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Abstract

In this paper, we use an ordinary differential equation approach to study the existence of
similarity solutions for the equation u, = A(ua) + 9u~fi in R" x (0, oo), where a > 0,
y3 > 0, 8 6 {0, 1), and n > 1. This includes the slow diffusion equation when a > 1, the
standard heat equation when a = 1, and the fast diffusion equation when 0 < a < 1. We
prove that there are forward self-similar solutions for this equation with initial data of the
form c\x\p, where p - 2/(ct + P) if 0 = 1; p > 0 and 2 + (1 - a)p > 0 if 6 = 0, for
some positive constant c.

1. Introduction

We are interested in the Cauchy problem for the quasilinear parabolic equation,

u, = A(ua) + 9u-fi in R" x (0, oo), (1.1)

where a > 0, ft > 0, 0 € R, n > 1, and A is the standard Laplacian operator, that is,

92 d2

This equation arises in many applications, such as the heat flow in materials with a
temperature dependent conductivity with or without reaction. This includes the slow
diffusion equation when a > 1, the standard heat equation when a — 1, and the
fast diffusion equation when 0 < a < 1. For earlier work on this type of equation,
we refer to the nice survey paper of Kalashnikov [8]. This equation (for a = 1 and
9 = 1) is related to a parabolic system arising in film development (see for example [ 1 ]
and [10]).
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In this paper we use an ordinary differential equation approach to find some special
solutions, namely similarity solutions, of (1.1). We want to find the forward self-
similar solution of the form

, t ) = t p S w ( \ x \ / t s ) , \ x \ = y / x 2 + --- + x 2 (1.2)

for (1.1). Here the similarity exponents are necessarily given by

2
p = for 9 T^O; p > 0 and 2 + (1 -a)p > 0 for 9 = 0. (1.3a)

(<* + /?)

a 3 b >

Notice that for 9 = 0 the exponent p can be arbitrary if a < 1, and p < 2/(a — 1)
if a > 1.

Let r = \x\/ts. Then w e C2([0, oo)) and satisfies

(u/T + - -(wa)' + Srw'-pSw + 9w-p = 0, r > 0, (1.4a)

u/(0) = 0, w>0. (1.4b)

We remark that this reduction can be obtained if we consider only the radial
solutions of (1.1) by using the operator

32 n - 1 d

da2 a da

and a solution ansatz as

In this way, we have simplified the problem from n +1 dimensions to 1 +1 dimensions.
Since (1.1) for 9 e R \ {0} can be transformed to an equation in the same form

as (1.1) with 9 e {—1, 1} via the simple transformations t -*• t/\9\, x -> x/y/\9\, we
shall henceforth assume that 9 e {-1, 0, 1}.

First, we consider the case 9 e {0, 1}.
Lety = l/(/3 + 1) and *: = 0if6> = 0; = (0 + l)y if 9 = 1.
Note that for p = 0 (and 9 = 0), any positive constant is a solution of (1.4), and

K is the only constant solution of (1.4) for any p > 0. We shall hence assume that
p > 0 and p satisfies (1.3a). We say that w is a solution of (1.4) if to e C2([0, oo)),
w ^ K, and u> satisfies (1.4).

The main result of this paper is as follows.
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THEOREM A. A solution of (1.4) exists if and only if w(0) > K. Moreover, for
w(0) > K, limr^o0[r~pw(r)] exists and is positive.

Let w(r) be a solution of (1.4) with w(0) > K. For any x ^ 0, we rewrite (1.2) as

(1.5)

Letting / —> 0 in (1.5), it follows from Theorem A that there exists a positive constant
c such that

u(x,0) = c\x\", x#0. (1.6)

On the other hand, we have u (0, 0) = 0. This shows that there is a solution of the
Cauchy problem for (1.1) with initial data c\x\p. Notice that for w = K the function
u(x, t) = KtY is a solution of (1.1) with 6 = 1 and with initial data u0 = 0.

