GROUPS ADMITTING ONLY FINITELY MANY NILPOTENT RING STRUCTURES

BY
SHALOM FEIGELSTOCK

Abstract

The abelian groups which are the additive groups of only finitely many non-isomorphic (associative) nilpotent rings are studied. Progress is made toward a complete classification of these groups. In the torsion free case, the actual number of non-isomorphic nilpotent rings these groups support is obtained.

i. All groups considered here are abelian with addition the group operation. The additive group of a ring R will be denoted by R^{+}. Terminology and notation follow [5].

Szele [7] initiated the study of groups allowing only finitely many non-isomorphic ring structures, Fuchs [4] made much progress towards classifying them, and Borho [2] concluded the classification of all such groups which are not nil. The object of this paper is to study the groups allowing only finitely many non-isomorphic nilpotent ring structures. For G a torsion free group, the number of non-isomorphic rings R satisfying $R^{+}=G$ will be obtained.
ii. Definition. A group G is (associative) nilpotent nil if the only (associative) nilpotent ring R satisfying $R^{+}=G$ is the zeroring, i.e., $R^{2}=0$. If G admits only finitely many non-isomorphic (associative) nilpotent ring structures, then G is said to be (associative) quasi-nilpotent nil.

Theorem 1. Let G be a torsion group. The following are equivalent:

1) G is nilpotent nil.
2) G is associative nilpotent nil.
3) $G=D \oplus \oplus_{p \in P} Z(p)$ with D a divisible torsion group, P a set of distinct primes, and $D_{p}=0$ for all $p \in P$.

Proof. Clearly 1) $\Rightarrow 2$).
2) \Rightarrow 3): Suppose that G is associative nilpotent nil. $G=D \oplus H$, with D the maximal divisible subgroup of G. Suppose that $H_{p} \neq 0$, and $H_{p} \neq Z(p)$ for some prime p. Then H, and hence G, has a direct summand $K=Z\left(p^{k}\right), 1<k<\infty$, or $K=Z(p) \oplus Z(p)$, [5, Corollaries 27.2 and 27.3]. It is readily seen that there exists an associative nilpotent

Received by the editors October 1, 1984, and, in revised form, March 1, 1985.
AMS Subject Classification (1980): 20K99.
(C) Canadian Mathematical Society 1984.
ring S with $S^{+}=K$, and $S^{2} \neq 0$. Since a direct summand of an associative nilpotent nil group must clearly be associative nilpotent nil, we have a contradiction. Therefore $H=\oplus_{p \in P} Z(p), P$ a set of distinct primes. Suppose that $D_{p} \neq 0$ for some $p \in P$. Then G has a direct summand $K \oplus L$ with $K=Z(p)$, and $L=Z\left(p^{\infty}\right)$. Let a be a generator for K, and let $b \in L$ with $|b|=p$. The products $a^{2}=b, a x=x a=x y=0$ for all $x, y \in L$ induce an associative nilpotent ring structure S satisfying $S^{+}=K \oplus L$, and $S^{2} \neq 0$, a contradiction.

The implication 3) $\Rightarrow 1$) is easily obtained.
The argument used above in proving the implication 2) $\Rightarrow 3$) yields:

Corollary 1.1. Let G be an associative nilpotent nil group. Then the torsion part of $G, G_{t}=D \oplus \oplus_{p \in P} Z(p)$, with D a divisible torsion group, P a set of distinct primes, and $D_{p}=0$ for all $p \in P$.

Theorem 2. Let G be a torsion group. The following are equivalent:

1) G is quasi-nilpotent nil.
2) G is associative quasi-nilpotent nil.
3) $G=\mathrm{D} \oplus F \oplus_{p \in P} Z(p)$, with D a divisible torsion group, F a finite group, P a set of distinct primes, $D_{p}=0$ for all but finitely many $p \in P$, and $F_{p}=0$ for all $p \in P$.

