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Linear-stability modelling suggests that all sufficiently large riblets promote maximally
growing spanwise rollers (García-Mayoral & Jiménez 2011 J. Fluid Mech. vol. 678,
317–347), yet direct numerical simulations (DNS) have shown that this is not the case
(Endrikat et al. 2021 J. Fluid Mech. vol. 913, A37) some riblet shapes do not form
spanwise rollers at all. Thus, the drag-reduction breakdown across all riblet shapes cannot
be solely attributed to maximally growing spanwise rollers, prompting a reappraisal of
the modelling. In this paper, comparing DNS data with riblet-resolving linear-stability
predictions shows that the spanwise rollers are actually marginal modes, not maximally
growing instabilities. This riblet-resolved linear analysis also predicts that not all riblet
shapes promote spanwise rollers, in agreement with DNS, and unlike earlier linear-stability
modelling, which relied on a one-dimensional (1-D) mean flow and on an over-simplified
effective wall-admittance boundary condition. These riblet-resolved calculations further
inform how to capture the effect of the riblet shape in a 1D model. Once captured,
predictions with an effective boundary condition match riblet-resolved results, but still do
not indicate what features of the riblet geometry promote the roller instability. Thus, the
wall admittance is measured near the riblet crests, in both the riblet-resolved linear analysis
and DNS, to show that the in-groove dynamics is dominated by a balance between the
overlying pressure and unsteady inertia, and not viscous diffusion, as previously assumed.
This pressure–unsteady-inertia balance sets the linear scaling of the wall admittance with
riblet size, as observed in DNS, and is a key factor in setting the streamwise wavelength
of the spanwise rollers. Furthermore, modelling this pressure–unsteady-inertia balance in
the wall admittance reveals the role of riblet slenderness in promoting spanwise rollers,
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which provides the missing link in previous correlations between the riblet geometry and
the presence or lack of rollers.

Key words: drag reduction, turbulent boundary layers, shear-flow instability

1. Introduction

1.1. Background
Interest in spanwise-coherent Kelvin–Helmholtz-like rollers stems from their formation
over a range of non-smooth surfaces, examples including riblets (García-Mayoral &
Jiménez 2011b; Endrikat et al. 2021a,b), permeable substrates (Jiménez et al. 2001;
Breugem, Boersma & Uittenbogaard 2006; Gómez-de-Segura et al. 2018b; Suga et al.
2018; Gómez-de-Segura & García-Mayoral 2019; Motoki et al. 2022; Habibi Khorasani,
Luhar & Bagheri 2024) and plant canopies (Raupach, Finnigan & Brunei 1996; Finnigan
2000; Nepf et al. 2007; Ghisalberti 2009; Nepf 2012; Sharma & García-Mayoral 2020).
Understanding how and why spanwise rollers form motivates this work, given that
permeable substrates and engineered rough surfaces, which are susceptible to rollers, hold
the potential to reduce drag, enhance heat transfer and suppress noise (García-Mayoral &
Jiménez 2011b; Gómez-de-Segura et al. 2018b; Endrikat et al. 2021a; Kuwata 2022;
Rouhi et al. 2022; Hartog et al. 2024). For these surface textures, spanwise rollers are
generated by a velocity difference across the interface between the fluid region and the
effectively porous fluid–solid region, where this velocity difference feeds perturbation
energy production (Jiménez et al. 2001; García-Mayoral & Jiménez 2011b). The finer
details of the surface texture tend to influence the appearance and intensity of the spanwise
rollers, not only through the mean shear at the interface, but also through the effective
wall-normal permeability of the surface texture (Endrikat et al. 2021a). In addition, the
wall-normal permeability experienced by turbulent structures tends to depend on their
characteristic lengths in the streamwise and spanwise directions (Gómez-de-Segura et al.
2018b; Chavarin et al. 2021; Endrikat et al. 2021a; Hao & García-Mayoral 2025). This
turbulent-scale dependence can then lead to rollers which are either (i) flow structures
which extend no further than the buffer layer (z+ � 50), and which are viscous-scaled
through their localisation about the local maximum of −∂zzU+ (García-Mayoral &
Jiménez 2011b, 2012), where z is the wall-normal height, U the mean streamwise velocity
and where the superscript ()+ denotes normalisation by the friction velocity uτ and
kinematic viscosity ν, or (ii) flow structures which extend the full height of the domain
z � δ, where δ is the domain height (Jiménez et al. 2001; Kuwata 2022; Motoki et al.
2022). Near-wall/buffer-layer rollers are often observed over streamwise-aligned riblets,
permeable substrates (Gómez-de-Segura et al. 2018b; Habibi Khorasani et al. 2024) and
dense filament canopies (Sharma & García-Mayoral 2020), and are the focus of this work,
although with scope limited only to riblets.

For riblets, linear-stability modelling predicts that rollers form only once the effective
wall admittance (the ratio of wall-normal velocity and pressure fluctuations) provided by
the riblets exceeds some threshold. This effective wall admittance can be estimated from
a Stokes-flow problem within the riblet grooves (García-Mayoral & Jiménez 2011b), and
was further shown to be related to the square-root of groove area �+

g for conventional
riblets (García-Mayoral & Jiménez 2011b). For riblets, �+

g has also been shown to reduce
the scatter in the drag-reduction curves measured across different shapes, including the
point of maximum drag reduction at �+

g ≈ 11 (García-Mayoral & Jiménez 2011a,b). This
relationship between linearly unstable spanwise rollers and the effective wall admittance
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of the riblets thereby appeared to both explain the improved collapse of the drag-reduction
curves and identify the point of maximum drag reduction. However, this roller–wall-
admittance relationship was not supported by the direct numerical simulations (DNS)
of Endrikat et al. (2021a), who showed that at matched �+

g , some riblet shapes formed
spanwise-coherent rollers, but others did not. Endrikat et al. (2021a) further showed that
spanwise rollers were not the only contribution to the drag-reduction breakdown for riblets,
as previously thought. Thus, a complete description of the drag breakdown remains an
open question (Modesti et al. 2021; Chan et al. 2023; Viggiano et al. 2024), such that the
optimal riblet size of �+

g ≈ 11 can only be identified empirically.

1.2. Outline
This paper reconciles previous inconsistencies between linear predictions and DNS
observations of spanwise rollers. This is achieved by improving our dynamical
understanding of spanwise rollers based on two hypotheses. First, that the rollers are
actually marginal instabilities. Second, that the emergence of rollers is driven by a balance
between the unsteady term and pressure gradient within the riblet grooves, which depends
on riblet slenderness. This is contrary to the existing assumption that the dynamics within
the groove were dictated by a balance between the pressure gradient and viscous term.
These hypotheses are verified by performing two-dimensional (2-D) riblet-resolved linear-
stability analysis and further supported by new analysis of an existing DNS database
(Endrikat et al. 2021a,b; Wong et al. 2024). A simpler, empirical one-dimensional (1-D)
model is also developed, based on these hypotheses and the 2-D analysis, to rapidly predict
many of the key characteristics of the spanwise rollers. The empirical boundary condition
provides useful insights for riblet sizes up to and slightly beyond their design point (of
maximum drag reduction), although the 1-D model eventually breaks down for larger
riblets (earlier than its 2-D counterpart). The formal homogenisation procedure required to
obtain a more rigorous 1-D boundary condition is, however, shown to be more expensive
than performing the 2-D linear-stability analysis in its stead, such that the 2-D analysis
forms a valuable design tool for a more refined riblet-shape optimisation.

First, § 2 presents further evidence that four of the six riblet shapes tested in Endrikat
et al. (2021a) (see table 1) do not promote strong spanwise rollers, quantified by a near-
zero roller drag penalty. However, a range of instantaneous flow visualisations (Chu &
Karniadakis 1993; Goldstein, Handler & Sirovich 1995; Endrikat et al. 2021a,b; Rouhi
et al. 2022) suggest that weak rollers persist, at least for some of these riblet shapes.
Section 2 thereby establishes a more sensitive gauge of roller intensity across riblet shapes
and sizes, from new analysis of minimal-channel riblet DNS data (Endrikat et al. 2021a;
Modesti et al. 2021; Wong et al. 2024), as generating new DNS data was not required.
Details for almost all cases in the DNS dataset, and riblet geometric parameters, are
tabulated in Wong et al. (2024); details for the remainder of the DNS cases (for the largest
�+

g riblets) can be found in Endrikat et al. (2021a). Overall, this more sensitive measure of
roller intensity, based on the pressure fluctuation 〈p′ p′〉 profiles, enables a more detailed
appraisal of the linear-stability analysis in § 3, even for those riblet shapes which have
roller drag penalties lying within numerical tolerances (Endrikat et al. 2021a).

Section 3 also reconsiders the wall-admittance threshold for spanwise rollers. The DNS
measurements of Endrikat et al. (2021a, figure 13b) showed that crest-measured wall
admittances for riblets are ŵ+/ p̂+ ≈ 0.02 to ≈ 0.03 when rollers begin to appear (�+

g ≈ 10
to 15), where w is the wall-normal velocity, ŵ its Fourier transform, p is the pressure,
and where ŵ+/ p̂+ was integrated across all wavelengths λ+y � 250 and 65 � λ+x � 290.
Note x is the streamwise, y the spanwise and z the wall-normal coordinate. However, at
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Shape:

Blade

tr = 0.2s
k = 0.5s

s
�2

g

k = 0.5sα = 30°

Trapezoid

s

�2
g

tr

α = 30°

| |

|
|

30° Triangle

s

k
�2

g

Groove sizes tested, �+
g 4.9, 7.5, 9.9, 12.8 15.8,

21.1, 24.7, 31.0
5.0, 7.5, 9.7, 11.8 15.0,
20.6, 24.0, 32.9, 41.1

7.5, 9.8, 12.1, 20.4

Roller drag penalty Small, past �+
g � 13 Negligible, all �+

g Appreciable, past �+
g � 10

Shape: α = 60°

| |

|
|

60° Triangle

s

�2
g

k

α = 90°

| |

|
|

90° Triangle

s

�2
g k

k = 0.5s α = 63.43°

Asymmetric triangle

| |

|
|

�2
g

s

Groove sizes tested, �+
g 7.5, 9.7, 11.8, 23.0 5.0, 7.4, 9.6, 12.5, 25.0 5.0, 7.4, 9.6 11.4, 15.6, 20.8

Roller drag penalty Negligible, all �+
g Negligible, all �+

g Negligible, all �+
g

Table 1. Six of the riblet shapes considered in past minimal-channel DNS (Endrikat et al. 2021a; Modesti et al.
2021; Wong et al. 2024), their corresponding geometric parameters (spanwise spacing s, height k, tip-angle α,
base thickness tr , square-root of groove area �g) and the viscous-scaled square-root of groove areas at which
past DNS were conducted. Whether a drag penalty was attributed to spanwise rollers forming over the riblets
(Endrikat et al. 2021a, figure 11b) is also listed for each shape.

�+
g ≈ 10 to 15, the wall admittance of the model boundary condition of García-Mayoral &

Jiménez (2011b) was 5–10 times higher than DNS measurements (Endrikat et al. 2021a),
i.e. ŵ+/ p̂+ ≈ 0.1 to ≈ 0.3, integrated across the same λ+x and λ+y ranges. Indeed, these
ŵ+/ p̂+ � 0.1 model-predicted roller modes shared many of the characteristics of the
maximally growing Kelvin–Helmholtz-like rollers which form in the free-shear-layer limit
(García-Mayoral & Jiménez 2011b, comparing figures 19c and 19e), and notably, had
streamwise wavelengths of λ+x ≈ 60, rather than λ+x ≈ 150 as measured for rollers over
riblets in DNS (García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a). Separately, the
2-D resolvent analysis of Chavarin & Luhar (2020) found spanwise roller modes with high
relative gains at a streamwise wavelength (λ+x ≈ 130) similar to DNS for �+

g ≈ 13 blade
riblets, by essentially assuming zero growth (marginal) modes. Marginal modes are

zero-growth-rate modes for a given �+
g , λ+x combination, where a change in either �+

g or λ+x
results in the growth rate of the mode switching sign (unlike neutral modes, across which
the growth rate does not switch sign), following the definition in Drazin & Reid (2004).
In summary, these results suggest that rollers over riblets are not maximally growing
instabilities. Comparison between riblet-resolved linear-stability predictions and DNS data
in § 3 confirms that rollers over riblets are not maximally growing. Instead, they are
marginally stable structures emerging at lower wall-admittance values, a conclusion which
is further verified by the linear-stability analysis accurately predicting key characteristics
(streamwise wavelengths and wave speeds) of the spanwise rollers.

