chosen so small that the boundary of the resulting

set has only the point τ in common with \z\ = 1, shall be called a symmetric

Stolz angle with vertex τ and of opening 2 β, and will be denoted by J τ , ? .

(b) Let Σ be any subset of \z\ < 1, whose closure has at least one point

in common with \z\ = 1. By the range of a function f(z) in Σ, R(f, Σ), we

shall mean the set of all complex values a for which there exists a sequence

of points {zn}, with zn G Σ, lim \zn\ = 1, such that f(zn) = a.

(c) Let G be the set of all finite complex numbers and A a subset of G.

We shall denote by CA the complement of Af relative to G.

3. THEOREM 1. Let f(z) be of class (V) relative to a spiral S, for which

4> In the sequel, we shall abbreviate the expression "non-Euclidean" to n—E. For
the facts concerning n—E geometry which we shall employ in this paper, see, for exam-
pie, C. Carathόodory. Conformal Representation, second edition, Cambridge, University
Press, 1952, Chapter II.

5) See, for example, E. F. Collingwood and M. L. Cartwright. Boundary theorems for
a function meromorphic in the unit circle, Acta Mathematica, vol. 87 (1952), pp. 83-146.
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HOLOMORPHIC FUNCTIONS WITH SPIRAL ASYMPTOTIC PATHS 161

(4) μ(S) < oo.

Then', there exists a spiral S in UI<1, such that, denoting by Σ the union of

all n- E open circular discs with n- E centers on S and of fixed n — E radius,

the set CRif, Σ) consists of at most one point.

Proof. Let S be given by Cίί), 0 ^ t < co. In view of condition (4), there

exists an increasing sequence {£„}, with lim tn = °°> and a positive constant M

such that

(5) f>(ζ(tn), C(ίί))<Λf,.w = l,2,

Consider the sequence of functions

each of which is clearly holomorphic in \z\ < 1.

Since /{z) is of class (V) relative to S, there exists a positive constant B

such that \f(C(tn))\ < B for n = 1, 2,. . . . Hence, by (6), we have

(7) \gn(0)\<B.

The family {gn(z)} can not be normal in \z\ < 1. For, if it were, no

subsequence could tend to infinity, because of (7). Hence, the sequence {n}

of natural numbers would contain a subsequence {nit) for which {g»,iz)) would

tend uniformly in every closed circular disc \z\ = λ < 1 to some function g(z)

holomorphic in | z I < 1.

Now, the spiral S satisfies condition (5). Consider any circle \z\ ^ d < 1

whose H - 2? radius o log -̂ —-v- is greater than M. Since £(2) is bounded in

\z\ ^ d, there exists a positive constant Z, such that 1^(2) ! < L for \z\ <=d and

for all values of k. But the set of values which gιk(z) assumes in \z\ <d is

the same as the set of values which f(z) assumes in the n — E disc Dk,d whose

n-E center is Citni,) and whose n - E radius is -A- log -,^—τ- By the above
Δ x ~* a

choice of d, it is clear that the disc Dk,d contains the point CU«fc) and also

|/(2>i < L in Dk,d. This, however, is impossible, since, according to 7, f(z)

must possess a spiral path P on which it tends to infinity, and this path would

have to cross the circles Dk.d infinitely many times.

Since the family {gn(z)) can not be normal, there exists a point z0; with
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162 W. SEIDEL

] zoI < 1, such that in every neighborhood of zo every value, except at most one,

is assumed by infinitely many functions of the family. If it can be shown that

(8)

is a spiral in the sense of § 2, the conclusion of the theorem will follow at once,

with S' defined by (8).

We have 0<UU)I < 1, except possibly for one value of t. Moreover, (1)

implies that lim |;z(f)| = 1. Furthermore, we have z(t) = C(ί) if zo = 0, and if

0 < Uo 1 < 1, we have

arg z(t) = arg(2c + Ctf)) - arg z0 - arg (~- + C(7)) -

Here the first term on the right tends to infinity as t -» ^ , while the two re-

maining terms stay bounded. Finally, the equation z = z(t) defines a simple

curve. For, if not, there would be two distinct values tu U for which z(ti) =

z(ti). But (8) implies the relation

1-|zoΓ)-?o(l-|2:U)| 2)

so that we would obtain Q(tι) =C(ί2)> which is impossible. This completes the

proof.

It is evident that Theorem 1 is a kind of analogue of Julia's Theorem for

entire functions.