Proof. Clearly 1) $\Rightarrow 2$).
2) \Rightarrow 3): Suppose that G is associative quasi-nilpotent nil. $G=D \oplus H$, with D the maximal divisible subgroup of G. Suppose there exists an infinite set of primes P^{\prime} such that $H_{p} \neq 0$, and $H_{p} \neq Z(p)$ for all $p \in P^{\prime}$. Then for $p \in P^{\prime}$ there exists an associative nilpotent ring S_{p} with $S_{p}^{+}=H_{p}$, and $S_{p}^{2} \neq 0$. Now $G=H_{p} \oplus K(p)$. Let $R(p)$ be the ring direct sum $R(p)=S_{p} \oplus T(p)$, with $T(p)^{+}=K(p)$ and $T(p)^{2}=0$. Clearly $R(p)$ is an associative nilpotent ring, $R(p)^{+}=G$, and for distinct primes $p, q \in P^{\prime}$, $R(p) \neq R(q)$, a contradiction. It therefore suffices to show that H_{p} is finite for every prime p. Suppose there exists a prime p such that H_{p} is an infinite group. Repeated applications of [5, Corollaries 27.2 and 27.3] yield that for every positive integer n, H_{p}, and hence G, has a direct summand $H_{p}\left(n^{\prime}\right)=\oplus_{i=1}^{n} Z\left(p^{k_{i}}\right)$, with k_{i} a positive integer, $1 \leq i \leq n$, and $k_{1} \leq k_{2} \leq \ldots \leq k_{n}$. Let a_{i} be a generator for $Z\left(p^{k_{i}}\right), i=1, \ldots, n$. The products

$$
a_{i} \circ a_{j}= \begin{cases}a_{\min (i, j)-1} & \text { for } i \neq 1 \text { and } j \neq 1 \\ 0 & \text { for } i=1 \text { or } j=1\end{cases}
$$

induce an associative nilpotent ring structure $S(n)$ with $S(n)^{+}=H_{p}(n)$. Now $G=H_{p}(n) \oplus K(n)$. Let $T(n)$ be the zeroring with $T(n)^{+}=K(n)$. Then the ring direct sum $R(n)=S(n) \oplus T(n)$ is associative, nilpotent, and $R(n)^{+}=G$. It is readily seen that for distinct positive integers $n, m, R(n) \neq R(m)$, a contradiction.

Let p be a prime for which $D_{p} \neq 0$, and $H_{p} \neq 0$. Then $G=Z\left(p^{\infty}\right) \oplus Z\left(p^{n}\right) \oplus K$, with $Z\left(p^{\infty}\right)$ a direct summand of D, and $Z\left(p^{n}\right)$ a direct summand of H. Let a be a generator of $Z\left(p^{n}\right)$, and let $b \in Z\left(p^{\infty}\right)$ satisfying $|b|=p^{n}$. For $x_{i}=c_{i}+k_{i} a+y_{i}$ with $c_{i} \in Z\left(p^{\infty}\right), y_{i} \in K$, and k_{i} an integer, $i=1,2$, define $x_{1} \cdot x_{2}=k_{1} k_{2} b$. These products induce an associative nilpotent ring structure $R(p)$ on G. For distinct primes p, q, $R(p) \neq R(q)$. Therefore $D_{p}=0$ for all but finitely many primes p for which $H_{p} \neq 0$. We now have that $G=D \oplus F^{\prime} \oplus \oplus_{p \in P^{\prime}} Z(p)$, with F^{\prime} a finite group, P^{\prime} a set of distinct primes, and $D_{p}=0$ for all but finitely many $p \in P^{\prime}$. Let $\left\{p_{1}, \ldots, p_{k}\right\}$ be the set of primes $p \in P^{\prime}$ for which $F_{p}^{\prime} \neq 0$. Put $F=F^{\prime} \oplus \oplus_{i=1}^{k} Z\left(p_{i}\right)$, and let $P=$ $P^{\prime}-\left\{p_{1}, \ldots, p_{k}\right\}$. Then $G=D \oplus F \oplus \oplus_{p \in P} Z(p)$ with $F_{p}=0$ for all $p \in P$.
3) $\Rightarrow 1$): Let $G=D \oplus F \oplus \oplus_{p \in P} Z(p)$, with D a divisible torsion group, F a finite group, P a set of distinct primes, and $D_{p}=0$ for all but finitely many $p \in P$. It may be assumed that $F_{p}=0$ for all $p \in P$. The group of ring multiplications on G, Mult G, is isomorphic to Hom $(G \otimes G, G)$ [5, Theorem 118.1], and [3, 1.2.1]. Let $\left\{p_{1}, \ldots, p_{n}\right\}$ be the set of all primes in P such that $D_{p_{i}} \neq 0, i=1, \ldots, n$. It follows from [5, Theorem 431.1 and vol. 1, p. 255(D)] that Mult $G \simeq \operatorname{Hom}(F \otimes F, D) \oplus$ $\left.\left.\oplus_{i=1}^{n} \operatorname{Hom} Z\left(p_{i}\right), D\right) \oplus \operatorname{Hom}(F \otimes F, F) \oplus \Pi_{p \in P} \operatorname{Hom} Z(p) \otimes Z(p), Z(p)\right)$. Clearly $\left.\operatorname{Hom}(F \otimes F, D), \oplus_{i=1}^{n} \operatorname{Hom} Z\left(p_{i}\right), D\right)$ and $\operatorname{Hom}(F \otimes F, F)$ are finite groups. A multiplication on G corresponding to a nonzero homomorphism $Z(p) \otimes Z(p) \rightarrow Z(p)$ induces a field structure on a direct summand $Z(p)$ of G. Therefore G is quasi-nilpotent nil.