After further showing that only some riblet shapes promote these marginal rollers,
the question then turns to explaining why. In Endrikat et al. (2021a), the sustenance of
spanwise rollers was well correlated with high momentum absorption near the riblet crests,
and not the effective riblet wall admittance alone. This conclusion is supported in § 4, as
riblet-resolved linear-stability predictions of rollers prove sensitive to some of the details
of the mean-velocity profile within the grooves, where the mean profile encapsulates
the momentum absorption near the crest plane. The effective wall-admittance boundary
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condition is also reconsidered, in an effort to develop an improved dynamical model
to predict roller formation. Previously, the wall admittance was assumed proportional
to riblet size and streamwise scale, as ŵ+/ p̂+ ∝ �+

g
3
λ+x

−2 (García-Mayoral & Jiménez
2011b), where λx is the streamwise wavelength; separately, for permeable substrates, a
streamwise-scale-independent model boundary condition ŵ+/ p̂+ ∝ constant has been
assumed (Jiménez et al. 2001; Motoki et al. 2022). However, § 4 shows that the wall
admittance provided by riblets does not vary as ŵ+/ p̂+ ∝ λ+x −2, as the dominant balance
near the riblet crests is not between viscous diffusion and overlying pressure. Assuming
the overlying pressure is instead balanced by unsteady in-groove inertia near the crests
both explains the trends in the DNS measurements (Endrikat et al. 2021a) and corrects
the streamwise-scale dependence of the wall-admittance model to ŵ+/ p̂+ ∝ λ+x −1.

Section 5 tests this understanding of the improved wall-admittance boundary condition
with 1-D linear-stability analysis. This linear analysis provides reasonable predictions
of the streamwise wavelengths and wave speeds of rollers at their onset, but eventually
suggests large (�+

g � 25) 90◦ triangular and asymmetric triangular riblets
would sustain rollers, unlike the riblet-resolved analysis and DNS. Accurately modelling
not only the wall admittance but also the streamwise slip is required for larger riblets.
Finally, conclusions are provided in § 6.

2. Identifying rollers over riblets from DNS
The aim of this section is to develop a more sensitive measure of the intensity of spanwise
rollers forming over riblets, so as to provide a more detailed comparison between DNS and
linear-stability analysis. Endrikat et al. (2021a) identified strong rollers for blade
and 30◦ triangular riblets by measuring a roller drag penalty 0.1 ��U+

KH � 0.5.
The roller drag penalty �U+

KH is a measure of the change in drag produced by a difference
in Reynolds stresses between smooth and riblet surfaces for large spanwise-wavelength
Fourier modes. This measure was calculated following the procedure in MacDonald et al.
(2016), similar to García-Mayoral & Jiménez (2011b), except (i) integrated in spectral
space across 65 � λ+x � 290, 250 � λ+y �∞ and for 0 � z+ � 100 and (ii) neglecting any
z+ where the λ+x , λ+y integrated Reynolds stresses over the riblet are negative. Weak
rollers, with �U+

KH ≈ 0, were still suggested by visualisations of the instantaneous wall-
shear stress for the remaining riblet shapes. Similar visualisations are provided in figure 1.
Following Endrikat et al. (2021a) and Rouhi et al. (2022), the (instantaneous) presence
of rollers over riblets can be inferred from regions of high negative wall-shear stress or
wall pressure which are approximately spanwise uniform. Strong rollers form over 30◦
triangular riblets, as indicated by spanwise-coherent regions of negative wall-shear
stress and (phase-shifted) spanwise-coherent regions of wall pressure. Weaker rollers are
suggested for blade , 30◦ trapezoidal and 60◦ triangular riblets, with
both reduced spanwise coherence, and fewer rollers overall. Rollers become almost non-
existent for 90◦ triangular and asymmetric triangular riblets, with almost
no negative wall-shear stress events (for this threshold), although the wall pressure may
still indicate the presence of one or two weak rollers. Overall, while an accurate measure
of the drag penalty of these rollers may still be �U+

KH ≈ 0, �U+
KH is sensitive to both the

choice of turbulence origin �+
T and ad hoc cutoffs in spectral space. Thus, an alternative

gauge of roller intensity is sought.
Spectral signatures of the rollers, which could quantify their intensity, are also present

in almost all near-wall measurements of fluctuation products, e.g. û′û′, v̂′v̂′, ŵ′ŵ′,
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Figure 1. Plan view of spanwise rollers via the instantaneous wall-shear stress (black) and the excess
instantaneous wall pressure (grey) for �+

g ≈ 12 riblets of various shapes. The threshold for the wall-shear stress
is τ+ = −0.2, as in Endrikat et al. (2021b), while the threshold for the excess instantaneous wall pressure is
p+ − 〈p+〉xr ,yr = −2; here 〈·〉xr ,yr indicates averaging across all points on the riblet surface.

û′ŵ′, p̂′ p̂′ (García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a,b), where u is the
streamwise velocity, v the spanwise velocity and where the superscript ()′ denotes a
fluctuation. Of these, the spectra of p̂′ p̂′ seem to be the most uniform in the wall-normal
direction (MacDonald et al. 2017), minimising the issue of an ambiguous �+

T . Equally,
flow visualisations have shown p′ maintains spanwise coherence even well below the
interface of a porous substrate (Habibi Khorasani et al. 2024). Thus, the magnitude of the
time- and spanwise-averaged 〈p′ p′〉 profiles are considered figure 2 for each riblet shape,
intrinsically averaged below the riblet crests. From figure 2, it is readily apparent that
rollers are promoted by some riblet shapes, e.g. 30◦ triangular riblets especially (figure 2c),
given the increase in 〈p′ p′〉 relative to its smooth-wall counterpart.

Based on the results of figure 2, the intensity of the spanwise rollers is quantified by
max(〈p′ p′〉+)/max(〈p′

sm p′
sm〉+), taking the maxima across all z+, and where p′

sm is the
pressure fluctuation over a smooth wall. These intensities are collected for each of the
riblet shapes and plotted as a function of �+

g in figure 3(a). If the threshold for sustaining
rollers were at some fixed �+

g , all these intensities would increase in concert, regardless of
riblet shape, say, at �+

g ≈ 11. However, as shown in figure 3(a), the roller intensity increases
for the 30◦ triangular riblets at �+

g ≈ 11, but is delayed slightly for some of the other
riblet geometries, e.g. the blade riblets at �+

g ≈ 13, consistent with the prediction for
similar blade riblets in the 2-D resolvent analysis of Chavarin & Luhar (2020). Equally, the
intensities of rollers varies greatly with riblet shape (figure 3a). The highest intensities are
attained with 30◦ triangular riblets, with max(〈p′ p′〉+)/max(〈p′

sm p′
sm〉+) reaching

≈ 3, followed by blades , 30◦ trapezoidal and 60◦ triangular riblets
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z+ + �T
+ z+ + �T

+ z+ + �T
+

Figure 2. Time- and plane-averaged 〈p′ p′〉+ profiles for riblets (solid coloured) and a smooth wall (dashed
black), having reprocessed the DNS datasets of Endrikat et al. (2021a), Modesti et al. (2021) and Wong
et al. (2024), and intrinsically averaging below the crests. The magnitude of 〈p′ p′〉+ relative to that over a
smooth wall gives an indication of the presence (or lack) of spanwise rollers. The diverging blue-grey-red
colour scheme indicates the riblet size (blue smallest �+

g , red largest), where matched colours between panels
represent approximately matched �+

g riblets.

with increasingly reduced intensities. For blade and 30◦ trapezoidal riblets,
the roller intensities peak at �+

g ≈ 20 to 25. For even larger riblets, �+
g � 40, this measure

of the roller intensity then drops, with max(〈p′ p′〉+)/max(〈p′
sm p′

sm〉+) tending back
toward unity, and hinting at a weakening of the roller mode as the riblet spacing increases.
These minimal-channel DNS results are consistent with the recent experiments of Abu
Rowin et al. (2025), who also showed that rollers weaken for slender triangular riblets at
�+

g � 40.
When rollers form, not only does the intensity of 〈p′ p′〉+ increase (figure 3a), but the

peak pressure of the 2-D cospectra of p̂′ p̂′ also shifts from λ+x ≈ 200 to λ+x ≈ 150. This
was shown for blade riblets in García-Mayoral & Jiménez (2011b) and for 30◦ trian-
gular riblets in Endrikat et al. (2021b). Thus, slices of the 2-D cospectra of p̂′ p̂′ are
shown in Appendix A, figure 10 at z+ + �+

T ≈ 10 for all riblet sizes and shapes for which
the roller intensity was measured in figure 3(a). From these cospectra, the streamwise
wavelengths of the peak pressure are collected in figure 3(b). Between �+

g ≈ 11 to �+
g ≈ 13,

the shift in peak pressure from λ+x ≈ 200 to λ+x ≈ 150 is evident for 30◦ triangular ,
blade and 30◦ trapezoidal riblets, indicating the appearance of spanwise
rollers. However, for the remaining three riblets – 60◦ triangular , 90◦ triangular

and asymmetric triangular riblets – there is no clear shift in wavelength.
Given the slightly higher roller intensities for 60◦ triangular riblets, very weak
rollers may persist for this riblet shape, while 90◦ triangular and asymmetric
triangular riblets are essentially ruled out of having rollers of any relevant
intensity.
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Figure 3. Identifying which riblets have rollers and gauging their intensity through (a) the ratio of the
maximum of the x-y-t averaged pressure fluctuations 〈p′ p′〉+, relative to that over a smooth wall, cf.
figure 2, and (b) the streamwise wavelength of the local maximum in the pressure spectra (integrated across
all λ+y and all z+ + �+

T � 10); see Appendix A for more. Thin solid black lines indicate the equivalent
smooth-wall values, max(〈p′ p′〉+)/max(〈p′

sm p′
sm〉+) = 1 and λ+x ≈ 200, respectively. Although the ratio

max(〈p′ p′〉+)/max(〈p′
sm p′

sm〉+) should be approximately independent of channel size at matched Reτ , where
Reτ is the friction Reynolds number, the magnitude of 〈p′ p′〉 in minimal-channel DNS is about 20 % larger
near the wall than its full channel equivalent; for further discussion, see MacDonald et al. (2017, § 3.2).

3. Riblet-resolved linear-stability analysis
The question of whether spanwise rollers are actually a maximally growing instability
was raised in § 1.2. Rollers were believed to be a maximally growing instability from the
results of linear-stability modelling with an effective wall-admittance boundary condition
(García-Mayoral & Jiménez 2011b), and specifically a boundary condition which was
later shown to incorrectly scale with riblet size (Endrikat et al. 2021a), i.e. ŵ+/ p̂+ ∝ �+

g

and not ∝ �+
g

3 as previously assumed. Thus, to avoid any uncertainties introduced by an
effective wall-admittance boundary condition, the riblets are first resolved directly as a no-
slip, impermeable surface in this section. The results of the riblet-resolved linear-stability
analysis are then compared with DNS to show that rollers are actually near marginally
stable and not maximally growing as previously believed. This linear-stability analysis
then also provides a means of predicting which riblet shapes are likely to promote spanwise
rollers.

3.1. Methods
Linear perturbations in the velocity and pressure are expressed as {u′, p′}(x, y, z, t) =
{û, p̂}(y, z) exp[i(κx x + κy y − ωt)], with streamwise wavenumber κx , spanwise
wavenumber κy and frequency ω; again, z denotes the wall-normal coordinate, and t
time. Focus is placed on perturbations with small spanwise wavenumber κy , i.e. large
spanwise wavelength λy = 2π/κy , as spanwise-coherent rollers typically have λ+y � 120
(García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a), and as suggested by the higher
magnitudes of the pressure cospectra at λ+y � 100 in Appendix A. For simplicity, κy = 0 is
considered henceforth, noting that of the other large wavelength modes tested (λ+y ≈ 125
and λ+y ≈ 250), all had higher decay rates than the spanwise-infinite (κy = 0) modes
(Appendix B).
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The perturbations satisfy the linearised Navier–Stokes equations
[ − iω+ + U+iκ+

x + κ+
x

2 − ∂yy − ∂zz
]
û+ + v̂+∂yU+ + ŵ+∂zU+ = −iκ+

x p̂+, (3.1)[ − iω+ + U+iκ+
x + κ+

x
2 − ∂yy − ∂zz

]
v̂+ = −∂y p̂+, (3.2)[ − iω+ + U+iκ+

x + κ+
x

2 − ∂yy − ∂zz
]
ŵ+ = −∂z p̂+, (3.3)

iκ+
x û+ + ∂y v̂

+ + ∂zŵ
+ = 0, (3.4)

here expressed in viscous units and having linearised about a one-component, two-
dimensional mean flow U (y, z). The mean flow satisfies(

1 + ν+
e

)
∂yyU+ + ∂z

[(
1 + ν+

e

)
∂zU+] = 1/Reτ , (3.5)

where Reτ = uτ δ/ν is the friction Reynolds number based on a domain height δ, and
where the eddy viscosity ν+

e captures the influence of the Reynolds stresses (u′w′) on the
mean flow. Note that eddy viscosity is applied only when obtaining the mean flow (3.5),
i.e. eddy viscosity is not included in (3.1)–(3.3) when solving for the perturbations. Eddy
viscosity is not overly important for accurately predicting spanwise rollers over riblets,
given their near-wall location (Gómez-de-Segura 2019), and including eddy viscosity in
(3.1)–(3.3) leads to only a small reduction in growth rate (figure 4d, comparing red solid
and red dashed curves).