It is well known that in many cases the large time behaviors or the finite time
singular behaviors (for example, blowup and quenching behaviors) of solutions for
the evolution equation are described by its similarity solutions. See, for example,
[2, 3] for blowup behavior and [4] for quenching behavior. Also, the large time
behaviors of solutions of the Cauchy problem of (1.1) with 6 = 1 are described by
the above similarity solutions (see [6] and references therein).

Let u be the solution of (1.1) with 6 = 1 and with the initial data uo(x) > 0, where
uo(x) is continuous such that

lim \x\~pu0(x) = c
|JT|->OO

for some nonnegative constant c and p > 0 with 2 + (1 — a)p > 0. Then we have
the following theorem.

THEOREM B. Let S be given by (1.3b). If c > 0 and p > 2/(a + fi), then

\rpSu(x, t) - w(\x\/t5)\ - • 0 as t -+ oo

uniformly on sets {(x, t) : \x\ < Cts)for any C > 0, where w(r) is a solution of (1.4)
with 6 = lifp = 2/(a + 0); and 6 = 0 if p > 2/(a + 0) such that

lim[r-pw(r)] = c. (1.7)
r-»oo

If c = 0 and p = 2/(or + fi), then we have

\t~vu{x, t) - K\ - • 0 as t -*• oo

uniformly on sets {(x, t) \ \x\ < Cts}for any C > 0.
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Notice that the case p < 2/(a + /J) is contained in the second case of Theorem B.
Theorem B is proved in [9] for a > 1 and in [6] for 0 < a < 1. In these papers,
they first obtained the existence and uniqueness for the global solutions of the Cauchy
problem for (1.1) with 6 = 1 for general initial data. Hence by the scaling invariance
property of the problem we obtain the existence of a solution of (1.4) and (1.7).

In [5], the author studied the existence of similarity solutions for (1.1) with a = 1
and 0 = 1, that is, the case for the standard heat equation with source by a totally
different approach. In that paper, Theorem A was proved for a = 1 using an ordinary
differential equation approach.

Extending the method used in [5] (see also the references cited there), we shall
show that a similar argument can also be applied to the cases of the fast and slow
diffusion equations. The method we used is fairly elementary and it provides an easy
way to obtain the asymptotic behaviors at infinity of solutions for certain ordinary
differential equations.

We remark that the existence of self-similar solutions for the equation

M, = A(ua) - up in R" x (0, oo)

for 1 < fi < a and n > 1 was studied by McLeod, Peletier, and Vazquez in [11] using
the shooting-matching method. For other interesting types of similarity solutions
using a totally different approach, we refer to the paper [7] and the references therein.

This paper is organized as follows. In Section 2, we give some preliminary results
for solutions of (1.4) and introduce some notation. We then derive the asymptotic
behaviors of solutions of (1.4) at infinity and give the proof of Theorem A for the fast
diffusion case in Section 3 and for the slow diffusion case in Section 4.

Finally, for the case 0 = — 1 and 0 < a < 1, the above method can also be applied
with some minor modifications. This is done in Section 5.

2. Preliminaries

In this section we shall give some preliminary results for (1.4) for any a > 0 and
introduce some notation.

Let 4>{r) = w{r)a and let g(s) = p8sl/a - 6>s^/o. Then w satisfies (1.4) if and
only if <p satisfies

l ] t Sit = 0, r > 0 , (2.1a)

<£'(0) = 0, 0 > O . (2.1b)

From now on we shall study the problem (2.1) instead of (1.4). For a given <p(j), we
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introduce

= exp{/" ̂ (2.2)

a(r) = r"-lp(r). (2.3)

Note that a (r) is defined in terms of <f> (s) for s e [0, r] for a ^ 1. Also, we have

p'ir) = -rW-'p(r), (2.4)
a

] (2.5)
r a

Let ir = (j)'. Then (2.1a) can be rewritten as the following system:

cf>' = *, (2.6a)

(2.6b)

Solving (2.1) with 0(0) = 77" > 0 is equivalent to solving the integral system:

= r,a+ f i,(s)ds, (2.7a)
Jo

o(s)g(4>(s))ds. (2.7b)
o

Since ^(5) > 0 for s > *•" and g(s) < 0 for s < /t", it follows from (2.7b) that
(j>'(r) > 0, Vr > 0 if J7 > «•; and (f>'(r) < 0, Vr > 0 if r] < K. Hence every solution
of (2.1) with 9 = 0 must be strictly increasing. Using (2.7), the local existence and
uniqueness of the solution of (2.1) with 0(0) = rf follows from the standard fixed
point argument. Note that

We shall denote the solution of (2.1) with </>(0) = rf by (f>(r; t)). For global existence
of solutions of (2.1), we have:

PROPOSITION 2.1. The local solution </>(r; rj) of (2.1) with r) € (0, K) cannot be ex-
tended to all r > 0. If a global solution <p(r; rj) for (2.1) with r\ > K exists, then
4>(r; r)) -> oo.
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PROOF. Suppose that the solution 0(r; rj) of (2.1) with j] > 0 and r) ^ K exists for
all r > 0. Since </> is necessarily strictly monotone, the limit / = linv^oo 0(r) exists.
Suppose that / < oo. Then

/ <p'(r)dr = / - 0 ( O )
Jo

which is bounded. Since 0' has a constant sign, there is a sequence rm -> oo such
that 0'(rm) -> 0 as /n -»• oo. Dividing (2.1a) by r and integrating from 1 to rm > 1,
we obtain that the integral

I dr

is bounded as m —>• oo, since the integrals

r/
J\ rm

dr,

f ^—-^-4>'(r)dr and 8 [ "((p(r)l/a)'dr
j \ r2 y,

are uniformly bounded for all m. On the other hand, we have

-dr ;

which tends to infinity as m —» oo, a contradiction. Therefore the proposition follows.

From now on we shall assume that t] > K and we shall let 0(r) = (j>(r;rfi.
Using (2.3), (2.1a) can be rewritten as

dj<t>')' = a gift,). (2.8)

For T) > K , we have the following global existence result.

PROPOSITION 2.2. The local solution <j>{r) of (2.1) can be continued to all r > 0.

PROOF. Suppose that <j>(r) exists in [0, e]. Fix r0 e (0, e). From (2.8) it follows that

Recall <p'(r) > 0 for all r > 0.
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Suppose first that n > 2. For r > r0, we compute

Jr0

(2.10)

Hence from (2.10) it follows that

C2, r > r0, (2.11)

for some positive constants C\, C2 and C3 depending only on a, p, and r0. Hence 0 (r)
and 4>'(r) are bounded for /- finite. Notice that <p(r) > rf for all r > 0. Therefore, the
result follows by the standard continuation theorem.

For the case n = 1, o{r) = p(r). By writing p(s) = s'1 [sp(s)] in (2.9) and noting
that l/s < 1//-Q for /- > r0, we have

0'(O < </>Vo) + p a — . (2.12)

Then the result follows by the same argument as above and the proof is completed.

Let z(r) = <f>'(r)/(t>(r). Then z satisfies the equation

z' + 1"^—- + -r<P(ry/a-l~\ 2 = p8<pl/a-1 - G<p-l-p/a - z2. (2.13)

It follows from (2.13) that

z(r) = CT(T-)-1 f a(s)[p80(s)l/a-1 - 9(f>^r'-pla - z(s)2]ds. (2.14)

Jo

3. The fast diffusion equation

In this section we shall study the asymptotic behaviors of solutions <f>(r) of (2.1) at
r = oo for 0 < a < 1. First, we have the following lemma. For convenience, we let
d = S/a.

LEMMA 3.1. We have lim(._oo[r0'(r)] = oo.
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PROOF. Since 0 < a < 1 and </>(r) -> oo as r -»• oo, a ( r ) -> oo exponentially as
r —> cc. Using (2.9) with r0 = 0 and applying l'Hopital's rule, we compute

[/>'(/-)] = lim
/-•oo r-*oo

- l i m

= 00,

since 0(r) l~1 / o -> 0 as r -> oo. The lemma is proved.

The following lemma shows that <p(r) can only grow to infinity polynomially.