Counting the number of non-isomorphic (associative) ring structures which can be defined on an (associative) quasi-nilpotent nil torsion group is a difficult problem. An asymptotic expression for the number of associative nilpotent rings of order p^{n}, p a prime, may be found in [6, Corollary 5.2.12].

As was the case in Theorem 1, the argument used to prove the implication 2) $\Rightarrow 3$) remains true for G an arbitrary associative quasi-nilpotent nil group. Hence:

Corollary 2.1. Let G be an associative quasi-nilpotent nil group. Then $G_{t}=D \oplus$ $F \oplus \oplus_{p \in P} Z(p)$, with D a divisible torsion group, F a finite group, P a set of distinct primes, $D_{p}=0$ for all but finitely many $p \in P$, and $F_{p}=0$ for all $p \in P$.

Corollary 2.2. Let G be an associative quasi-nilpotent nil group with $G_{t}=D \oplus$ $F \oplus \oplus_{p \in P} Z(p)$ as in Corollary 2.1. Then for all but finitely many $p \in P, G=H(p)$ $\oplus Z(p)$ with $H(p)$ a p-divisible subgroup of G.

Proof. Since $G_{p}=Z(p)$ for all but finitely many $p \in P$, there exists a subgroup $H(p)$ of G such that $G=H(p) \oplus Z(p)$ for all but finitely many $p \in P,[5$, Theorem 27.5] (in fact it is not difficult to show that $Z(p)$ is a direct summand of G for all $p \in P$). Suppose that $H(p)$ is not p-divisible. Then the canonical homomorphism $H(p) \rightarrow H(p) / p H(p)$ followed by a projection yield an epimorphism $\varphi: H(p) \rightarrow(a)$, where (a) is a cyclic group of order p generated by a. The product $a \cdot a=a$ induces a field structure on (a). Let b generate the direct summand $Z(p)$ of G, and let $\psi:(a) \rightarrow(b)$ be the epimorphism induced by the map $a \rightarrow b$. Every element in G is
of the form $x=h+n b$ with $h \in H(p)$, and n an integer. Let $x_{i}=h_{i}+n_{i} b, i=$ 1,2 , be elements in G written in this form. Then the products $x_{1} x_{2}=\psi\left[\varphi\left(h_{1}\right) \varphi\left(h_{2}\right)\right]$, with the product in the square brackets being the field multiplication on (a), yield an associative nilpotent ring $R(p)$ with $R(p)^{+}=G$, and $\left(R(p)^{2}\right)^{+}=Z(p)$. Therefore $H(p)$ is p-divisible for all but finitely many $p \in P$.

Example 2.3. A group admitting only finitely many non-isomorphic (associative) ring structures, decomposes into the direct sum of a torsion group, and a torsion free group both satisfying the same property, [3, Theorem 2.2.7].