Boundary conditions in the spanwise direction are periodic (with period corresponding
to riblet spacing s+), and along the riblet wall are no-slip, on both the mean flow (U+ = 0)
and the perturbations (û = 0). Symmetry conditions at the channel centreline (∂zU+ = 0,
∂z û+ = ∂z v̂

+ = w+ = 0) are placed at z+ = Reτ − �+
T , taking the riblet crests at z+ = 0,

to ensure a consistent domain height for both riblet and smooth-wall calculations,
and where �+

T is the turbulence origin. How �+
T is selected for each riblet size and

shape is discussed in Appendix C. A Cess profile for the eddy viscosity ν+
e,S(z

+) =
0.5(1 + (κReτ (1 − z′2)(1 + 2z′2)(1 − exp(−(1 − |z′|)Reτ /A))/3)2)1/2 − 0.5 is assumed
(Reynolds & Tiederman 1967), where z′ = (z+ − Reτ )/Reτ . The constants selected for the
Cess profile (von Kármán constant κ = 0.46 and van Driest constant A = 30.7) minimise
the sum-squared difference relative to the full-channel smooth-wall DNS mean profile of
Endrikat et al. (2021a) at Reτ = 395, following Moarref & Jovanović (2012), cf. κ = 0.45,
A = 29.4 at Reτ = 547. The eddy-viscosity profile for riblets νe,R is unchanged, except for
a wall-normal shift by �+

T , i.e. ν+
e,R(z+) = ν+

e,S(z
+ + �+

T ), and where ν+
e,R(z+) = 0 for all

z+ �−�+
T .

Solutions to the eigenvalue problem (3.1)–(3.4) and the mean flow (3.5) are obtained
in FreeFem++ (Hecht 2012), having defined the riblet shape and grid sizes in Gmsh
(Geuzaine & Remacle 2009). The meshes are unstructured, to maintain grid sizes Δ+

y ≈
Δ+

z ≈ 0.1 near the riblets, and Δ+
y ≈ Δ+

z ≈ 2 in the far-field. Based on the typical spacing
of a roller-promoting riblet (s+ ≈ 20), these grid sizes correspond to ≈ 200 points
per riblet spacing near the crests, and, e.g. ≈ 40 points across the tips of the blade

riblets. The finite elements are triangular, second-order in velocity and first-order
in pressure. The eigenvalue subroutine uses a shifted-inverse method, with a typical
initial guess of a wave speed of c+ ≈ 4 (and zero growth rate), and with the nearest
four eigenvalues requested to a relative tolerance of 10−12. The grid-resolution error
was also assessed for trapezoidal riblets in the range 70 � λ+x � 400 (figure 4d,
comparing red solid and black dashed curves) as relevant to spanwise rollers. The errors
in the growth rate were below 0.1 % relative to halved grid sizes, �+

y ≈ �+
z ≈ 0.05
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Figure 4. Predictions of the riblet-resolved linear-stability analysis for riblets with sizes �+
g � 30. Positive

growth rates indicate growing rollers, which are not achieved by all riblet shapes. (a) Growth rate of the
spanwise-infinite mode, at the local maximum in growth rate (only if present). (b) Corresponding streamwise
wavelength, with the shaded region indicating typical values for rollers from DNS (García-Mayoral & Jiménez
2011b; Endrikat et al. 2021a). (c) Corresponding wave speed, with the shaded region again indicating typical
values for rollers from DNS. In (a–c), solid lines use DNS-interpolated �+

T values for the Cess profile, and
dashed lines use a priori viscous vortex model �+

T values. See Appendix C for more. (d) Assessment of the
sensitivity of the growth rate predictions to the numerical resolution and to modelling assumptions. Only the
choice of the turbulence origin �+

T proves greatly important.

near the riblets and Δ+
y ≈ Δ+

z ≈ 1 in the far-field; for reference, this required
≈ 1.14 M elements, compared with ≈ 0.28 M elements for the baseline resolution used
henceforth.

3.2. Predicting which riblets have rollers
As shown in figure 4, linear-stability analysis in which the detailed riblet shapes are
resolved, and not modelled with an effective boundary condition, yields predictions
consistent with DNS (García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a,b). This
includes predicted wavelengths near λ+x ≈ 150 (figure 4b), predicted wave speeds near
c+ ≈ 6 (figure 4c), and the roller mode first appearing at �+

g ≈ 10 upon increasing �+
g

(figure 4a), all consistent with DNS of rollers over riblets.
The 2-D linear-stability analysis also correctly predicts that rollers should be most

intense for 30◦ triangular riblets, as their roller growth rates are the highest across
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the riblet shapes tested (figure 4a). In addition, rollers would be next-most intense for
blade , 30◦ trapezoidal and then 60◦ triangular riblets, respectively,
consistent with the DNS ordering of intensities (figure 3a). However, the 2-D linear-
stability analysis differs slightly from the DNS in terms of when rollers first become
marginal. For example, from DNS measurements (figure 3), rollers are expected at �+

g ≈ 13
for both blade and 30◦ trapezoidal riblets, especially from the shift in
wavelength of the peak pressure in figure 3(b). However, marginal rollers are predicted in
the linear-stability analysis past �+

g ≈ 14 and �+
g ≈ 17, respectively, for these riblet shapes.

Only for 30◦ triangular riblets are rollers predicted at �+
g ≈ 11, consistent with when

rollers are expected from DNS (figure 3).
While the linear-stability predictions in figure 4 (solid lines) overall agree with DNS

observations, the stability results themselves still implicitly depend on the DNS through
the DNS-interpolated model for the eddy viscosity origin, �+

T (discussed in Appendix C).
Thus, additional linear-stability predictions are provided in figure 4 based on a priori
�+

T values (dashed lines). The a priori �+
T values are taken from the viscous vortex

model of Wong et al. (2024) and are accurate only up to �+
g ≈ 10, with the error in

the extrapolation for larger �+
g shown in Appendix C. The now completely a priori

2-D linear-stability predictions (dashed lines) overall remain consistent with the DNS
observations of spanwise rollers over riblets. The a priori predictions correctly identify
which riblets promote rollers and which do not, and successfully sort riblet geometries
by roller intensity. However, the a priori predictions do tend to somewhat overpredict
growth rates, as the shear layer is up to ≈ 4 viscous units thicker with the extrapolated
a priori �+

T values than with the DNS-interpolated �+
T values. There is also some degree

of sensitivity in the roller wave speed, and sometimes also roller wavelength, with small
changes in �+

T (1–2 viscous units). Overall, further work is required to improve predictions
of �+

T for larger riblets. Nevertheless, these results demonstrate that useful a priori linear-
stability predictions can still be made for other riblet geometries (without further model
improvements), for riblets up to and slightly past their design point of maximum drag
reduction (�+

g ≈ 10), and without running any DNS. This does not alter the main message
though, i.e. that an accounting of the shift in turbulence �+

T is necessary to correctly predict
the occurrence of rollers (figure 4d, comparing solid and dotted lines). Notably, taking
�+

T = 0 (crest-origin) regardless of riblet size and shape would result in all riblet shapes
tested promoting spanwise rollers for all �+

g past the onset of the instability (not shown).
In reality, for large riblets, the turbulent flow descends into the riblet grooves (i.e. �+

T > 0),
leading to an increased lack of mean shear and causing the rollers to decay at larger �+

g .
The results in figure 4(a) also provide a means to predict the intensity of rollers over

these and similarly shaped riblets. For example, weak rollers were suggested by flow-
reversal within the grooves of �+

g ≈ 19, α ≈ 53◦ tip-angle triangular riblets, from the
DNS of Chu & Karniadakis (1993, figure 30). Equally, weak rollers would be predicted
in the linear-stability analysis, as the similarly sized α ≈ 60◦ tip-angle triangular
riblets have near-marginal rollers according to figure 4(a), and as more slender riblets
tend to increase the likelihood of rollers (comparing green through purple through yellow
curves, in order of decreasing α, or increasing slenderness).

Furthermore, the 2-D linear-stability analysis also predicts that not all riblets promote
rollers, unlike the 1-D analysis of García-Mayoral & Jiménez (2011b). Figure 4(a) shows
that rollers would almost never form for 90◦ triangular and asymmetric triangular

riblets, in agreement with the lack of rollers observed for those riblet shapes in
figures 1–3, and in agreement with DNS (Endrikat et al. 2021a,b). Note that the maximum
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growth rate for a given riblet size is plotted only in figure 4(a) when a local maximum
in growth rate is present, such that results are not plotted past �+

g ≈ 24 for 90◦ triangular
riblets.

These 2-D linear-stability results further demonstrate that spanwise rollers are not
a maximally growing instability, as the growth rates remain near-zero (marginal) in
figure 4(a) for riblets with sizes 10 � �+

g � 20. Note that the growth rates from the 2-D
linear-stability analysis are Im(ω+)� 0.04, across a relatively wide range of �+

g , and that
these growth rates are significantly smaller than those measured for maximally growing
rollers, Im(ω+) ≈ 0.2 (García-Mayoral & Jiménez 2011b). That rollers are marginal
modes thereby explains the agreement between the current linear-stability predictions and
those of the resolvent analysis of blade riblets in Chavarin & Luhar (2020); additional
comparisons between linear-stability and resolvent analysis are provided in Appendix D.
Equally, that rollers are marginal explains why García-Mayoral & Jiménez (2011b), who
assumed maximally growing rollers, underpredicted wavelengths of λ+x ≈ 60 for spanwise
rollers. As shown in figure 4(b), marginal rollers have wavelengths 100 � λ+x � 200,
consistent with DNS. This realisation further motivates the reconsideration of a 1-D
linear-stability model in § 5.

The 2-D linear-stability analysis also suggests rollers weaken and eventually vanish
for all riblet shapes at larger �+

g (only computed up to �+
g ≈ 30 in the linear analysis).

However, some discrepancies between the linear-stability analysis and the DNS are again
observed. For example, the 2-D analysis predicts that rollers would decay by �+

g ≈ 25
for 30◦ trapezoidal riblets, whereas from the DNS analysis, weak rollers appear
to persist until �+

g ≈ 40, with max(〈p′ p′〉+)/max(〈p′
sm p′

sm〉+) remaining slightly above
unity in figure 3(a), although slowly decreasing with increasing �+

g . As an essentially
inviscid instability (Jiménez et al. 2001; Drazin & Reid 2004; García-Mayoral & Jiménez
2011b), the roller mode is very sensitive to the magnitude of ∂zzU near the crests, which
sets the size and intensity of the shear layer. With increasing riblet size, turbulence
descends further within the riblet grooves, so �+

T increases and ∂zzU reduces. Perturbation
energy production via iκ+

x ŵ+∂zzU+ thereby falls with increasing �+
g , and so, based on

the 2-D linear model with �+
T -shifted Cess, it is only �+

g � 30 riblets that sustain marginal
rollers. Thus, the weakening of the roller mode can be explained within the simplified
framework of the linear-stability analysis. Note that rollers weaken at larger �+

g in spite
of the increases to the wall admittance with riblet size, recalling that ŵ+/ p̂+ scales
approximately linearly with �+

g (Endrikat et al. 2021a, figure 13b). In addition, the validity
of the linear analysis (and this explanation) is supported by its predictions remaining
generally consistent with both DNS (Endrikat et al. 2021a) at the same Reτ and recent
experiments (Abu Rowin et al. 2025) at much higher Reτ . Note that there is no immediate
reason why the model predictions (and explanation) should be invalidated at higher Reτ ,
given the insensitivity of the near-wall mean-velocity curvature to Reτ , as discussed in
García-Mayoral & Jiménez (2012).