Remark. That in Theorem 1, C/?(/, Σ) may not be empty is evident from

the fact that if f(z) is of class (F) relative to a spiral, so is the function efκZ).

4. THEOREM 2. Let f(z) be of class (V) relative to a spiral S, for ivliich

(9) jδ(S)<oc,

and let τ be an arbitrary point of \z\ = 1. Then CR(f, J-,a) consists of at most

one point for every Stolz angle d-,*, for ivhich

(10) ,Ί(S)< \ log c o t ( - j - - - | ) .

Proof. Let zι = Q{t1) be any point of intersection of S with the radius

terminating in the point r, We define Zn^Zitn) inductively by the relation
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HOLOMORPHIC FUNCTIONS WITH SPIRAL ASYMPTOTIC PATHS 163

zn+ί = ζ(tn) in the notation of § 1. Clearly, lim \zn\ = 1. F o r m the functions

which are evidently holomorphic in \z\ < 1 and let the positive number q satisfy

the inequalities

(12) μ(SXq<-~ log c o t ( - J - I ) .

It follows by exactly the same argument as in the proof of Theorem 1 that

the family {gjz)} is not normal in the n-E disc whose n-E center is 0 and
e2q -1

whose n-E radius is <?, i.e. in the Euclidean circular disc \z\< —^r

e 2 Q - 1
Thus, there exists a point z0, with Uol < — 2^ττ~ s u c n t n a t every value,

except perhaps one, is assumed by infinitely many of the functions of the family

{gn(z)} in every n-E disc with n-E center z0. Choose the n-E radius of
e2<1 - 1

such a disc so small that the disc lies wholly within the disc \z\ < —2g—-γ-
e ~\ _L

Now, gn(z) assumes in this n-E disc the same values a s / ( z ) assumes in

the n — E disc of n — E center zn and the same n — E radius. An elementary

calculation shows that the union of all n — E circular discs with n — E centers

at the points of the radius terminating in τ and n - E radius q will be con-

tained in the region Hτ,α bounded by two hypercycles symmetric in the diameter

connecting the points τ and - r and forming at τ angles a and - a with the

diameter, where a is subject to the inequality (12). But in a neighborhood of

r the region H-,* is contained within the Stolz angle Δ-t*. This completes

the proof.

COROLLARY 1. Let f(z) be of class (V) relative to a spiral S for which

Jϊ(S) = 0 and let τ be an arbitrary point of \z\ = 1. Then CR(f, J->ot) consists

of at most one point for every Stolz angle Jx>a, a>0.

Indeed, in this case the positive angle a in the inequality (10) may be

taken arbitrarily small.

5. We now turn to the case that a holomorphic function tends to infinity

along a spiral path.

T H E O R E M 3. Let fiz) be holpmorphic in \zI < 1 and let S : z = ζ ( t ) , 0 ^ t < oo,
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164 W. SEIDEL.

be a spiral for which

(13) /KSXco

and

(14) l im|/(C(ί)) |= oo.

Then there exists a spiral S in \z\< 1, such that, denoting by Σ the union of

all n- E open circular discs with n - E centers on S and of fixed n - E radius,

the set CR(f, Σ) consists of at most one point.

Proof. We form the family of holomorphic functions in \z\ < 1 :

Since g*(0) =/(C(f)), we have, according to (14),

(15) l im|#(0) | = oo.

This family can not be normal in UI<1. Indeed, (13) implies the existence

of a positive constant M such that

p(C(t), ζ(f)XM

for all sufficiently large values of t. Consider any circle \z\ = d whose n — E

radius ^ log -.. , is greater than M. If igt(z)} were normal in i z | < l , being

given any sequence tn of positive numbers for which tn~* °°, we could extract

from the sequence {gtn(z)} a subsequence which, because of (15), would have

to tend uniformly to infinity within \z\^d. As will be shown, this implies that

lim \gtiz)\= °° uniformly in ! zI ^ d.

Indeed, suppose this were not the case. Then there would exist a positive

number Λf0, a sequence of values tru with tn^ ^ , and a sequence of points zn,

with \zn\ = d, such that

\gttXZn)\ ώMo

for n = 1, 2, 3, , . . . But if we apply to this sequence {gtn(z)} the argument

of the preceding paragraph, we immediately arrive at a contradiction.