This is not the case for an (associative) quasi-nilpotent nil group G. Although by Corollary 2.1, G_{t} is (associative) quasi-nilpotent nil, G / G_{t} may not be, and G need not split into the direct sum of a torsion and torsion free group. Let P be an infinite set of distinct primes. It is well known that $G=\Pi_{p \in P} Z(p)$ does not split into the direct sum of a torsion and torsion free group. $G / G_{t} \simeq \oplus_{c} Q^{+}$, with Q the field of rationals, and c the powers of the continuum, is clearly not associative quasi-nilpotent nil. Let R be a nilpotent ring with $R^{+}=G$. Since $G_{t}=\oplus_{p \in P} Z(p)$ is nilpotent nil, $G_{t}^{2}=0$. Let $a \in G_{t}, a \neq 0, x \in R$, with $|a|=n$. Since G / G_{t} is divisible, there exist $y \in R$, and $b \in G_{t}$ such that $x=n y+b$. Hence $x a=n y a=0$. Similarly $a x=0$, and so G_{t} annihilates R. For $z \in G$, let z_{p} denote the p-component of z for every $p \in P$. Let $x, y \in R$. As above there exist $x_{1} \in G$, and $a \in G_{t}$ such that $x=p x_{1}+a$. Therefore $x y=p x_{1} y$, and so $(x y)_{p}=0$ for all $p \in P$, i.e., $R^{2}=0$, and G is nilpotent nil.

Lemma 3. Let G be an (associative) quasi-nilpotent nil group, and let R be an (associative) nilpotent ring with $R^{+}=G$. Then $\left(R^{2}\right)^{+}=E \oplus F$ with E a divisible group, and F a finite group.

Proof. Let R be an (associative) nilpotent ring with $R^{+}=G$. For every positive integer n, the products $a x_{n} b=n(a b)$ for all $a, b \in G$, with products on the righthand side of the equality being multiplication in R, induce an (associative) nilpotent ring structure $R(n)$ on G. Since G is (associative) quasi-nilpotent nil, there exist integers m_{1}, \ldots, m_{k} such that for every positive integer n, there exists $1 \leq i \leq k$ for which $R(n) \simeq R\left(m_{i}\right)$. Put $m=\prod_{i=1}^{k} m_{i}$. Then $m\left(R^{2}\right)^{+}$is divisible. Hence $\left(R^{2}\right)^{+}=E \oplus B$ with E divisible, and $m B=0$. Since $B \leqslant G_{t}=D \oplus F \oplus \oplus_{p \in P} Z(p)$, with decomposition of G_{t} as in Corollary 2.1, it suffices to show that $B^{\prime}=\pi_{D}(B)$ is finite, where π_{D} is the natural projection of G_{t} onto D. Let C be a direct summand of B^{\prime}, and let π_{C} be a projection of B^{\prime} onto C. Let $x, y \in R$. Then $x \cdot y=e+b$ with $e \in E, b \in B$. Define $x *_{c} y=\pi_{c} \cdot \pi_{D}(b)$. These products induce a ring structure R_{C} on G. Let $x, y, z \in G$. Since $x *_{c} y \in D$, there exists $d \in D$ such that $x *_{c} y=m d$. Hence $\left(x *_{c} y\right) *_{c} z=$ $m\left(d *_{c} z\right)=0$.Similarly, $x *_{c}\left(y *_{c} z\right)=0$. Therefore $R_{C}^{3}=0$, and so R_{C} is an associative nilpotent ring with $\left(R_{C}^{2}\right)^{+}=C$. Since G is (associative) quasi-nilpotent nil, B^{\prime} is a bounded group possessing only finitely many pairwise non-isomorphic direct summands. This clearly implies that B^{\prime} is finite.

Corollary 3.1. A reduced torsion free group is (associative) quasi-nilpotent nil if and only if it is (associative) nilpotent nil.

If G is a quasi-nilpotent nil, then an argument similar to that used in proving Lemma 3 shows that $\left(R^{2}\right)^{+}$has only finitely many pairwise non-isomorphic direct summands. This together with Lemma 3 yields:

Corollary 3.2. Let G be a quasi-nilpotent group, and let R be a nilpotent ring with $R^{+}=G$. Then $\left(R^{2}\right)^{+}=\oplus_{\text {finite }} Q \oplus \oplus_{p \in P} \oplus_{\alpha_{p}} Z\left(p^{\infty}\right) \oplus F$, with P a finite set of primes, α_{p} a finite cardinal for each $p \in P$, and F a finite group.

Theorem 4. Let G be a torsion free (associative) quasi-nilpotent nil group. Then either G is a reduced (associative) nilpotent nil group, or the rank of $G, r(G) \leq 2$. Conversely, every non-reduced torsion free group of rank ≤ 2 is associative quasinilpotent nil.