Linear predictions are not provided in figure 4 for �+
g > 30, as the Cess approximation

of the mean flow is an increasingly poor representation of the DNS mean flows for
increasingly large riblets, and as the roller dynamics may become increasingly nonlinear.
However, riblets are typically manufactured to ensure �+

g ≈ 10 at their design point, as
assumed in, for example, Mele et al. (2020) and Mele, Saetta & Tognaccini (2023), such
that the eventual breakdown of the Cess approximation at larger �+

g barely impacts the
usefulness of the 2-D predictions for riblet design.

Further improvements to the mean-flow approximation are not considered here, although
the importance of various modelling choices is briefly considered for not-too-large riblets
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(�+
g ≈ 15) in figure 4(d). As shown, the constants employed in the Cess eddy-viscosity

profile, the inclusion of eddy viscosity when solving for the perturbations, and the
numerical resolution, all do not greatly alter the growth rates predicted for the roller
instability. The only modelling choice which proves relevant is the choice of turbulence
origin �+

T . Slight differences in the location of the turbulence origin (DNS-fitted or DNS-
matched) provide commensurately small differences in the predicted growth rate, and so
do not compromise growth predictions. Note that the �+

T values here are based on quadratic
fits to DNS data and remain within ≈ ±30 % of DNS-matched values of �+

T , where the
DNS-matched values satisfy �U+ = −(�+

U − �+
T ) at each DNS data point (discussed

further in Appendix C). Further evidence that the fitted �+
T values are satisfactory is

provided in Appendix E, figures 15 and 16. Predictions from riblet-resolved 2-D mean
flows (with smooth-wall Cess eddy-viscosity profiles shifted by fitted-�+

T ) are shown to
be consistent with predictions from DNS 2-D mean flows (Appendix E), for all riblet
geometries tested. However, an unrealistic estimate for the turbulence origin, e.g. assuming
the turbulence origin is at the riblet crests (�+

T = 0), noticeably alters the predicted growth
rate, to the extent that growing or decaying rollers may be misidentified (figure 4d).
Thus, care is warranted for very large riblets, when either selecting the virtual origin,
or otherwise obtaining an estimate of the mean flow.

3.3. Further evidence that the spanwise rollers are a marginal instability
To further demonstrate that the rollers in DNS are a marginal instability, the wall
admittances measured in the 2-D linear-stability analysis are compared with the wall
admittances measured in DNS for Fourier modes representative of spanwise rollers (λ+y →
∞), for blade and trapezoidal riblets, up to �+

g ≈ 20. These wall-admittance
measurements are performed only to further support the finding that rollers are marginal
modes, rather than as a separate means of identifying spanwise rollers, as used previously
(Endrikat et al. 2021a).

The wall admittance ŵ+/ p̂+ is measured in the 2-D linear-stability analysis by
superficially spanwise averaging ŵ+ and intrinsically spanwise averaging p̂+ at z+ =
−�+

U , and calculating the resulting amplitude and phase of ŵ+/ p̂+ as a function of
λ+x . For the corresponding DNS measurements, the same process is applied for each
instantaneous snapshot, of which there are ≈ 150 to 700 snapshots depending on the
case in question. From these instantaneous measurements of ŵ+/ p̂+, probability density
functions of the amplitude and phase are constructed, the former with 30 logarithmically
spaced bins placed between amplitudes 10−3 and 1, and the latter with 30 linearly spaced
bins between −π and π (then translated by 2π and converted to degrees when plotted),
following Endrikat et al. (2021b). To account for the logarithmically spaced bins, the
probability densities for the amplitude of ŵ+/ p̂+ are premultiplied by the bin centres.
Finally, note that zeroing within the roughness has not previously been observed to corrupt
spectral measurements for spanwise wavelengths larger than the roughness (riblet) spacing
(Sharma & García-Mayoral 2020).

As shown in figure 5, the wall-admittance amplitudes |ŵ+/ p̂+| and phases ∠(ŵ+/ p̂+)

predicted by the 2-D linear-stability analysis are in reasonable agreement with DNS
measurements, for riblets with �+

g � 15 and at streamwise wavelengths 100 � λ+x � 300.
Specifically, when growing rollers are measured in the 2-D linear-stability analysis, as
indicated by the cyan portions of the solid lines in figure 5, the wall-admittance amplitudes
|ŵ+/ p̂+| and phases ∠(ŵ+/ p̂+) are near the medians of the DNS probability density
functions (ridges of the coloured contours). Thus, the spanwise rollers in the DNS
resemble near-marginal modes for these blade and 30◦ trapezoidal riblets
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Figure 5. Comparing the wall admittance measured in the DNS with that predicted by the 2-D linear-stability
analysis (measured at z+ = −�+

U , zeroing ŵ+ and p̂+ within the riblets). Coloured contours are probability
density functions from the DNS for spanwise modes with wavelengths λ+y → ∞. Solid lines are 2-D linear-
stability analysis (κ+

y = 0 mode; black, decaying; cyan, growing). Dot-dashed black lines are from the 1-D
model, (4.2).
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with �+
g � 15 and across 100 � λ+x � 300. For smaller riblets (�+

g � 13) and at smaller
wavelengths λ+x � 100, the linear-stability predictions and DNS results differ, although
rollers are rarely, if ever, present in these ranges in the DNS (García-Mayoral & Jiménez
2011b; Endrikat et al. 2021a).

Finally, figure 5 shows that the wall-admittance amplitudes |ŵ+/ p̂+| measured at the
riblet-shape-dependent mean origin z+ = −�+

U are still typically order 0.1 for roller-
promoting riblets. These mean-origin admittance measurements have similar magnitudes
to the crest-admittance measurements of Endrikat et al. (2021a, figure 12), and remain
orders of magnitude below the wall admittances required for riblets to emulate a free-shear
layer, as previously assumed (García-Mayoral & Jiménez 2011b). Thus, riblets appear
unable to support a maximally growing Kelvin–Helmholtz mode, and at best, support
its marginal precursor. However, realising that rollers are marginal is not alone sufficient
for the 1-D linear-stability model of García-Mayoral & Jiménez (2011b) to then correctly
predict rollers, or a lack thereof, for a given riblet shape. Accurate predictions for rollers
also require improved approximations of both the effective wall-admittance boundary
condition and the mean-velocity profile, as considered in § 4.

4. Towards a 1-D linear-stability model: understanding the flow dynamics within the
riblet groove

Having shown that spanwise rollers can be well predicted with 2-D linear-stability analysis
(§ 3), the question then becomes whether it is necessary to resolve the details of the riblet
shapes, e.g. is an effective boundary condition adequate? Various approaches to obtain
effective boundary conditions for riblets, or other rough or permeable surfaces, have been
proposed (Luchini, Manzo & Pozzi 1991; García-Mayoral & Jiménez 2011b; Luchini 2013;
Lācis & Bagheri 2017; Gómez-de-Segura et al. 2018a; Bottaro 2019; Bottaro & Naqvi
2020; Lācis et al. 2020; Naqvi & Bottaro 2021; Habibi Khorasani et al. 2022). These
effective boundary conditions typically relate the velocity components to their gradients
(or the pressure) along some plane, e.g. at the riblet crests. For example, the effective
boundary conditions relevant to spanwise-infinite modes over riblets could be expressed as
û+ = Ĉuu∂z û+ + Ĉup p̂+ and ŵ+ = Ĉwu∂z û+ + Ĉwp p̂+, here expressed in Fourier space,
as in Gómez-de-Segura et al. (2018a), Gómez-de-Segura & García-Mayoral (2020) and
Hao & García-Mayoral (2025). The challenge is then to obtain the coefficients Ĉuu , Ĉup,
Ĉwu and Ĉwp, which in this case depend not only on the riblet size and shape, but also on
λ+x , Re(ω+) and Im(ω+). Accurately obtaining these coefficients often relies on texture-
resolved calculations in a representative volume element (Bottaro 2019), such as in the
2-D linear-stability analysis in § 3. Moreover, these coefficients provide little perspective
with which to explain why only some riblets promote rollers, as it becomes difficult to
inspect the relationships between the coefficients, the riblet shapes and the growth of the
roller instability. However, given that the 2-D linear-stability analysis has already been
performed (i.e. the ω+ of interest at which Ĉuu , Ĉup, Ĉwu and Ĉwp should be evaluated are
already known, from § 3), an assessment of the accuracy of effective boundary conditions
can be quickly made, as shown in figure 6. Even with perfect information (i.e. taking from
the riblet-resolved 2-D-analysis measurements of the spanwise-averaged mean flow and
spanwise-averaged perturbations) the use of a 1-D effective boundary condition placed at
the riblet crests z+ = 0 yields predictions with some error (comparing square markers to
solid line). This error almost entirely vanishes once the 1-D effective boundary condition
is placed ≈ 6 viscous units above the riblet crests (circle markers), indicating that both
spanwise variations in the mean flow and spanwise variations in the perturbations, which
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Figure 6. Testing effective boundary conditions for riblets, here, for �+
g ≈ 12 trapezoidal riblets. (a) Growth

rates. (b) Wave speeds. Solid lines are from the 2-D linear-stability analysis, identical to figures 8(g) and 8( j),
respectively. Symbols are from 1-D linear-stability analysis, with more general wall-admittance boundary con-
ditions of û+ = Ĉuu∂z û+ + Ĉup p̂+ and ŵ+ = Ĉwu∂z û+ + Ĉwp p̂+, where Ĉuu , Ĉup , Ĉwu and Ĉwp were calcu-
lated for each λ+x based on the growth rates and wave speeds of the leading eigenvalues from the 2-D analysis.

lead to cross-terms upon spanwise averaging, are relevant near the riblet crests (z+ � 6).
These spanwise variations in the riblet-resolved analysis must be captured, at least in an
aggregate sense, for the 1-D analysis to be able to replicate the 2-D results. The importance
of spanwise variations in the mean is further considered in § 4.2.

As calculating the coefficients Ĉuu , Ĉup, Ĉwu and Ĉwp for an effective boundary
condition is no more informative than 2-D linear-stability analysis, the choice is instead
made to develop a model boundary condition for the 1-D analysis in § 4.1. As shown in
García-Mayoral & Jiménez (2011b), the relationship between ŵ+ and p̂+ dictated the
intensity of the roller instability, while Hao & García-Mayoral (2025) further highlighted
the importance of the overlying pressure fluctuations in driving wall-normal transpiration.
Thus, obtaining a model for the Ĉwp coefficient in particular is pursued. Furthermore,
from the results presented in figure 5, such a boundary condition should relate the
wall-normal velocity and pressure ŵ+/ p̂+ as a function of streamwise wavelength. For
example, if ŵ+/ p̂+ varies as a decreasing function of λ+x , this physically represents
coherent structures with large streamwise length scales struggling to penetrate the in-
groove flow, and thereby experiencing a low effective wall admittance, while structures
with small streamwise lengths scales experience higher wall admittances as they easily
enter the riblet grooves. Such scale-dependent wall admittances have been proposed
to model a range of other permeable and compliant surfaces (Brooke Benjamin 1960;
Landahl 1962; Carpenter & Garrad 1986; Gómez-de-Segura et al. 2018b; Gómez-de-
Segura 2019; Gómez-de-Segura & García-Mayoral 2020; Hao & García-Mayoral 2025),
although scale-independent wall admittances have also been considered (Jiménez et al.
2001; Bottaro 2019; Motoki et al. 2022). Section 4.1 is thereby devoted to developing a
model for the effective wall-admittance boundary condition valid for streamwise-aligned
riblets, including the dependence of ŵ+/ p̂+ on the streamwise length scale λ+x , and on the
riblet size and shape. Section 4.2 then further considers the sensitivity of marginal rollers
to approximations of the mean flow, while the riblet shapes are still resolved, i.e. without
simultaneously introducing uncertainty in both the approximation of the mean flow, and
the effective wall-admittance boundary condition.
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Figure 7. Median magnitude and phase of the wall admittance as a function of wall-normal height within the
groove of blade riblets, to infer the dominant balances in the governing equations. An admittance magnitude
varying as λ+x

−1 and a 270◦ phase correspond to a balance dominated by unsteady inertia and overlying
pressure. An admittance magnitude varying as λ+x

−2 and a 180◦ phase correspond to a balance dominated
by viscous diffusion and overlying pressure.