Thus, Mm \gtiz)\- oo uniformly in \z\^d. This implies that \f(z)\ tends
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HOLOMORPHIC FUNCTIONS WITH SPIRAL ASYMPTOTIC PATHS 165

uniformly to infinity within trie union of all closed n - E circular discs Dt with

n-E centers ζ(t) and n-E radius y log -γ~ , It follows that, given any

positive number G, there exists a positive number v such that

Since we supposed that

t h e s e t U Dt m u s t c o n t a i n s o m e c i r c u l a r ring 0 < a = \z\ < 1 . T h i s , h o w e v e r ,

i m p l i e s t h a t l i m 1/(2) I — c 0 u n i f o r m l y i n ! z | < l a n d , a s is w e l l - k n o w n , t h i s is
|cl-*i

impossible.

Thus, we have arrived at a contradiction, which means that the family

{gt(z)} can not be normal in U I < 1 ; in fact, it is not even normal in \z\<d.

Since, on the other hand, every subfamily {gt(z\ 0 *= t *= A < c° } is normal in

\z\< d since it is a bounded family, the failure of the family {gt(z)} to be normal

must be due to the presence in it of sequences {gtjz)}, with frt-» c o , which

themselves are not normal. Once this is established, the rest of the proof

proceeds as in the proof of Theorem 1.

6. It has been shown by Valiron6) that if a function fiz) is of class {V)

relative to a spiral, then, setting M (r) = max l/(z)|, we have

lim log, M(r) ^
1

In particular, this means t h a t / ( 2 ^ must be of infinite order in \z\<l. On the

other hand, the maximum modulus Mir) of a function /(z) which tends to

infinity along a spiral path can be made to increase to infinity arbitrarily slowly.

Let ω(r) be any real, positive, strictly increasing function in O ^ r < 1 , such

that l imω(r)— °°. Then, there exists a sequence of positive integers {nk)
r-»l

satisfying the conditions

?iι > I, nk ^ knk-ι for k > 1,

Cl Valiron 2., /or. c/7., pp. 433-435.
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166 W. SEIDEL

such that the function']

(16) FU> = Π ( l - ( • » - - — ) " ' }

is holomorphic in | z l < l and, setting Mir) = max I Ψ(z)\, we have
It ISr

Af (r) < ω(r), 1 - n~Ϋ £ r < 1.

Furthermore, if we denote by Ω the region formed by deleting from ! z I < 1

closed circular discs of radius -.,—- about the zeros of ψ(z), (1 - n~J

1)e2*ktlnj,

fc = 0, 1, 2, . . . , wy—1; j-fay 7o+l, . . . , (choosing 7Ό sufficiently large so

that the discs are mutually disjunct), then I Ψ(z)I tends uniformly to infinity as

U |-* l , with z&Ω.

Now, if we draw the two circumferences \zI = 1 ± - 2 — on either

side of \z\ = 1 -, we find that the n-E distance between them is equal to

which tends to 0 as j -• °°. Hence, it is clearly possible to construct a spiral S

wholly within the region Ω which satisfies the condition μ(S) = 0. This shows

that Ψ(z) satisfies the condition of Theorem 3. We thus obtain

COROLLARY 2. There exist functions, holomorphic in \z\<h whose maxi-

mum modulus tends to infinity arbitrarily slowly, for which the conclusion of

Theorem 3 holds,

7. Before continuing the study of functions with spiral asymptotic paths,

we shall first prove a preliminary result of a more general character.

THEOREM 4 Let f(z) be holomorphic in U I < 1 , let τ be a point of \z\ = 1,

and let zn = rnτ, 0 < rn < 1, lim rn = 1, be a sequence of points for which
n-*oo

(17)

and

7> F. Bagemihl, P. Erdϋs, W. Seidel. Sur quelques propriety frontieres des fonctions
holomorphes dέfinies par certains produits dans le cercle unitέ, Annales de ΓEcole Normale
Superieure (3), vol. 70 (1953), pp. 135-147; in particular, pp. 136-141,

https://doi.org/10.1017/S0027763000005821 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005821


HOLOMORPHIC FUNCTIONS WITH SPIRAL ASYMPTOTIC PATHS 107

(18) \im\/(zn)\ - °°.
/ί-»:o

Then, there exists a real number <x-y with 0 <= a - ?= -~-, such that

1. f(z) tends uniformly to infinity in every Stolz angle J τ ,?, ivhere β < <*~

2. CRif, J t , , 0 consists of at most one point for every Stolz angle J τ > ? ,

Proof. For each value of r in 0 < r < 1 consider the function

r r

holomorphic in U I < 1 . We have

^rw(0)=/(rrtr) = /(2»),

so that, by (18), we obtain

(19) \im\grnl0)\ = oo.