Proof. Let G be a torsion free (associative) quasi-nilpotent nil group. By Corollary 3.1 it may be assumed that G is not reduced, i.e., $G \simeq Q^{+} \oplus H$. Suppose that $r(H)>1$. Then choose $b_{0} \in Q, b_{0} \neq 0$, and independent elements $b_{1}, b_{2} \in H$. Let $A=\left(\alpha_{i j}\right), 1 \leq i, j \leq 2$ be a 2×2 matrix with components in Q. Since $Q^{+} \otimes$ $G \simeq Q b_{0} \oplus Q b_{1} \oplus Q b_{2} \oplus K$, after identifying elements with their isomorphic images, every element of $Q^{+} \otimes G$ can be uniquely written in the form $r_{0} b_{0}+r_{1} b_{1}+$ $r_{2} b_{2}+c$ with $r_{0}, r_{1}, r_{2} \in Q$, and $c \in K$. Let $x=r_{0} b_{0}+r_{1} b_{1}+r_{2} b_{2}+c$, and $y=r_{0}^{\prime} b_{0}+r_{1}^{\prime} b_{1}+r_{2}^{\prime} b_{2}+c^{\prime}$ be elements in $Q^{+} \otimes G$ written in the above form. The products $x y=\sum_{i, j=1}^{2} r_{i} r_{j}^{\prime} \alpha_{i j} b_{0}$ induce an associative nilpotent Q-algebra structure on $Q^{+} \otimes G$. Identifying elements $g \in G$ with $1 \otimes g \in Q^{+} \otimes G$, and restricting the above multiplication to G, yields an associative nilpotent ring R_{A} with $R_{A}^{+}=G$. Let $A=\left(\alpha_{i j}\right)$, $B=\left(\beta_{i j}\right)$ be two nonzero 2×2 matrices over Q, and let $\varphi: R_{A} \rightarrow R_{B}$ be an isomorphism. Since φ extends to an algebra isomorphism $\varphi: Q \otimes R_{A} \rightarrow Q \otimes R_{B}$, $\varphi\left(b_{i}\right)=\Sigma_{k=0}^{2} p_{i k} b_{k}$, with $p_{i k} \in Q$ for $i, k=0,1,2$. Choose $i, j \in\{1,2\}$ such that $\alpha_{i j}$ $\neq 0$. Then $\varphi\left(b_{1 i} b_{j}\right)=\alpha_{i j} \varphi\left(b_{0}\right)=\Sigma_{k=0}^{2} \alpha_{i j} p_{0 k} b_{k}$. However $\varphi\left(b_{i}\right) \varphi\left(b_{j}\right)=\left(\Sigma_{k=1}^{2} \Sigma_{\ell=1}^{2}\right.$ $\left.p_{i k} p_{j \ell} \beta_{k \ell}\right) b_{0}$. Hence $p_{0 k}=0$ for $k=1,2$, and $p_{00} \alpha_{i j}=\sum_{k=1}^{2} \Sigma_{\ell=1}^{2} p_{i k} p_{j \ell} \beta_{k \ell}$. The same argument used in proving [3, Theorem 2.2.4] shows that there are infinitely many nonisomorphic rings R_{A}, A a 2×2 matrix over Q.

Conversely, let G be a non-reduced group with $r(G) \leq 2$. If $r(G)=1$, then the condition " G non-reduced" is superfluous, because a ring with rank one torsion free additive group is either isomorphic to a subring of Q, or is the zeroring, [5, Theorem 121.1]. Therefore every rank one torsion free group is nilpotent nil. If $r(G)=2$, then either $(\mathrm{A}) G \simeq Q^{+} \oplus H$ with H a reduced rank one torsion free group, or $(\mathrm{B}) G \simeq Q^{+}$ $\oplus Q^{+}$. Let R be an associative nilpotent ring with $R^{+}=G$. If G is of form (A), then by Lemma $3, R^{2} \subseteq Q^{+}$. Choose $a_{1} \in Q^{+}, a_{2} \in H, a_{i} \neq 0, i=1,2$. Then $a_{i} a_{j}=r_{i j} a_{1}$, with $r_{i j} \in Q, i, j=1,2$. For every positive integer $n, a_{1}^{n}=r_{11}^{n-1} a_{1}, a_{1} a_{2}^{n}=r_{12}^{n} a_{1}$, and $a_{2} \cdot a_{1}^{n}=r_{21}^{n} a_{1}$. Therefore $r_{11}=r_{12}=r_{21}=0$, and so every associative nilpotent ring with additive group G is obtained by defining