4.1. Relating the wall admittance to the streamwise wavelength
As a first step in developing an expression for ŵ+/ p̂+, the median amplitude and
phase of the probability density functions for �+

g ≈ 16 blade riblets are plotted
in figure 7 as a function of wall-normal height within the riblet groove. Note that the
median amplitude (or phase) tracks the crest of the corresponding probability density
function for a given wall-normal height, and that the probability density functions at
z+ = −�+

U ≈ −2.9 were depicted in figure 5(q) for the amplitude, and figure 5(s) for the
phase, for these �+

g ≈ 16 blade riblets. Figure 7 then serves to test the previous
assumption that rollers experienced an effective wall admittance due to streamwise
variations in the mass flux within the riblet grooves, driven by the overlying pressure
and balanced by viscous diffusion (García-Mayoral & Jiménez 2011b). In relation to
figure 7, these assumptions imply the admittance amplitude |ŵ+/ p̂+| should vary as
λ+x

−2 and the admittance phase be constant at ∠(ŵ+/ p̂+) = 180◦. To see this, note
that the streamwise momentum equation with a dominant balance between pressure
and viscous diffusion simplifies to ∇2

yzû+ = iκ+
x p̂+ within the groove. The in-groove

velocity can be expressed as û+ = −iκ+
x p̂+ f +(y+, z+), as shown in García-Mayoral &

Jiménez (2011b), by assuming the pressure is uniform within the groove cross-section
and by defining an auxiliary function f + which satisfies ∇2

yz f + = −1 (and has the
same boundary conditions as û+). Substituting continuity −iκ+

x û+ = ∂zŵ
+ into the in-

groove velocity expression, to relate ∂zŵ
+ to p̂+, yields ∂zŵ

+ = −κ+
x

2 p̂+ f +(y+, z+).
Finally, integrating across the groove cross-section (from z+ � 0 to the valley) gives
〈ŵ+〉|z+ = −(κ+

x
2 p̂+|z+/s+)

∫∫
A+

g,z
f + dy+dz+, i.e. equation (6.9) of García-Mayoral &

Jiménez (2011b), except with A+
g,z , the groove area below the height z+, in the place of

A+
g , the groove area below the crests (at z+ = 0) and assuming no-slip, impermeable riblet

walls. The integral
∫∫

A+
g,z

f + dy+dz+ is real, and depends just on the riblet geometry

(García-Mayoral & Jiménez 2011b), so the real prefactor κ+
x

2
/s+ = 4π2/(λ+x

2s+) dictates
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the scale-by-scale relationship between 〈ŵ+〉 and p̂+ which for this pressure–viscous
balance is proportional to λ+x

−2 with a 180◦ phase difference.
As shown in figure 7, however, such a pressure–viscous-diffusion balance is only

satisfied deep within the riblet grooves, within half a viscous unit of the groove floor
(z+ �−12.2, maroon curve, with the groove floor at z+ ≈ −12.5), and implying a very
thin viscous sublayer for these long spanwise-wavelength λ+y → ∞ modes. Thus, beyond
one viscous unit from the valley floor, the DNS measured amplitudes and phases no longer
satisfy the viscous-dominated wall-admittance boundary condition assumed by García-
Mayoral & Jiménez (2011b) for these �+

g ≈ 16 riblets. Although much smaller riblets
�+

g � 10 may have viscous-dominated in-groove flow, as suggested by the slightly steeper
admittance trends in figure 5, these smaller riblets are equally unlikely to ever sustain
rollers. Thus, a new wall-admittance boundary condition is developed, valid for riblets of
sizes 10 � �+

g � 20.
One approach that provides wall-admittance trends consistent with those in figure 7

is to assume the overlying pressure is instead balanced by unsteady inertia within
the groove. Under such a pressure–unsteady-inertia balance, the streamwise momentum
equation simplifies to −iκ+

x c+û+ = −iκ+
x p̂+ within the groove, and where unsteady

inertia refers specifically to ∂t û+ in this paper. Linearised mean-flow advection terms
U+iκ+

x {û+, v̂+, ŵ+}, v̂+∂yU+ and ŵ+∂zU+ are also neglected below z+ = −�+
U , as

the mean velocity and its gradients drop noticeably within the riblet grooves. From
DNS measurements for �+

g � 20 riblets, the superficially averaged mean velocity at the
mean origin is at least half the crest mean velocity, i.e. 〈U+〉|z+=−�+

U
� 0.5〈U+〉|z+=0.

Only blade riblets have noticeably higher mean velocities at the mean origin,
of up to ≈ 67 % of the crest velocity. Substituting continuity −iκ+

x û+ = ∂zŵ
+ into the

streamwise momentum equation to eliminate û+ provides ∂zŵ
+ = −iκ+

x p̂+/c+. Applying
the same technique as previously and integrating over the groove area yields 〈ŵ+〉|z+ =
−[iκ+

x p̂+|z+/(c+s+)] ∫∫
A+

g,z
dy+dz+ for any z+ � 0, under the same assumption of a

pressure uniformly equal to p̂+|z+ over the groove cross-section and with impermeable
riblet walls. Evaluated at the virtual origin for the mean flow, this yields a wall-admittance
boundary condition of

〈ŵ+〉
p̂+

∣∣∣∣
z+=−�+

U

= −iκ+
x

c+
A+

g,−�U

s+ , (4.1)

where A+
g,−�U

is the groove area below z+ = −�+
U and where z+ = 0 is at the riblet crests.

Expressing the effective boundary condition as (4.1) showcases the relationship between
the wall admittance and the riblet geometry, via A+

g,−�U
/s+, which may not have been

readily apparent from brute-force calculations of the wall-admittance coefficient Ĉwp for
different riblet sizes. The effective boundary condition (4.1) is composed of −iκ+

x /c+ =
−2πi/(λ+x c+) multiplied by the real, purely geometric factor A+

g,−�U
/s+, and further

highlights that having assumed a balance between pressure and unsteady inertia within
the groove provides a wall admittance proportional to λ+x

−1 and a constant 270◦ phase
difference when c+ is real (i.e. the mode is marginal), consistent with the trends in DNS
shown in figure 7. Specifically, the wall-admittance amplitudes measured in DNS vary as
λ+x

−1 at wall-normal heights near the mean origin (z+ = −�+
U ), while the wall-admittance

phases are slightly lower than 270◦, but still remain reasonably constant across λ+x . Only
much deeper within the riblet grooves, between −12 � z+ �−6, are both unsteady inertia
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and viscous diffusion equally relevant in balancing the overlying pressure. Similarly, the
2-D linear-stability analysis predicted trends of λ+x

−1 for the admittance and ≈ 270◦ for
the phase at z+ = −�+

U , when rollers were near marginal, recalling figure 5. Thus, in
the 1-D analysis, a pressure–unsteady-inertia balance will be encoded in the effective
wall-admittance boundary condition at z+ = −�+

U , rather than a pressure–viscous-
diffusion balance.

To further reinforce that a pressure–unsteady-inertia balance is dominant near z+ ≈
−�+

U , the model boundary condition (4.1) is compared with 2-D linear-stability analysis
and DNS measurements in figure 5, taking a fixed (real) wave speed of c+ = 6; see
(4.2). When rollers are near marginal, the wall-admittance amplitudes given by (4.2),
dot-dashed lines, agree well with the wall-admittance amplitudes measured from the 2-
D linear-stability analysis, solid black/cyan lines, and from DNS, coloured contours. This
agreement is observed in both the matched λ+x

−1 trends with streamwise wavelength, and
the approximate A+

g,−�U
/s+ scaling of the wall-admittance amplitude with riblet size.

Thus, the 1-D boundary condition (4.2), which captures the importance of unsteady inertia
within the riblet grooves, reasonably represents the admittance amplitude provided by
grid-resolved riblets. However, the admittance phases measured in the 2-D linear-stability
analysis and DNS at z+ = −�+

U are slightly lower than the predicted phase of 270◦ from
(4.1). Thus, (4.1) is henceforth approximated as

ŵ+

p̂+

∣∣∣∣
z+=−�+

U

= κ+
x

c+
ref

A+
g,−�U

s+ exp(iφref), (4.2)

taking c+
ref = 6 as a typical reference wave speed and φref = 250◦ as a typical phase for

near-marginal spanwise rollers, and having verified that taking φref = 250◦, consistent with
DNS (figure 5), yields slightly more accurate predictions than φref = 270◦. Equation (4.2),
in addition to a no-slip condition û+ = 0, then form the effective boundary conditions to
be applied in the 1-D analysis.

4.2. Approximations to the mean-velocity profile: are spanwise variations important?
There is the potential for a greater degree of error when performing 1-D rather than
2-D analysis, as both the effective boundary condition and mean-velocity profile are
approximated. As was shown in figure 6, however, these errors vanish when both (i)
rigorous boundary conditions relating both û+ and ŵ+ to both ∂z û+ and p̂+ are obtained
(instead of modelling these relationships) and (ii) the effective boundary conditions are
placed above the riblet crests, in a region where the mean flow is spanwise uniform
(and using this spanwise-uniform mean flow in the 1-D analysis). Error (ii) specifically
stems from the absence of cross-terms in the 1-D analysis. Cross-terms of the form,
for example, 〈(U+ − 〈U+〉y)iκ+

x (û+ − 〈û+〉y)〉y , result from taking the 2-D advection
term U+(y+, z+)iκ+

x û+(y+, z+), subtracting the 1-D advection term 〈U+〉y iκ+
x 〈û+〉y ,

and spanwise averaging. Note that cross-terms also immediately vanish if the 2-D mean
flow happens to be spanwise uniform, such that error (ii) is non-zero only below a certain
wall-normal height.

The importance of the cross-terms, and thereby the spanwise variations in the mean,
are here considered by modifying the mean flow, while applying impermeable, no-
slip boundary conditions on the perturbations along the riblet surface. This avoids
simultaneously introducing uncertainties in the modelling approximations for both the
mean flow and the perturbations. Specifically, the cross-terms are eliminated from the
2-D analysis (figure 8) by replacing the spanwise-varying mean flow U+(y+, z+) with
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Figure 8. Assessing the importance of spanwise variations in the mean flow. Growth rates and wave speeds
predicted for rollers over blade and trapezoidal riblets obtained with spanwise-uniform mean flows (middle
column), remain similar to those with spanwise-varying mean flows (left column; as in figure 4). Zeroing the
mean flow below the mean origin z+ = −�+

U (right column) is also relatively unimportant when it comes to
predicting the roller growth rates, but tends to underpredict wave speeds. Note that the superficial averages of
the mean flows above z+ = −�+

U (right column) are identical to those used in the 1-D linear-stability analysis
(figure 9).
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its spanwise average 〈U+〉y(z+). Here, the intrinsic average is used below the crests (as
defined in Appendix E), to ensure a smooth wall-normal variation in the 1-D superficially
averaged mean-velocity profile even if there is a sudden change in the fluid volume
fraction, e.g. as for blade riblets. As shown in figure 8, the growth-rate and
wave-speed predictions based on both spanwise-varying mean flows (left column, with
cross-terms), and intrinsically averaged spanwise-uniform mean flows (middle column,
without cross-terms) are similar, for the riblets of sizes �+

g � 20 tested. Thus, it is unlikely
that the cross-terms, that are by default absent in the 1-D analysis, will greatly impact the
accuracy of the 1-D predictions, based on this 2-D analysis with and without cross-terms.
Equally, spanwise variations in the mean flow are a detail which need not be retained in the
1-D analysis, in any sense, to predict rollers reasonably well for riblets of sizes �+

g � 20.
The importance of the mean profile below the mean-flow origin �+

U is then considered.
Although capturing the full extent of the shear layer (up to z+ = −�+

U ) is important
when predicting rollers (Sharma & García-Mayoral 2020), the details of the mean flow
below z+ = −�+

U may not be relevant. As shown in figure 8, zeroing the mean velocity
below z+ = −�+

U yields growth-rate predictions (right column) which remain similar to
those with unmodified mean flows (left column). However, zeroing below z+ = −�+

U
reduces the wave speeds predicted for larger riblets, indicating that rollers are sensitive
to the mean-velocity profile within the riblet grooves. Although not shown here, linearly
extrapolating the spanwise-averaged velocity profile below the crests of the riblets, such
that 〈U+〉e(z+) = 0 at z+ = −�+

U , also led to an underprediction of wave speeds. Thus,
although spanwise variations in the mean profile are unimportant to the growth of the
spanwise roller instability (for �+

g � 20), the wave speed can be inaccurately predicted
when the in-groove mean flow is not well approximated, e.g. by zeroing the mean velocity
at or below z+ = −�+

U .
Based on the similarities in the growth rates shown in figure 8, the superficial averages

of the riblet-resolved 2-D mean profiles will be employed in the 1-D linear-stability
analysis in § 5. The 1-D analysis then requires a single riblet-resolved 2-D calculation
per riblet size, with an �+

T -shifted smooth-wall Cess eddy-viscosity profile, to obtain the
superficially averaged mean flow. Note that the growth rates predicted from 1-D mean
flows, calculated with a boundary condition of U+ = 0 at z+ = −�+

U , and still with �+
T -

shifted Cess profiles, were not consistent with predictions from 2-D calculations, as shown
in Appendix E, figure 15. However, to demonstrate that the 1-D analysis can still provide
useful standalone predictions, i.e. without any assisting 2-D calculations, results from 1-D
linear-stability analysis with 1-D mean flows (U+ = 0 at z+ = −�+

U ) are also included.