We shall now examine the family {gAz)} for normality. There are al-

together three mutually exclusive cases to be considered:

I. The family {g,(z)} is normal in \z\ < 1;

II. The family {gr(z)} is not normal in \z\ < 1, but is normal at z - 0

III. The family {gAz)} is not normal at z = Q.

Consider Case I. The subfamily {grn(z)} is also normal in \z\ < 1 and

(19) implies that

lim |#-n(2)| = °°

uniformly on every disc \z\^q<l. This, in turn, implies that f(z) tends

uniformly to infinity on the sequence of closed n — E circular discs Dn with

n- E centers zn and n - E radius - - log --••_-?• . Since, in view of (17), for n

sufficiently large, each Dn contains in its interior the point zn+u the union U Dn

8^ The ext reme cases ατ = 0, X must be interpreted to mean that, in the first case,

conclusion 2 holds for every Stolz angle Δ-,Λ, while, in the second case, conclusion 1

holds for every Stolz angle J τ , ? .
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168 W. SEIDEL

of these discs contains some segment 0 < t f < r < l o f the radius rτ which termi-

nates in r.

Hence,

(20) l im |/(rr) |= «>.
r->l

Returning now to our original family {gΛz)}t (20) implies that

(21) lim|#r(0)|= TO.

Making use of / and the relation (21), by an argument similar to that em-

ployed in §5, we infer that

lim \gr(z)\ = °°
r->l

uniformly on every disc \z\g λ <1. Applied to / ( s \ this means that f(z) tends

uniformly to infinity as i z I -* 1 within the union of all n — E closed circular

discs Dr with n - E centers at rτ and fixed n-E radius ~γ log -|—-γ- The

union U Dr fills out precisely the intersection of some neighborhood of r with
0<r<l

the region Hx,*, defined in §4, provided that

cot \T--2-J = τ=T ;

As λ varies over the interval 0 < λ < 1, the angle a varies over the interval

0 < a < -£• Since, in some neighborhood of r, each H-,a contains every Jτ,p,

with β<a, we arrive at the conclusion that in Case I the point τ is a Fatou9)

point of f(z) with the limit oo, and we have aτ= 4r

Let us next consider Case III. In this case, the family {gΛz)) fails to be

normal in every neighborhood | z I < λ < 1 of z = 0. Since for every interval

0 < / != b < 1, the subfamily {#r(z>, 0 <r ^b < 1} is bounded in Ul < J, hence

normal, there must exist a sequence {£>„(£)}, with rn -* 1, such that every

value, except perhaps one. is assumed in I z I < Λ by infinitely many functions of

the sequence. In terms of f(z), this implies that CRif, # T , J consists of at

most one point for every domain H-,«. This is equivalent to asserting that in

9) A point τ, with | r | = l, is called a Fatou point of a function f{z), meromorphic in
|z!<l, if there exists a number c, finite or infinite, such that f(z)-+c as z->τ uniformly
in every Stolz angle J τ . o . Cf. Collingwood and Cartwright, he. cit.} p. 95.
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Case III, CR(f, J-,α) co?isists of at most one point for every Stoϊz angle Jτ,α,

and we have a~ = 0.

Finally, in Case II, let 0 < a < 1 be the smallest modulus of all those points

in \Z{<1 at which {gλz)} fails to be normal. Since the set of such points

is closed relative to \z \ < 1, such a smallest positive modulus exists. Let

ax (θ<a- < -ί ) be that angle a for which

i--;-)--&1 + tf
a

Then, f(z) ivill tend uniformly to infinity as z~*τ in every Stolz angle J : , p , ivith

β<aτt and CRif, Δ?f(i) will consist of at most one point for β > a-..

This completes the proof of Theorem 4.

We list some immediate corollaries of Theorem 4.

COROLLARY 3. Let f(z) be holomorphic in | z ί < l and omit10) two distinct

finite values there. Let τ be a point of \z | •= 1 and zn = rnτ, 0 < rn < 1, Πm rn = 1,

a sequence of points for which

(22) limpU,, 2rt+i) = 0

and

lim \f(zn)\ = °°.
n->co

r zs « Fαίow jf»6»2/if of f(z) ivith the limit °°.

Since, under these assumptions, conclusion 2 of Theorem 4 can not take

place, we have a- = ~

It is obvious what assumptions are needed to ensure that conclusion 1 will

not take place, so that a- = 0, and conclusion 2 holds in every Stolz angle Jτ,«.