$$
a_{i} a_{j}=\left\{\begin{array}{l}
r a_{1} \text { for } i=j=2 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

with r an arbitrary rational number. Let R_{r} be the ring obtained in this manner. Let $r \neq 0, s \neq 0$ be rational numbers. Every element in R_{r} is of the form $r_{1} a_{1}+r_{2} a_{2}$ with $r_{1} r_{2} \in Q$. The map $\varphi: R_{r} \rightarrow R_{s} \operatorname{via} \varphi\left(r_{1} a_{1}+r_{2} a_{2}\right)=r_{1} r^{-1} s a_{1}+r_{2} a_{2}$ is an isomorphism.

Suppose that $G \simeq Q^{+} \oplus Q^{+}$, and let R be an associative nilpotent ring with $R^{+}=G$, and $R^{2} \neq 0$. Then there exists $a \in R$ such that a and a^{2} are independent in G, [1, Lemmas 1 and 2], and $a^{3}=0,[3$, Theorem 3.1.3]. If S is any associative nilpotent ring, with $S^{+}=G, S^{2} \neq Q$, and $b \in S$ such that b abd b^{2} are independent in G, then the map $\varphi: R \rightarrow S$ via $\varphi\left(r a+s a^{2}\right)=r b+s b^{2}$ for all $r, s \in Q$, is an isomorphism.

The following result is implicit in the proof of Theorem 4:
Corollary 4.1. Let G be a torsion free group. If $r(G)=1$ then G is the additive group of only one nilpotent ring. If $r(G)=2$, and G is not reduced then G is the additive group of precisely two non-isomorphic associative nilpotent rings. If $r(G)>2$, and G is not reduced, then G is the additive group of infinitely many non-isomorphic associative nilpotent rings. If G is a reduced group, then either G is the additive group of only one (associative) nilpotent ring, or of infinitely many non-isomorphic (associative) nilpotent rings.

The following results shed some light on the mixed case.
Lemma 5. Let G be an associative quasi-nilpotent nil group, with $G_{t}=D \oplus F \oplus$ $\oplus_{p \in R} Z(p)$ as in Corollary 2.1. Then for every prime p, there exists a subgroup $K(p)$ of G such that $G=G_{p} \oplus K(p)$, p-divisible for all primes p for which $D_{p} \neq 0$, and for all but finitely many primes $p \in P$.

Proof. G_{p} is a direct summand of G for every prime $p \in P$ by Corollary 2.1 and [5, Theorems 21.2 and 27.5], i.e., $G=G_{p} \oplus K(p)$. For all primes p for which $F_{p}=0, K(p) \simeq H(p) \oplus D_{p}$, with $H(p)$ the group in the proof of Corollary 2.2. Since D_{p} is p-divisible for all primes p, and $H(p)$ is p-divisible for all but finitely many primes $p \in P$, it follows that $K(p)$ is p-divisible for all but finitely many primes $p \in P$. Let p be a prime for which $D_{p} \neq 0$. Then $K=Z\left(p^{\infty}\right) \oplus K(p)$ is a direct summand of G, and so K is associative quasi-nilpotent nil. If $K(p)$ is not p-divisible, then for every positive integer n, there exists an epimorphism $\varphi:\left[K(p) / P^{n} K(p)\right] \otimes\left[K(p) / p^{n} K(p)\right]$ $\rightarrow Z\left(p^{n}\right)$, where $Z\left(p^{n}\right)$ is a subgroup of $Z\left(p^{\infty}\right)$. Let $d_{i} \in Z\left(p^{\infty}\right), a_{i} \in K(p), i=1,2$. The products $\left(d_{1}+a_{1}\right)\left(d_{2}+a_{2}\right)=\varphi\left(a_{1} \otimes a_{2}\right)$ induce an associative nilpotent ring structure R_{n} on K. Since $\left(R_{n}^{2}\right)=Z\left(p^{n}\right), R_{n} \neq R_{m}$ for positive integers $n \neq m$, a contradiction.

Corollary 5.1. Let G and G_{t} be as in Lemma 5. Then G / G_{t} is p-divisible for every prime p such that $D_{p} \neq 0$, and for all but finitely many $p \in P$. If G / G_{t} is p-divisible for only finitely many primes p, then G_{t} is a direct summand of G.