5. The 1-D linear predictions based on a dynamical model of the in-groove flow
As posed at the start of § 4, the question of whether the riblets can be adequately replaced
by an effective boundary condition is now considered. This involves the use of the model
boundary condition (4.2), as a means to relate the riblet geometry to the wall admittance,
and thereby explain why only some riblets promote spanwise rollers.

The 1-D analysis is performed in MATLAB, solving a primitive variable formulation
of the linearised Navier–Stokes equations, based on Luhar, Sharma & McKeon (2014) and
Luhar, Sharma & McKeon (2015). The no-slip (û+ = v̂+ = 0) and wall-admittance (4.2)
boundary conditions are placed at z+ = −�+

U , and implemented with row replacement.
Symmetry conditions at the centreline follow from appropriate modifications to the
spectral differentiation matrices (Weideman & Reddy 2001), with interest in symmetric
streamwise velocity perturbations. The lower half of the domain is then discretised with
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Nc = 160 Chebyshev nodes (for Reτ = 395), in line with the Nc � 100 Chebyshev nodes
(half-domain) of Luhar et al. (2015), and the Ns = 200 splines (full domain) of Jiménez
et al. (2001), both at Reτ ≈ 2003. The eigenvalue problem is solved in generalised form
using the function eigs with tolerance 10−12, and targeting the leading four eigenvalues
near c+ ≈ 6. Eigenvalues which prove sensitive to grid resolution with tolerance 10−3

(comparing Nc = 160 to Nc = 170) are omitted, although spurious modes are typically far
from the eigenmode of interest.

5.1. Predictions of the 1-D linear-stability analysis
The results of the 1-D and 2-D analyses are compared in figure 9. Overall, the 1-D analyses
(figure 9, middle and right columns) provide predictions which are reasonably consistent
with those of both the 2-D linear-stability analysis (figure 9, left column) and the DNS,
in terms of which riblet shapes promote rollers. Specifically, both 1-D analyses predict
that 30◦ triangular riblets should form rollers at the smallest �+

g values and should
promote the most intense rollers, followed then by blade , 60◦ triangular and
30◦ trapezoidal riblets, respectively. This ordering of roller intensities is similar
to that observed in both the 2-D linear-stability analysis and DNS, and follows from the
scaling of the wall-admittance boundary condition (4.2) with riblet size and shape, and
streamwise scale. The λ+x

−1 variation with streamwise scale penalises the wall admittance
less aggressively at larger streamwise wavelengths (than a λ+x

−2 scale dependence), in
line with a balance between unsteady inertia and pressure within the riblet grooves.
This allows for larger wall admittances at the streamwise wavelengths 90 � λ+x � 140,
figure 9(d), at which rollers are predicted in the 1-D analysis. Equally, the A+

g,−�U
/s+

scaling of the wall-admittance boundary condition (4.2) captures enough of a measure of
the riblet size and shape, particularly the riblet slenderness (per �g), i.e. Ag,−�U /(�gs), so
as to provide reasonable predictions in the 1-D analysis (further evidence is provided in
Appendix F by comparing the leading eigenmodes from the 2-D and 1-D analyses). The
riblet slenderness Ag,−�U /(�gs) is expressed per �g to enable comparison at roller-onset
sizes of matched �+

g ≈ 10 (García-Mayoral & Jiménez 2011b), and so provides a rough
guide as to which riblet shapes are likely to have the most intense rollers. These slenderness
values Ag,−�U /(�gs) are, , 0.77; , 0.49; , 0.42; , 0.38; ,
0.28; , 0.26. Thus, the ordering of roller intensity from the 2-D linear-stability
analysis and DNS is (approximately) reproduced, just from this Ag,−�U /(�gs) measure of
riblet slenderness, as informed by the development and modelling of the wall-admittance
boundary condition in § 4.1.

6. Conclusions
This paper has highlighted the importance of riblet-resolved calculations for accurately
predicting spanwise roller instabilities forming over riblets, and more generally, of the
importance of texture-resolved calculations to inform modelling choices for non-smooth
surfaces. Riblet-resolved calculations proved important both in establishing when and why
effective boundary conditions break down, and in identifying the key features of the mean
flow within the riblet grooves. Furthermore, physical insights into the flow dynamics in a
linearised setting proved consistent with new insights from DNS analysis, and reasonable
predictions for which riblet sizes and shapes promote rollers were obtained with both the
a priori and a posteriori 2-D models.

Through the use of riblet-resolved 2-D linear-stability analysis, in concert with
DNS and 1-D linear-stability analysis, previous theories regarding spanwise rollers

1022 A35-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
79

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10790


Journal of Fluid Mechanics

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

0 10 20 30

�+
g

Im
(ω

+
)

Mean: 2-D riblet-resolved

 BC: 2-D riblet-resolved

Mean: superficial average of 2-D

 BC: 1-D admittance-modelled

Mean: 1-D, no-slip at z+= –�+
U

 BC: 1-D admittance-modelled

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2
Growing rollers

Decaying rollers

100

200

300

400

3

4

5

6

7

Roller wavelength

100

200

300

400

Roller wave speed

3

4

5

6

7

100

200

300

400

3

4

5

6

7

λ+
x

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

c+
 =

 R
e

(ω
+
)/

κ
+ x

Growing rollers

Decaying rollers

Growing rollers

Decaying rollers

Figure 9. Comparing the 2-D linear-stability analysis which resolves the riblets (left column) to the 1-D
analysis with a wall-admittance model capturing the in-groove physics (middle and right columns). The 1-
D wall-admittance boundary conditions are ŵ+/ p̂+ = (A+

g,−�U
/s+)(κ+

x /6) exp(250πi/180) and û+ = 0 at
z+ = −�+

U . The 1-D analysis is performed both with superficially averaged mean-velocity profiles obtained
from riblet-resolved 2-D calculations for each riblet size (middle column) and with mean-velocity profiles
obtained over no-slip walls placed at z+ = −�+

U (right column), so as to provide a set of standalone 1-D
predictions. Overall, the 1-D analysis reasonably captures the prevalence or lack of rollers based on the roller
growth rates (first row), as well as the roller wavelengths (second row) and wave speeds (third row). However,
the 1-D analysis tends to predict growing rollers at smaller �+

g than the 2-D analysis, and tends to underpredict
the wave speeds when using 1-D mean flows over a no-slip wall (right column), as the 2-D superficially
averaged mean flows retain a slip velocity at �+

U .

(García-Mayoral & Jiménez 2011b) were reappraised. First, riblet grooves did not provide
sufficient wall admittance to emulate a free-shear layer. Thus, maximally growing free-
shear-layer instabilities are not promoted by riblets, with the rollers over riblets therefore
not strictly Kelvin–Helmholtz rollers. The rollers are sensitive to (i) the finite wall
admittance of the riblets, (ii) the mean shear in the mixing layer (which depends critically
on the choice of turbulence origin �+

T ) and (iii) the details of the mean-velocity profile
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within the riblet grooves, the latter two related to the momentum absorption near the riblet
tips (Endrikat et al. 2021a).

The spanwise rollers, being far from the maximally growing limit, were further shown
to be near-marginally-stable modes. This finding suggests that the spanwise rollers
forming over some other non-smooth surfaces may also be marginal modes, especially
whenever rollers form with similar streamwise wavelengths λ+x ≈ 150 to those over riblets,
e.g. as observed for some permeable substrates (Gómez-de-Segura & García-Mayoral
2019; Chavarin et al. 2021). The characteristics of the marginal rollers over riblets, as
predicted by the 2-D linear-stability analysis herein, also matched DNS observations
(García-Mayoral & Jiménez 2011b, 2012; Endrikat et al. 2021a) and 2-D resolvent
predictions (Chavarin & Luhar 2020), having streamwise wavelengths of λ+x ≈ 150 and
wave speeds c+ ≈ 5. This resolved previous discrepancies in the predictions of λ+x ≈ 60
for the streamwise wavelength of assumed-maximally growing rollers (García-Mayoral &
Jiménez 2011b; Gómez-de-Segura et al. 2018b), compared with the wavelength λ+x ≈ 150
of marginal rollers shown herein and in resolvent analyses (Chavarin & Luhar 2020;
Chavarin et al. 2021). Furthermore, the 2-D linear-stability analysis correctly identified
which riblet shapes promote (marginal) spanwise rollers, and which did not, in agreement
with DNS observations. With a model for the turbulence origin �+

T , this formed a
predictive tool able to determine which riblets promote rollers. It still remains to determine
the drag contribution attributed to the additional Reynolds stresses carried by the rollers,
which has yet to be definitively measured (Endrikat et al. 2021a; Viggiano et al. 2024), and
which ultimately requires an improved means of measuring or modelling the turbulence
origin �+

T . In addition, it remains to clarify the mechanism(s) responsible for the complete
drag-reduction breakdown for all riblet shapes (Modesti et al. 2021; Endrikat et al. 2022;
Chan et al. 2023).

With the overall success of the 2-D linear-stability analysis, the viability of accurate 1-D
linear predictions was reconsidered. This required a 1-D effective boundary condition to
represent the riblets, with the choice made to model the boundary condition with a wall
admittance, toward identifying which geometrical features of a given riblet shape promote
rollers. As shown herein, the wall-admittance measurements from both DNS and 2-D
linear-stability analysis were at odds with the conventional theory of viscous-dominated
in-groove physics, which informed previous 1-D modelling (García-Mayoral & Jiménez
2011b). Instead, for roller-promoting riblets, the overlying pressure, which drives the roller
instability, was shown to be balanced by unsteady inertia within the groove. Only within
half a viscous unit of the groove floor was viscous-dominated flow physics recovered.
This pressure–unsteady-inertia balance revealed the importance of riblet slenderness in
controlling the intensity of spanwise rollers, via the effective wall admittance. This
pressure–unsteady-inertia balance also explained, for example, why rollers are promoted
by slender 30◦ triangular riblets and not by less-slender 90◦ triangular riblets.

Once applied in the 1-D analysis, this wall-admittance boundary condition provided
reasonable predictions as to which riblet shapes promote rollers, for riblets with grooves
sizes 10 � �+

g � 20. This 1-D boundary condition appropriately captured both the scaling
of the wall admittance with riblet size and streamwise scale, which was further reflected
in the 1-D analysis reasonably predicting the streamwise wavelength for maximum growth
(λ+x ≈ 100). The 1-D analysis also indicated that intense rollers would form for the most
slender riblets, 30◦ triangular and blade riblets especially, as in DNS.
However, even though this 1-D effective boundary condition captured the in-groove
physics, the 1-D analysis was unable to conclusively identify whether certain riblet shapes
never promote spanwise rollers at very large riblet sizes �+

g � 25. For these very large
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riblets, the effective wall-admittance boundary condition broke down, with the accuracy
of the mean-flow approximation a secondary (but still relevant) concern.

Beyond this, the model reduction, from DNS to 2-D to 1-D linear-stability analysis, still
served to provide a generalisable and predictive explanation for rollers, i.e. a relationship
between a purely geometric parameter, the riblet slenderness, Ag,−�U /(�gs), and the
dynamics (intensity) of the spanwise rollers. Identifying the correct physical balance
within the riblet grooves directly indicated the importance of riblet slenderness, without
having to rely on any correlations in DNS. Riblet slenderness being a shape-dependent
quantity also explained why only some riblets (at matched size) promote rollers, as (i)
groove area is only size-dependent, and (ii) marginal rollers are more sensitive to changes
in the effective wall admittance than maximally growing rollers. These findings stand in
stark contrast to the previous theory, which suggested that all sufficiently large riblets
should form maximally growing rollers (García-Mayoral & Jiménez 2011b).