LEMMA 3.2. We have limr_voo[0'(r)/0(r)] = 0.

PROOF. Recall (2.14). Then we have

0 < ^ < -)-p& [ o(.s)4>(s)1"'-1ds = K(r). (3.1)
4>(r) o(r) Jo

Applying l'Hopital's rule, we compute

= lim
/-•oo (n — l)r~2(p(ry~]'a + d

= 0,

and the lemma follows.

The following lemma gives the degree of the polynomial growth for <j>{r).

LEMMA 3.3. We have
lim — — = pa. (3.2)
r->oo (f)(r)

PROOF. Rewrite (2.14) as

z(r) = CT(r)-1 i
Jo
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where a(s) —> 0 as s —>• oo. Then, using l'Hopital's rule again, we obtain

ton [rz(r)] = tan
( | | _

= l i m

= pa,

since 1 < I/a and $(r) —> oo.

LEMMA 3.4. For a/ry e > 0 f/jere are K = K{€)>0 and R = R(e) > 0 such that

4>(r) > Krpa-\ Vr > /?. (3.3)

PROOF. Given e > 0 it follows from (3.2) that there is a number R > 0 such that

> - ( p a -
r

for all r > R. An integration gives (3.3).

Finally, we state the main result of this section as follows.

THEOREM 3.5. The limit, limr^oo[r~pa0 (/•)], exists and is positive.

PROOF. Take any positive constant A < 2. Using (2.14), we rewrite

rk[rz(r) - pa] = ^ _ . J

-9 f a(s)(p(s)-l-fi/ads - [ <j(s)z(s)2ds ) . (3.4)
Jo Jo )

Applying l'Hdpital's rule to (3.4), we obtain

lim r\rz{r) — pa]
rtoo

f

r
r-too

r-2
= (2 - n)par-2 - 0 0 ( r ) - ' - ^ ' - z(r)2

r^> ( n - k - 2)r~>-2 + dr-Wr)1'—1

_ (2 - n)park~2(l)(ry-i/a - 6>rx0(r)-(1+w/g - z(r)2rk4>(r)l-1/a

~ r^o (n-k-2)r-2<p(ry-^a + d ' '

if the last limit on the right hand side of (3.5) exists.
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We claim that the limit on the right-hand side of (3.5) is zero. For 0 = 1, we
have p = 2/(a + P). Since A < 2 and a < 1, there is an e > 0 such that
X < (pa - e)(l + P)/a. It follows from Lemma 3.4 that

0 < rk(j>(ryll+fi)/a < Crk~ipa~m+P)/a.

Therefore, we obtain l i m ^ ^ rk<p(r)-v+f))/a = 0. Next, writing z(r)2rk<p(ry-l'a =
[rz(r)]2rk-2<p(r)l-l/a and using (3.2), it follows that linwoo[z(/-)V0(O1~l/a] = 0.
Hence the limit on the right-hand side of (3.5) is zero and we conclude that

lim rk[rz(r)- pa] = 0. (3.6)

From (3.6) and by an integration, it follows that there is a positive constant c such
that (f>(r) = crpa[\ + o(r~k)] as r -» oo. Hence the theorem is proved.

Then Theorem A for 0 < a < 1 follows from Propositions 2.1 and 2.2, and
Theorem 3.5.

4. The slow diffusion equation

In this section we shall study the asymptotic behaviors of solutions </> (/•) of (2.1) at
r = oo for a. > 1. We shall distinguish two cases.