COROLLARY 4. Let f{z) be meromorphic in | z | < l and omit three distinct

values a, b, c, finite or infinite, there. Let τ be a point of \z \ = 1 and zn = rn r,

0 < rn < 1, lim rn = 1, « sequence of points for ivhich (22) holds and

10) It clearly suffices to assume here that/(2) assumes two distinct finite values at
most a finite number of times. An analogous extension of Corollary 4 is also evidently
true.

https://doi.org/10.1017/S0027763000005821 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005821


170 W. SEIDEL

Then τ is a Fatou point of f(z) with the limit a.

The case a = oo is precisely Corollary 3. If a η^ <χ>, Corollary 3 applied to

the function y, γ _ immediately yields a proof.

C O R O L L A R Y 5. Let f(z) be holomorphic in \z\ < 1 . Z ^ J r #£ 0 / w w ί of \z\ = 1

which

exists a number ax, with 0 £ a-^ -pr> for which the conclusion of

Theorem 4 holds.

This is merely a special case of a theorem proved by Gross.n)

Another immediate consequence of Theorem 4 is

THEOREM 5. Let f(z) be holomorphic in\z\<l and let S: z = C(t),

be a spiral with μ(S) = 0, such that lim |/(C(ί))| = ».

<?/ Ul = 1 one can assign a number a->y ivith Oύa-^ -~» so that the conclusion

of Theorem 4 holds.

8. We return to the function Ψ(z) defined by (16) in §6. Since, as pointed

out there, it is possible to draw a spiral S, with μ(S) =0, on which Ψ(z) tends

to infinity, the function Ψ(z) satisfies the conditions of Theorem δ, so that we

can associate with every r, | r | = 1, a number ax. We shall show that in this

case there exists a fixed number αr0, with O<αro< -5-> such that for every r,

\τ\ -=1, CR(Ψ, Jτ,p) consists of at most one point whenever i9>α0.

We shall show, in fact, that every Stolz angle Δx^ for β > a0 contains

infinitely many zeros of Ψ(z), which suffices to establish the assertion. It is

clear, first of all, that every arc of the circle \z \ = 1 > of length greater

than ~~ί l ) must contain at least one zero of Ψ(z). Let us select any

11' W. Gross. Uber die Singularitaten analytischer Fiinktionen, Monatshefte fur Mathe-
matik und Physik, vol. 29 (1918), pp. 3-47; particularly, p. 26.
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point r on \z\ = 1 and the Stolz angle J~t?, where 0 < β < -̂ - If Ck denotes the

length of the chord which subtends the smaller arc ok intercepted by Δ~,? on

the circle | z | = Γ - -9 an elementary calculation shows that Mmink Ck) =

2 tan β. Hence, for k sufficiently large, the arc an will be greater than

—— ( l — ) provided that β>aQ, where aQ is determined by the equation

tan α:0 = π.

Since, at the same time, Ψ(z) can be chosen so that its maximum modulus

tends to infinity arbitrarily slowly, we have

THEOREM 6. There exists a function Ψ(z), holomorphic in \z\ < 1, tvhose

maximum modulus tends to infinity as slowly as one wishes, with the property

that there exists a fixed number aQ, with 0<aQ< -—, such that CR(Ψ, Jτ,p)

consists of at most one point for every τ, | r | = 1, and every β>ao.

Since we have 0<αr 0 < -%- in the preceding theorem, we see that no point

of the circumference \z I = 1 can be a Fatou point. Applying now a theorem

due to A. Plessner,12) we infer that at almost all points τ of \z\ = 1, the cluster

set1 3 ) of Ψ(z) at r within any Stolz angle with vertex τ is the whole Riemann

sphere. In view of Theorem 4, this implies in turn that for almost all points

r of \z\ = 1, a- = 0, whence we infer

THEOREM 7. There exists a function1^ Ψ(z), holomorphic in U | < 1 , tvhose

maximum modulus tends to infinity as slowly as one wishesy with the property

that at almost all points τ of \z\ = 1, CR(Ψ, J τ . J consists of at most one point

for every Stolz angle JT,α .
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12) A. Plessner. ΪJber das Verhalten analytischer Funktionen am Rande ihres Definitions-
bereiches, Journal fiir die reine und angewandte Mathematik, vol. 158 (1927), pp. 219-227.

1 3 ) For the definition of this term, see e.g. Collingwood and Cartwright, loc. cit., p.
139.

14) It is to be noted that both Theorems 6 and 7 are valid for the same function.
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