Given that a 1-D wall-admittance boundary condition can predict marginal spanwise
rollers for riblet sizes of practical relevance, similar analyses may prove insightful for
other surfaces, e.g. for high-admittance permeable substrates (Zampogna & Bottaro 2016;
Lācis & Bagheri 2017; Habibi Khorasani et al. 2024), which, although drag increasing
(Chu et al. 2019; Shahzad, Hickel & Modesti 2023; Hartog et al. 2024), may serve to
mitigate noise or enhance heat transfer. This work also cautions results derived solely
from modelled boundary conditions without accompanying texture-resolved calculations,
e.g. for permeable substrates modelled with a scale-independent wall admittance (Jiménez
et al. 2001; Motoki et al. 2022), as although linear-stability analysis may be consistent
with DNS using the same modelled boundary conditions, the observed modes may not
be realisable from any manufactured surface. Thus, texture-resolved calculations should
be leveraged, if a parametric sweep would prove affordable, e.g. to analyse the permeable
substrates directly. Otherwise, a smaller number of texture-resolved calculations should be
performed and interrogated, so as to develop an effective model boundary condition able
to relate the substrate properties to the dynamics of the overlying rollers.
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Appendix A. Pressure cospectra for different riblet sizes and shapes
As discussed in § 2, and recalling figure 3(b), the presence of spanwise rollers is indicated
by a shift in the streamwise wavelength of the peak pressure from λ+x ≈ 200 to λ+x ≈
150. This shift is relatively consistent across wall-normal heights, up to z+ ≈ 20, given
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Figure 10. Cospectra of p̂′ p̂′∗ normalised by the x-y-t averaged 〈p′ p′〉 at z+ + �+
T ≈ 10 for riblets of various

shapes and sizes (coloured contours) and a smooth wall (black dashed lines), having reprocessed the DNS
datasets of Endrikat et al. (2021a), Modesti et al. (2021) and Wong et al. (2024).
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Figure 11. Growth rates for �+
g ≈ 15 trapezoidal riblets: (a) varying Reτ , (b) varying κ+

y . Note the different
axis scales.

the uniformity of the pressure cospectra in z+. As shown in figure 10 at a wall-normal
height z+ + �+

T ≈ 10, an approximate region in which rollers are observed can be delimited
solely based on this shift in the peak pressure (grey shaded region). Note that besides this
shift in the pressure cospectra, the overall distribution of p̂′+ p̂′+∗ across streamwise and
spanwise wavelengths remains for the most part unchanged (relative to a smooth wall) by
the presence of roller modes, where the superscript ()∗ denotes the complex conjugate.

Appendix B. Varying the friction Reynolds number and spanwise wavenumber
Taking trapezoidal riblets as a representative shape, figure 11(a) serves to
demonstrate that the growth rates predicted in the 2-D linear-stability analysis are almost
unaffected by the choice of Reτ , testing from Reτ = 395 to Reτ = 1580, and indicating that
rollers are a viscous-scaled instability. This is consistent with the DNS results of García-
Mayoral & Jiménez (2012), who showed that rollers over riblets scale with the distance
from the wall to the local minimum in the second derivative of the mean-velocity profile
(García-Mayoral & Jiménez 2011b), which remains constant in viscous units. This result
is also recovered in the 1-D linear-stability analysis (not shown). Comparatively, rollers
which form over uniform-admittance permeable substrates tend to be δ-scaled (Jiménez
et al. 2001; Motoki et al. 2022), not viscous-scaled, given the much larger streamwise
wavelengths λ+x ≈ 104 to 105 at which δ-scaled rollers are marginally stable (Jiménez et al.
2001). Note that in this section the Cess constants themselves are kept fixed at κ = 0.46 and
A = 30.7, while the Cess eddy-viscosity profile (Reynolds & Tiederman 1967) accounts
for the varying Reτ .

In addition, figure 11(b) demonstrates that the spanwise-infinite mode κ+
y = 0 is the

least stable of the large spanwise-wavelength modes (λ+y � 125), as relevant to spanwise
rollers. Modes at finite κy are still obtained by solving (3.1)–(3.4), except spanwise
derivative terms ∂y are replaced by (iκ+

y + ∂ỹ), where ỹ+ is s+-periodic and y+ is
2πs+/κ+

y -periodic.

Appendix C. Selecting the turbulence origin (for the Cess eddy-viscosity profile)
For riblets, selecting the value of �+

T fixes the origin of the eddy-viscosity profile
ν+

e,S(z
+ + �+

T ) = ν+
e,R(z+). However, measuring �+

T from the DNS would not allow
for a priori predictions of spanwise rollers, even assuming that �+

T (or a zero-plane
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Figure 12. Selecting the turbulence origin �+
T to apply in the riblet-resolved linear-stability analysis, which

sets the origin of the eddy-viscosity profile ν+
e,R . (a) Log-layer measured drag change for six riblet shapes,

with a quadratic best fit of the dataset �U+
fit forced to �U+ = 0 at �+

g = 0; adapted from Wong et al.
(2024). (b) The corresponding turbulence origins �+

T = �U+
fit + h+

‖ (solid curves) which are applied in the
linear-stability analysis; h+

‖ being known for a given riblet shape. The symbols are �+
T = �U+ + h+

‖ based
on the DNS-measured �U+. (c) A comparison between a priori �+

T predictions with a viscous model (Wong
et al. 2024) and �+

T = �U+ + h+
‖ based on DNS measurements. Disagreement is not unexpectedly observed

in the �+
g � 10 region of interest.

displacement), could be accurately measured for large riblets in minimal-channel DNS
(Chen & García-Mayoral 2023).

One option is to employ a priori predictions of �+
T , e.g. the viscous vortex model

predictions of Wong et al. (2024), which are accurate for smooth-wall-like riblets of sizes
�+

g � 10, and which could be extrapolated to larger �+
g . However, these a priori predictions

of �+
T assume viscous in-groove flow, and become inaccurate for �+

g � 10 for the very
reason that spanwise rollers and other texture-coherent structures begin to appear (Modesti
et al. 2021). By carrying additional Reynolds stresses and altering momentum transfer,
these structures modify �+

T , for which no accurate a priori predictions then exist. For the
same reason, for �+

g � 10, the concept of a smooth-wall-like turbulence origin �+
T breaks

down, and a zero-plane displacement d+ is defined in its place (Chen & García-Mayoral
2023).

However, the usefulness of a (viscous) smooth-wall-like approximation need not end
at the limit of the viscous regime (�+

g � 10). For smooth-wall-like riblets with �+
g � 10,

the drag reduction �U+ is �−(�+
U − �+

T ) (Wong et al. 2024), and furthermore, from
the cancellation in �+

U and �+
T , the resulting magnitude of �U+ is typically an order of

magnitude lower than that of �+
T . Thus, for example, a large relative error in �U+ would

correspond to a small relative error in �+
T . Equally, when rollers and other drag-increasing

mechanisms for riblets are weak, e.g. for 10 � �+
g � 20, their contribution to �U+ may

be of the order of �U+ (although certainly not an error), and yet this contribution may
remain a small fraction of �+

T , e.g. conservatively � 20 % to 30 % for �+
g ≈ 20, depending

on the riblet shape. This provides a gauge of the relative error in �+
T if using a smooth-wall-

like approximation �U+
�−(�+

U − �+
T ) beyond its regime of applicability, noting that �+

T
is the quantity of interest for roller predictions.

To obtain somewhat a priori predictions, �U+ values measured a posteriori from
the DNS for all six riblet shapes considered herein are fit to a quadratic polynomial,
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Riblet cross-section DNS-fitted d+ ≈ �+
T A priori �+

T (Wong et al. 2024) Roller observations
c1�

2
g + (c2 + (h‖/�g))�g mT �2

g + (h⊥/�g)�g

0.0092�+
g

2 + (−0.17 + 0.20)�+
g 0.0010�+

g
2 + 0.085�+

g Common
0.0092�+

g
2 + (−0.17 + 0.18)�+

g 0.0017�+
g

2 + 0.076�+
g Common

0.0092�+
g

2 + (−0.17 + 0.26)�+
g 0.0026�+

g
2 + 0.122�+

g Uncommon
0.0092�+

g
2 + (−0.17 + 0.29)�+

g 0.0028�+
g

2 + 0.124�+
g Uncommon

0.0092�+
g

2 + (−0.17 + 0.25)�+
g 0.0030�+

g
2 + 0.147�+

g Absent
0.0092�+

g
2 + (−0.17 + 0.28)�+

g 0.0041�+
g

2 + 0.156�+
g Absent

Table 2. Polynomial expressions for the turbulence origin �+
T , from DNS-fitted �U+, and from a priori �+

T
predictions (Wong et al. 2024), for each riblet shape. Whether spanwise rollers are observed in DNS (García-
Mayoral & Jiménez 2011b; Endrikat et al. 2021a) for each riblet shape is also listed. Note that for the DNS-
fits, c1 and c2 are intentionally identical for all riblets, as they are obtained from a single best fit of �U+
(figure 12a). Only h‖/�g varies with riblet shape. The rows of this table are ordered by the value of mT from
the a priori �+

T predictions (Wong et al. 2024), which correlates reasonably well with the likelihood of rollers
(low mT indicating the highest likelihood of rollers and where h⊥ is the spanwise protrusion height).

forced to zero at �+
g = 0. This best fit, as shown in figure 12(a), no longer depends on

a specific riblet shape, and can be converted into an equivalent �+
T specific to a riblet

shape through the smooth-wall-like approximation �U+
�−(�+

U − �+
T ). Note that �+

U can
be accurately predicted a priori from a routine Stokes-flow calculation of the streamwise
protrusion height h+

‖ , as described in Luchini et al. (1991), up to �+
g ≈ 20 (Wong et al.

2024), to well within a � 20 % to 30 % relative error. The resulting riblet-specific �+
T =

�U+
fit + h+

‖ values are then shown in figure 12(b), where the coloured lines are based
on the best-fit �U+ from figure 12(a), and the coloured markers are from the riblet-
specific measurements of �U+ + h+

‖ . The differences between the lines and the markers
are then the differences between the fitted and measured �U+, again reinforcing that a
large relative error in �U+ appears as a small relative error in �+

T (the error in figure 12b
being between fitted and measured �U+). Thus, DNS-fitted �+

T are used throughout the
entirety of the work, whenever relevant to the 2-D or 1-D linear-stability analysis, or the
DNS post-processing (i.e. plotting spectra at z+ + �+

T ), unless stated otherwise, and noting
that in figure 4(d) growth rates based on DNS-matched �+

T (symbols in figure 12b) were
compared with those with DNS-fitted �+

T (curves in figure 12b). A priori values of �+
U = h+

‖
are also assumed throughout. For convenience, the polynomial expressions for the DNS-
fitted �+

T values are provided in table 2, noting that the fitting coefficients c1 and c2 do not
depend on the riblet shape, allowing for (approximately) a priori predictions of whether
riblets will sustain rollers.

For reference, the viscous predictions of �+
T from Wong et al. (2024) are also compared

with the DNS-matched �+
T values in figure 12(c). Although the viscous predictions of

�+
T (dashed lines) deviate from the DNS-matched �+

T values (markers) for �+
g � 10, the

deviations give some indication of which riblets are likely to sustain rollers. The blade
and 30◦ triangular riblets depart sharply from the viscous predictions, and

the slopes of the �+
T trends with �+

g are especially shallow for these riblets. Moreover,
expressing the viscous predictions of �+

T from Wong et al. (2024) in the form of their
equation (4.9), the mT coefficient of the term quadratic in �+

g correlates reasonably well
with the likelihood of rollers for a given riblet shape. Note that the rows of table 2
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have been ordered by increasing mT , and for each riblet shape, the likelihood of roller
observations listed based on previous DNS (Endrikat et al. 2021a,b). Physically, small
values of mT represent reduced wall-normal transpiration at the riblet crests (Wong et al.
2024), i.e. momentum transfer between the in-groove and overlying flow is limited. This
reduced transpiration (reduced mT ) for some riblet shapes leads to a more uniform in-
groove flow, which provides a stronger mixing layer. Thus, even viscous predictions afford
some guidance as to whether riblets are likely to sustain rollers; 2-D linear-stability
analysis results with viscous vortex �+

T values were also discussed in § 3.2.