First, we deal with the case n > 2. Recall (2.11) that there are positive constants
Ci,C2 and C3 such that

C3. (4.1)

For n = 1, we need a better estimate than (2.12). From (2.9) it follows that </>'(r) <
pSr<j)(ry/a, where the fact that g(<p) and (j>(s) are increasing is used. Then an
integration gives

<t><,r) < [C! + Cjr2]"""-", Vr

for some constants C\ and C2. In fact, for any q > pa we have

\im[r-"4>(r)]=0. (4.2)
r-»oo

Otherwise, we have lim supr_>oJr~
<7(/>(r)] = A > 0. Hence we can find a sequence

[rm] which tends to infinity as m ->• oo such that

4>(rm) > Y%, V/n. (4.3)
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Dividing (2.1a) by r</>(r)l/a and integrating from 1 to rm > 1, we obtain

<P'(r)dr

for all m, where

lm = / d T 7 T \dr-

But, by (4.3) we have

Im = In [rPs4>(rmy<p(l)d] < In [<!>{\)d2dA-dr£-<">],

which tends to —oo as m —> oo, a contradiction. Therefore, (4.2) holds.
We observe from (4.1) and (4.2) that a(r) —*• oo exponentially as r —• oo and that

l imr-20W1"l /" = O, (4.4)
r—KX

In parallel to Lemmas 3.1 and 3.2, we have the following two lemmas whose proofs
are the same as the proofs of Lemmas 3.1 and 3.2.

LEMMA 4.1. We have limr^oo[r^'C)] = oo

LEMMA 4.2. We have limr-+oo[<t>'(r)/<p(r)] = 0.

In order to obtain the degree of the polynomial growth for <f>(r), we need some
extra work. We claim that

lim </>'(/")</> (r)-
(a+m2a) = 0. (4.5)

r->oo

Let q = max(por, 1) for n > 2 and q e (pa, 2a/(a — 1)) for n = 1. From (3.1),
(4.1) and (4.2), we have

0 < <t>\r)<f>(r) (a+1>><-2a> < c— / cr(s)(f)(s) '" ds = CK(r),

for some positive constant C. Using (4.4) and l 'Hdpi ta l ' s rule, we compute

r->-oo r-*oo[q(l — a)/(2a)+n—
r-q0-a)/(2a)-

= lim —— —— ——
r^-oo [q{\ — a)/(2a) + n — l ] r

= 0,
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since q < 2a/(a — 1). Hence (4.5) follows.
We are now ready to prove the following lemma.

LEMMA 4.3. We have

lim — 4 - = pa. (4.6)
<->oo

PROOF. Rewrite (2.14) as

z{r) =CT(/T1 [ a(s)a(s)ds,
Jo

where

a(s) =

which tends to zero as s —> oo. Then, using l'Hopital's rule again, we obtain

bm[rz(r)] = Inn

ri'S) („ - 2)r-2<^(r)1-1/" + d
= pa,

by using (4.4) and (4.5). The proof is complete.

The proof of the following lemma is the same as that of Lemma 3.4 and we omit it.

LEMMA 4.4. For any e > 0, there are K = K(e) > 0 and R = /?(e) > 0 such that

<f>{r) > Krpa~\ Vr > R. (4.7)

Finally, we state the main result of this section as follows.

THEOREM 4.5. The limit, limr_>oo[r~
pcr0(r)], exists and is positive.

PROOF. Take any positive constant X < 2(1 + P)/{a + £). Note that k < 2. Using
Lemma 4.4 and (4.6), the theorem can be proved in the same way as Theorem 3.5.

Theorem A for a > 1 follows from Propositions 2.1 and 2.2 and Theorem 4.5.
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5. Final remarks

The above method can be applied to (1.1) with 6 = — 1 and 0 < a < 1. More
precisely, we can deduce the following theorem. Recall that p = 2/(a + ft), y =

THEOREM 5.1. A solution of (1.4) exists if and only if w(0) > 0. Moreover, for
w(0) > 0 the limit, \imr^oo[r~pw(r)], exists and is positive.

As before, let g(s) = ysl/a + s~fi/a. Hence every solution of (2.1) must be strictly
increasing and tends to oo as r -» oo. For s > rf, since g(s) < Kysl/a for some
positive constant K, the inequalities (2.10) and (2.12) become

0'(r) < </>'(r0) + Kpa<t>(r)/r, (5.1)

<j>'(r) < cj>'(r0) + Kpa4>(r)/r0, (5.2)

respectively. Hence Proposition 2.2 holds for any rj > 0.
The results of Section 3 remain the same. Therefore, Theorem 5.1 follows easily

in the same way as before.
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