Proof. Since G / G_{t} is a homomorphic image of $G / G_{p} \simeq K(p)$, it follows from Lemma 5, that G / G_{t} is p-divisible for all primes p such that $D_{p} \neq 0$, and for all but finitely many $p \in P$. Therefore if G / G_{t} is p-divisible for only finitely many primes p, then P is a finite set of primes and so G_{t} is the direct sum of a bounded (in fact finite) group and a divisible group. By [5, Theorem 100.1], G_{t} is a direct summand of G.

Corollary 5.2. Let G be an associative quasi-nilpotent nil group, and let H be a torsion free direct summand of G. If $r(H)>1$, then G_{t} is reduced.

Proof. Suppose that $r(H)>1$, and that G_{t} is not reduced. Then $K=Z\left(p^{\infty}\right) \oplus K(p)$ is a direct summand of G for some prime p, with $K(p)$ as in Lemma 5 . Now K is associative quasi-nilpotent nil, and $K(p)$ is p-divisible by Lemma 5. Let $Z\left(p^{\infty}\right)=$ $\cup_{i=1}^{\infty}\left(a_{i}\right)$ with $\left(a_{i}\right)$ a cyclic group of order p^{i} generated by $a_{i}, i=1,2, \ldots$. The p-adic integers are the endomorphisms of $Z\left(p^{\infty}\right)$, [5, vol. 1, p. 181, ex 3]. Let u, v be independent elements in H. Every element $x \in K$ is of the form $x=d+r u+$ $s v+w$ with $d \in Z\left(p^{\infty}\right) ; r, s \in Q, w \in K(p)$. Let $x_{i}=d_{i}+r_{i} u+s_{i} v+w_{i}$, $i=1,2$, be elements in K written in the above form, and let π be a p-adic integer. The products $x_{1} x_{2}=\left(r_{1} r_{2}+s_{1} s_{2} \pi\right) a_{1}$ induce an associative nilpotent ring structure R on K. The same argument used in proving [3, Theorem 2.2.7] shows that there are infinitely many non-isomorphic rings R_{π}, a contradiction.

Corollary 5.3. Let G be an associative quasi-nilpotent nil group, and let D be the maximal divisible subgroup of G. Then either (A) D is a torsion group, (B) $D \simeq$ $Q^{+} \oplus Q^{+}$, or $(C) D \simeq D_{t} \oplus Q^{+}$, and $D_{p}=0$ for all but finitely many primes p.

Proof. D must have form (A), (B) or $D \simeq D_{t} \oplus Q^{+}$by Corollary 5.2, and [5, Theorem 23.1]. Suppose that $D \simeq D_{t} \oplus Q^{+}, p$ is a prime for which $D_{p} \neq 0$, and $\varphi: Q \otimes Q \rightarrow Z\left(p^{\infty}\right)$ is a nonzero homomorphism into a direct summand $Z\left(p^{\infty}\right)$ of D. Let $d_{i} \in D, a_{i} \in Q, i=1,2$. The products $\left(d_{1}+a_{1}\right)\left(d_{2}+a_{2}\right)=\varphi\left(a_{1} \otimes a_{2}\right)$ induce an associative nilpotent ring structure R_{p} on D. Since $R_{p} \neq R_{q}$ for primes $p \neq q$, $D_{p}=0$ for all but finitely many primes p.

References

[^0]
[^0]: 1. R. A. Beaumont and R. J. Wisner, Rings with additive group which is a torsion free group of rank two, Acta Sci. Math. Szeged, 20 (1959), pp. 105-116.
 2. W. Borho, Uber die abelschen Gruppen auf denen sich nur endliche viele wesentlich verschiedene Ringe definieren lassen, Abh. Math. Sem. Univ. Hamburg, 37 (1972), pp. 98-107.
 3. S. Feigelstock, Additive Groups of Rings, Research Notes in Mathematics, 83, (Pitman, BostonLondon, 1983).
 4. L. Fuchs, On quasi-nil groups, Acta Sci. Math. Szeged, 18 (1957), pp. 33-43.
 5. L. Fuchs, Infinite Abelian Groups, 1 (1971); 2 (1973), (Academic Press, New York-London).
 6. R. L. Kruse and D. T. Price, Nilpotent Rings, (Gordon and Breach, New York-London, 1969).
 7. T. Szele, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Z., 54 (1951), pp. 168-180.