Appendix D. Comparison between linear-stability analysis and resolvent analysis
and the sensitivity of the roller mode
The wall-admittance boundary condition (4.2) is applied in the resolvent framework
(McKeon & Sharma 2010; Luhar et al. 2015; Chavarin et al. 2021) to rule out the resolvent
forcing as an explanation for previously observed differences in roller modes from linear-
stability and resolvent analysis, as discussed in §§ 2 and 3. This 1-D analysis shows that the
high-relative-gain roller modes identified in resolvent analysis (Chavarin & Luhar 2020;
Chavarin et al. 2021) are no more than marginal roller modes, explaining why differences
between linear-stability and resolvent analysis were observed only when assuming rollers
were a maximally growing instability (García-Mayoral & Jiménez 2011b; Gómez-de-
Segura et al. 2018b). In particular, the spanwise-infinite modes only maximise the gain of
the first singular value of the resolvent operator as the rollers approach marginal stability,
i.e. there is good agreement between the results of figure 13(a) and those of the inset of
figure 13(b). Thus, previous detections of roller modes in the resolvent framework serve
to provide complementary insights into the dynamics of rollers over riblets (Chavarin &
Luhar 2020) and anisotropic permeable substrates (Chavarin et al. 2021). In addition, the
good agreement between the linear-stability and resolvent analyses further indicates that
the dynamics of the spanwise rollers are primarily modal, and that other sources of non-
modal amplification inherent in the white-noise resolvent forcing (Symon et al. 2018) are
unlikely to dictate the dynamics of spanwise rollers.

The sensitivity of the spanwise wavelength of the roller mode is further considered in
figure 14, for various model boundary conditions (either uniform, κ+

x or κ+
x

2 amplitude
dependence, and either 180◦, 250◦ or 270◦ phase.) In particular, note that the wavelength
for marginal stability (solid markers in the bottom row of figure 14) varies significantly
with the choice of model boundary condition (and with a uniform wall admittance, occurs
at λ+x > 103 for two of the admittance phases considered). Overall, this sensitivity in the
streamwise wavelength dynamically demonstrates the importance of accurately capturing
the in-groove dynamics with the appropriate effective boundary condition (e.g. purely
pressure–viscous with κ+

x
2 amplitude dependence and 180◦ phase, vs pressure–unsteady-

inertia with κ+
x amplitude dependence and 270◦ phase, or somewhere between). Overall,

this sensitivity to the boundary condition further motivates the use of riblet-resolving
simulations, to ensure that the correct physical balance within the grooves is captured
in any ensuing 1-D analysis.

Appendix E. Linear-stability analysis about either DNS or Cess mean flows
In this section, various mean-flow approximations are compared in the linear-stability
analysis.

First, results with riblet-resolved 2-D mean profiles (Cess eddy-viscosity shifted by
fitted-�+

T ) are compared with results with x-t-riblet-averaged DNS mean profiles in
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Figure 13. Comparing 1-D linear stability and 1-D resolvent analysis with identical modelled boundary
conditions. The 1-D wall-admittance boundary conditions are ŵ+/ p̂+ = (A+

g,−�U
/s+)(κ+

x /6) exp(250πi/180)

and û+ = 0 at z+ = −�+
U , with superficially averaged mean-velocity profiles obtained from riblet-resolved 2-D

calculations for each riblet size. Note that the inset in (b) provides the relative gain of the leading resolvent
mode, which consistently increases as the roller mode approaches marginal stability (the dashed lines indicate
the �+

g at which positive growth rates are first attained in the 1-D linear-stability analysis, and which indicate
good agreement between the two approaches), and where σR and σS are the gain of the leading resolvent modes
for riblets and a smooth wall, respectively.
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/s+) |ŵ+/p̂ +| = (0.01κ+

x
2/c+

ref)(A+
g, –�U

/s+)

λ+
x = 60

λ+
x = 150

λ+
x = 60

λ+
x = 150

λ+
x = 60

Figure 14. Testing modified forms of the effective wall-admittance boundary condition, specifically, three
different scale dependences for the admittance amplitude, and three different phases. Not all amplitude-scale
dependence and phase relations are necessarily achievable from a manufactured surface. (a–c) Fixed riblet size
(�+

g ≈ 20 trapezoids), plotting the growth rate across streamwise wavelengths. (d–f ) Streamwise wavelength for
peak growth, across �+

g (trapezoids). Solid markers indicate the wavelength at the point of marginal stability,
for each of the admittance amplitude and phase combinations tested (two marginal wavelengths with a uniform
wall-admittance amplitude exceeded λ+x = 103, so are not plotted).
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Figure 15. Comparing the growth rates predicted with the riblet-resolved 2-D mean flows with Cess eddy-
viscosity shifted by �+

T (left column) to their DNS equivalents (middle column), and to the use of 1-D mean
flows over a no-slip wall (right column; with Cess shifted by the same �+

T ). In all cases the perturbations
experience no-slip riblets. The riblet-resolved 2-D mean flows provide predictions consistent with DNS, while
predictions with 1-D mean flows over no-slip walls are not.
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figure 15 (left, middle columns). As shown, the riblet-resolved 2-D profiles (left column)
provide predictions consistent with the DNS mean profiles (middle column) for all riblet
shapes tested. Prediction accuracy is affected by both the choice of �+

T and the use of
an eddy-viscosity closure, although neither approximation leads to predictions overly
inconsistent with those from the DNS.

Second, results with riblet-resolved 2-D mean profiles are compared with results with
mean profiles over a no-slip wall in figure 15 (middle, right columns), i.e. comparing
results based on the same shifted eddy-viscosity profile applied over either riblets or a no-
slip wall, while the perturbations still experience no-slip riblets. The use of mean profiles
over a no-slip wall (right column) leads to predictions which are inconsistent with those
based on the riblet-resolved DNS profiles (middle column), unlike when the same shifted
eddy-viscosity profile is applied over riblets (left column). Thus, 1-D mean flows obtained
over a no-slip wall should be treated with caution in any 1-D analysis with an effective
boundary condition.

Third, results with riblet-resolved 2-D mean profiles are compared with results with
intrinsically averaged mean profiles in figure 16. For reference, the superficial and intrinsic
spanwise averages of U are

〈U (z)〉y
∣∣
superficial =

1
s

∫ s−tr (z)/2

tr (z)/2
U (y, z) dy (E1)

and

〈U (z)〉y
∣∣
intrinsic = s

s − tr (z)
〈U (z)〉y

∣∣
superficial , (E2)

respectively, where tr is the thickness of the (symmetric) riblet as a function of wall-
normal height. Note that the superficial average provides, for example, an effective
boundary condition applicable across an entire wall-normal slice (i.e. across 0 to s, at
fixed z+ = −�+

U ), rather than representing the effective boundary condition across only the
fluid region. As shown in figure 16, results with intrinsically averaged mean profiles (right
column) remain consistent with both predictions based on the DNS mean profiles (middle
column) and riblet-resolved 2-D mean profiles (left column). However, the 1-D analysis
(§ 5) predicted that all sufficiently large riblets would generate spanwise rollers, at odds
with DNS observations (§ 2) and the 2-D linear-stability analysis. Rollers do not appear
when the perturbations experience no-slip riblets with either 2-D or intrinsically averaged
(1-D) mean flows, for both 90◦ triangular and asymmetric triangular riblets
for all �+

g tested. This result thereby suggests that improvements to the boundary condition
applied in the 1-D analysis are required for very large �+

g � 20 riblets, as a spanwise-
uniform mean-flow approximation is yet to completely break down (although spanwise
variations become relevant at smaller �+

g values for less-slender riblets).
These comparisons (figures 15 and 16) again reinforce the importance of capturing the

mean-flow details within the riblet grooves, even in a spanwise-averaged sense. The key
differences between the mean-flow approximations, i.e. no-slip wall shifted-Cess vs riblet-
resolved shifted-Cess or DNS, appear near the riblet crests. In particular, with no-slip wall
shifted-Cess, ∂zU+ = 1 between z+ = −�+

T and z+ = −�+
U , unlike with the superficially

averaged 2-D profiles, where ∂z〈U+〉y noticeably reduces throughout the upper portion of
the riblet grooves.
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Figure 16. Comparing the growth rates predicted with the riblet-resolved 2-D mean flows (left column) to
their DNS equivalents (middle column), and to predictions with the intrinsic averages of the riblet-resolved
2-D mean flows (right column). Decaying rollers are still predicted when employing the spanwise-uniform
intrinsic averages for the least slender of the triangular riblets, although only just. Thus, the approximation of
a 1-D mean flow is yet to completely break down.

Appendix F. Detailed comparison between the 2-D and 1-D eigenmodes
The validity of the 1-D analysis, and specifically the chosen boundary conditions, i.e. wall-
admittance boundary condition (4.2) with a no-slip condition on streamwise velocity, is
qualitatively assessed by comparing the leading eigenmodes from the 1-D and 2-D analysis
for trapezoidal riblets in figure 17. As shown, the pressure (figure 17, right column)
remains highly uniform across the entire span, regardless of the presence of the riblets,
and so the 1-D and 2-D eigenmodes look almost identical. The wall-normal velocity
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Figure 17. Comparing the real parts of the leading eigenmode from the 1-D linear-stability analysis
(solid/dashed lines) and the 2-D analysis (coloured contours). Columns are streamwise velocity, wall-normal
velocity and pressure, respectively. Across different spanwise locations (rows), there remains good agreement
between the 1-D and 2-D modes in the pressure perturbations, while for the wall-normal velocity, there are some
slight differences, particularly near the riblet crests. The largest differences are observed in the streamwise
velocity, although some resemblance is still maintained. Note that the domain for the 1-D linear-stability
analysis extends only to z+ = −�+

U , and not to the valley floor at z+ = −k+. The dashed off-white lines indicate
the local minimum in ∂zzU+.

(figure 17, middle column) also maintains a reasonable degree of spanwise uniformity,
with only slight variations at spanwise slices near the riblets, and with spanwise variations
absent once a few viscous units above the riblet crests. The overall good agreement in the
wall-normal velocity and pressure contours between the 1-D and 2-D eigenmodes further
supports the use of the wall-admittance boundary condition (4.2) in the 1-D analysis.
These observations are also qualitatively similar to those from DNS (García-Mayoral &
Jiménez 2011b; Endrikat et al. 2021a), where the rollers remain coherent across multiple
riblet spacings, in spite of slight disruptions in the wall-normal velocity near the individual
riblets (e.g. comparing figures 17b and 17e). However, larger differences between the 2-
D and 1-D modes are observed in the streamwise velocity (figure 17, left column), and
suggest that the imposition of a no-slip condition on the streamwise velocity should
be relaxed, for larger riblets especially. However, applying û+ = 0 in concert with the
wall-admittance boundary condition (4.2) still provides reasonable predictions for roller-
promoting riblets with �+

g � 20, allowing many of the key features of the 2-D roller modes
to be captured in the 1-D analysis.

The influence of the riblet size and shape on the spanwise rollers is also made apparent
through the localisation of the roller mode. Specifically, the rollers tend to localise where
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∂zzU+ is a minimum, as ∂zzU+ here drives perturbation energy production (Jiménez et al.
2001; García-Mayoral & Jiménez 2011b; McKeon 2017). For these �+

g ≈ 15 trapezoidal
riblets, the minimum in ∂zzU+ is approximately 3 viscous units above the riblet crests
(dashed off-white lines in figure 17), about which the streamwise velocity contours in
particular tend to localise (the heads of the wall-normal velocity modes sit slightly above
this location). Thus, the shear-layer height is approximately 7 viscous units, as the DNS-
interpolated �+

T for these riblets is approximately 4 units below the crests. This shear-layer
height is approximately unchanged from that over a smooth wall, and equally sets the
wave speed of the roller mode, as c+ ≈ U+ ≈ 7 (García-Mayoral & Jiménez 2011b).
As the shear-layer height is approximately unchanged percentage-wise, it is instead the
localisation of the roller mode about the minimum in ∂zzU+ that explains much of
the sensitivity to �+

T , as observed in the roller growth rate and wave-speed predictions
(recalling figure 4). Small changes to �+

T , of 1 to 2 viscous units, lead to commensurate
changes in how far above the riblet crests the roller modes localise, thereby influencing the
growth rates and wave speeds. It is only the overall wall-normal extent of the roller modes
(≈ 50 viscous units), that has little dependence on �+

T .
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